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Classical Ground States

• Classical ground states are those classical particle configurations

with minimal potential energy per particle ΦN (rN )/N .

• Such states are fundamental to a multitude of problems arising in
the physical sciences , biology , and mathematics (e.g., number
theory).
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with minimal potential energy per particle ΦN (rN )/N .

• Such states are fundamental to a multitude of problems arising in
the physical sciences , biology , and mathematics (e.g., number
theory).

QUESTIONS

To What Extent Can We Predict/Control Ground-State
Structures?

Can Ground States Ever Be Disordered? There is no
fundamental reason why aperiodic or disordered ground states
are prohibited in low dimensions (Ruelle 1982) .

• We provide some specific answers to these questions using
optimization techniques .
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Definitions

A lattice in d-dimensional Euclidean space R
d is the set of points that are

integer linear combinations of d basis (linearly independent) vectors, i.e., for

basis vectors a1, . . . ,ad,

{n1a1 + n2a2 + · · · + ndad | n1, . . . , nd ∈ Z}

The space R
d can be geometrically divided into identical regions F called

fundamental cells , each of which contains just one point.

In R
2:

A periodic point distribution in R
d is a fixed configuration of N points (where

N ≥ 1) in each fundamental cell of a lattice.
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Simple Pair Interactions

For a configuration rN ≡ r1, . . . , rN of N ≫ 1 particles in volume V ⊂ R
d,

the simplest form for the total potential energy is

ΦN (rN ) =
∑

i<j

v(|rj − ri|),

where v(r) is a “stable” radial function.
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Ground state in R
3 of Lennard-Jones (LJ) potential is strongly believed to be

one of the stacking variants of the densest sphere packings (Hales 2005), but

there is no proof. The unbounded support of the LJ potential makes the

problem highly nonlocal .
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Local Density Fluctuations for General Point Distributions
Torquato and Stillinger, PRE 68, 041113 (2003)

Points can represent molecules of a material, stars in a gala xy, or trees

in a forest. Let Ω represent a regular domain (window) in R
d and x0

denote its centroidal position.
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in a forest. Let Ω represent a regular domain (window) in R
d and x0

denote its centroidal position.
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For a d-dimensional spherical window of radius R in R
d, denote by

σ2(R) ≡ 〈N2(R)〉 − 〈N(R)〉2 the number variance.

For a Poisson point process and many correlated point distri butions,

σ2(R) ∼ Rd.

We call point distributions whose variance grows more slowl y than Rd

hyperuniform (infinite-wavelength fluctuation vanish).
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SINGLE-CONFIGURATION FORMULATION
We showed

σ2(R) = 2dφ

(

R

D

)d
[

1 − 2dφ

(

R

D

)d

+
1

N

N
∑

i 6=j

α(rij ; R)
]

where α(r; R) is scaled intersection volume of 2 windows separated by r,

which can be viewed as a repulsive pair potential :
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RESULTS FOR BRAVAIS LATTICES & NUMBER THEORY

Lattice in R
d is specified by the primitive lattice vector

p = n1a1 + n2a2 + · · · + nd−1ad−1 + ndad = A · n
Define the positive definite quadratic form in n1, n2, . . . , nd:

Q(n) = p2 ≡ pT · p = nT · B · n, (B = AT · A)

N(x0; R) is a periodic function in the window position x0:

N(x0; R) = ρv1(R) +
∑

q6=0

a(q)eiq · x0 (q · p = 2πm)

We showed that

σ2(R) =
Rd

v2
C

∑

q6=0

(

2π

q

)d

[Jd/2(qR)]2, Λ =
2dπd−1D2d

v2
C

∑

q6=0

1

(qD)d+1
.

For Q(m), Epstein zeta function for a lattice is defined by

ZQ(s) =
∑

m 6=0

Q(m)−s, Re s > d/2.
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Quantifying Degree of Order

The surface-area coefficient Λ for some crystal,
quasicrystal and disordered two-dimensional
hyperuniform point patterns.

Pattern Λ/φ1/2

Triangular Lattice 0.508347

Square Lattice 0.516401

Honeycomb Lattice 0.567026

Kagomé Lattice 0.586990

Penrose Tiling 0.597798

Step+Delta-Function g2 25/2/(3π) ≈ 0.600211

Step-Function g2 8/(3π) ≈ 0.848826

One-Component Plasma 2/
√

π ≈ 1.12838

We found analogous results in R
3.
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Minimum of Epstein Zeta Function in Higher Dimensions

Because of the connection with optimal packing problems , Rankin (1953)

conjectured and proved that the minimum value of the Epstein zeta function in

R
2 at s = 3/2 is achieved by the triangular lattice.
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conjectured and proved that the minimum value of the Epstein zeta function in

R
2 at s = 3/2 is achieved by the triangular lattice.

Conjecture (Chiu, 1997): Let Q be a d-dimensional positive definite quadratic

form with determinant one. Then for s with Re s > 0,

ZQ(s) ≥ ZQL
(s),

equality holding iff Q is the quadratic form QL of the maximally dense lattice.

This conjecture cannot be correct for sufficiently high d because lattices are

no longer maximally dense.

Whenever the conjecture is true, the number variance is minimized by lattices

that are the duals to those that minimize the Epstein zeta function.

Sarnak and Str ömbergsson (2006) have recently proved that the conjecture

cannot be generally true, but for d = 4, 8 and 24, ZQL
(s) is locally minimum.
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Inverse Problem of Statistical Mechanics

Traditional Self Assembly

“ Self-assembly ” – processes in which entities (atoms, molecules,

aggregates of molecules, etc.) spontaneously arrange them selves into a

larger ordered and functioning structure.

Biology offers wonderful examples: (1) DNA double helix; (2) lipid

bilayers; and (3) protein folding.

Materials science of the future, i.e., devising building blocks with specific

interactions that can self-organize on a number of length scales.

Edisonian approaches. Theory ?

. – p. 11/32



Inverse Approach

Two-fold objective:

1. Statistical-mechanical methodology to find interaction potential in

many-body systems that lead spontaneously to a “ target ” structure.

2. Use this knowledge to create such targeted colloidal stru ctures.

“Inverse” approach holds great promise for controlling sel f-assembly to a

degree that surpasses the less-than-optimal path that nature has provided.

Indeed, can “tailor” potentials that produce varying degre es of disorder , thus

extending the traditional idea of self-assembly to incorpo rate crystal,

quasicrystal, and amorphous structures .
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Motivation

Rich fundamental statistical-mechanical issues and questions offered by this

fascinating inverse problem. For example,

1. A deeper fundamental understanding of the mathematical r elationship

between the collective behavior of many-body systems and the

interactions .

2. What are the class of structures realizable by spherically symmetric pair

potentials and what are its limitations? When is anisotropy in the potential

required? When is nonadditivity required?

Our recent ability to identify target structures that have unique or desirable

material properties. For example,

1. negative thermal expansion or negative Poisson’s ratio materials

2. diamond lattice (photonic materials)

3. quasicrystals

4. amorphous structures

5. hyperuniform systems
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Challenges

Strategically placed deep potential wells :

Pair-distance distributions are unique among the lattices for the first three

space dimensions. This is generally not true for d ≥ 4.

The pair-distance distribution g2(r) is generally nonunique for point

distributions in any dimension.

A known ground state is generally achieved by an infinite set of pair

interactions. How does one choose from this infinte set?
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Designer Potentials for Targeted Configurations Via Optimization

• General Goal : Find interaction potential for a target colloidal ground-state

structure via optimization techniques .

. – p. 15/32



Designer Potentials for Targeted Configurations Via Optimization

• General Goal : Find interaction potential for a target colloidal ground-state

structure via optimization techniques .

• Specific Goal: Determine limitations of isotropic pair potentials. For example, are

there low-coordinated crystal ground states?

. – p. 15/32



Designer Potentials for Targeted Configurations Via Optimization

• General Goal : Find interaction potential for a target colloidal ground-state

structure via optimization techniques .

• Specific Goal: Determine limitations of isotropic pair potentials. For example, are

there low-coordinated crystal ground states?

• Standard short-range interactions often lead to close-packed crystals as ground

state .

. – p. 15/32



Designer Potentials for Targeted Configurations Via Optimization

• General Goal : Find interaction potential for a target colloidal ground-state

structure via optimization techniques .

• Specific Goal: Determine limitations of isotropic pair potentials. For example, are

there low-coordinated crystal ground states?

• Standard short-range interactions often lead to close-packed crystals as ground

state .

Diamond Lattice?
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Honeycomb Lattice as Ground-State Structure
Optimization criteria: favorable lattice sums and phonon spectra over the

widest possible density range , defects cost energy, etc.
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Honeycomb Lattice as Ground-State Structure
Optimization criteria: favorable lattice sums and phonon spectra over the

widest possible density range , defects cost energy, etc.
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Self-assembles in a MD simulation starting above the melting point:

Rechtsman, Stillinger & Torquato, Physical Review Letters , 2005
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What Are Limitations of Isotropic Interactions?
• Can we produce solid forms of carbon? Diamond? Graphite? Buckyballs?

. – p. 17/32



What Are Limitations of Isotropic Interactions?
• Can we produce solid forms of carbon? Diamond? Graphite? Buckyballs?

• Can we produce clusters of a given size? .

. – p. 17/32



What Are Limitations of Isotropic Interactions?
• Can we produce solid forms of carbon? Diamond? Graphite? Buckyballs?

• Can we produce clusters of a given size? .

• Can we produce linear polymers?

. – p. 17/32



What Are Limitations of Isotropic Interactions?
• Can we produce solid forms of carbon? Diamond? Graphite? Buckyballs?

• Can we produce clusters of a given size? .

• Can we produce linear polymers?

• Can we produce materials with negative thermal expansion and negative

Poisson’s ratio ?

. – p. 17/32



What Are Limitations of Isotropic Interactions?
• Can we produce solid forms of carbon? Diamond? Graphite? Buckyballs?

• Can we produce clusters of a given size? .

• Can we produce linear polymers?

• Can we produce materials with negative thermal expansion and negative

Poisson’s ratio ?

• More recently, investigating soft repulsive (monotonically decreasing) functions.
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Disordered (Highly Irregular) Ground-State Structures
Collective Coordinate Control of Density Distributions

• Microscopic density ρ(r) of a system of N particles in fundamental region Ω at

position r is

ρ(r) =

N
∑

j=1

δ(r − rj)

• The corresponding complex collective density variable is defined by

ρ(k) =
N

∑

j=1

exp(ik · rj)
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• The nonnegative structure factor is

S(k) =
|ρ(k)|2

N
= 1 +

2

N
C(k)

where C(k) is the real collective density variable.

• Consider stable radial pair potentials v(r) that are bounded and absolutely

integrable :

ΦN (rN ) =
∑

i<j

v(rij)
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Disordered (Highly Irregular) Ground-State Structures
• Alternatively, we have the Fourier representation:

ΦN =
1

|Ω|
∑

k

ṽ(k)C(k)

[

S(k) = 1 +
2

N
C(k)

]

where ṽ(k) is the Fourier transform of v(r).
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where ṽ(k) is the Fourier transform of v(r).
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• For ṽ(k) positive ∀ 0 ≤ |k| ≤ K and zero otherwise, minimizing Φ(rN ) is

equivalent to minimizing C(k) or S(k) (hyperuniform ground states ).

0 0.5 1 1.5
k

0

0.5

1

v(k)~

K=1

K
0 2 4 6 8 10 12 14 16

r
−0.003

0.002

0.007

0.012

0.017

v(r)

K=1

• For sufficiently small K , the ground states are degenerate and disordered :

Batten, Stillinger & Torquato, J. Appl. Phys., 2008
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Ground States Via Collective-Coordinate Control
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Süt ô (PRL, 2005) showed that this class of potentials “localized” in

Fourier space yield both BCC and FCC lattice ground states in R
3 for

certain densities or large enough K .
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Ground States Via Collective-Coordinate Control
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Süt ô (PRL, 2005) showed that this class of potentials “localized” in

Fourier space yield both BCC and FCC lattice ground states in R
3 for

certain densities or large enough K .

Some might regard such non-localized real-space potentials as

unphysical .

What can we say about a localized real-space potentials ?
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Duality Relation in Ensemble Setting
Define

U(rN ) =
1

N

∑

i=1,j=1

v(rij),

which is twice the total potential energy per particle plus the self-energy v(0).
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Duality Relation in Ensemble Setting
Define

U(rN ) =
1

N

∑

i=1,j=1

v(rij),

which is twice the total potential energy per particle plus the self-energy v(0).

We call v an admissible potential if it is stable, bounded, and absolutely

integrable. Such “soft” potentials are of importance for polymers.

The ensemble average of U in the thermodynamic limit is given by

〈U(rN )〉 = v(r = 0) + ρ

∫

Rd

v(r)g2(r)dr

where g2(r) is the pair correlation function and ρ is the number density .

Lemma: For any ergodic configuration in R
d, the following duality relation

holds:
∫

Rd

v(r)h(r)dr =
1

(2π)d

∫

Rd

ṽ(k)h̃(k)dk

where h(r) = g2(r) − 1 is the total correlation function .

If it is a ground state , then both sides of equation are minimized .

This duality relation offers an efficient means of computing total energy when

either v(r) or ṽ(k) is long-ranged .
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Duality Theorem
If an admissible pair potential v(r) has a lattice ground-state structure Λ at number

density ρ, we have the following duality relation for the minumum Umin of U :

v(r = 0) +
∑

r∈Λ

′
v(r) = ρṽ(k = 0) + ρ

∑

k∈Λ̃

′
ṽ(k), (1)

Λ̃ denotes the reciprocal lattice , and ṽ(k) is the dual pair potential , which

automatically satisfies the stability condition, and there fore is admissible.

. – p. 22/32



Duality Theorem
If an admissible pair potential v(r) has a lattice ground-state structure Λ at number

density ρ, we have the following duality relation for the minumum Umin of U :

v(r = 0) +
∑

r∈Λ

′
v(r) = ρṽ(k = 0) + ρ

∑

k∈Λ̃

′
ṽ(k), (1)

Λ̃ denotes the reciprocal lattice , and ṽ(k) is the dual pair potential , which

automatically satisfies the stability condition, and there fore is admissible.

Moreover, the minimum Ũmin of U for any ground-state structure of the dual

potential ṽ(k), is bounded from above by the corresponding real-space minimized

quantity Umin or, equivalently, the right side of (1), i.e.,

Ũmin ≤ Umin = ρṽ(k = 0) + ρ
∑

k∈Λ̃

′
ṽ(k) (2)

Whenever the reciprocal lattice Λ̃ at reciprocal lattice density ρ̃ = ρ−1(2π)−d is a

ground state of ṽ(k), the inequality in (2) becomes an equality.
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Applications and Questions

Inequality (2) provides a computational tool to estimate
ground-state energies or eliminate candidate ground-state
structures in MC and MD simulations .

Information about ground states of short-ranged potentials can
be used to draw interesting conclusions about the nature of the
ground states of long-ranged potentials and vice versa.

Is the equality of relation (2) of the Theorem ever applicable? If
not, can examples be constructed that establish the strict
inequality ?
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Example 1: Localized Real-Space Potentials inR3

We’ve shown that localized real-space potentials in R
3 will

have BCC and FCC lattice ground states at certain densities,
and thus equality in relation (2) is established.
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Example 2: One-Dimensional Ground States

Consider following pair potential v(r) and its dual ṽ(k) in R:

v(r) =
[

1 − r

2R

]

, ṽ(k) =
2R sin2(kR)

(kR)2
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v(r) =
[

1 − r

2R

]

, ṽ(k) =
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For any density ρ, integer lattice with spacing 1/ρ is the unique ground

state . Moreover, for ρ = m (m = 1, 2, . . .), integer lattice at reciprocal

density ρ̃ = (2πm)−1 is the ground state for ṽ(k).
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For any density ρ, integer lattice with spacing 1/ρ is the unique ground

state . Moreover, for ρ = m (m = 1, 2, . . .), integer lattice at reciprocal

density ρ̃ = (2πm)−1 is the ground state for ṽ(k).

At noninteger density ρ, the ground state for ṽ(k) is generally a

non-lattice, establishing the strict inequality of relati on (2). This implies

an infinite number of phase transitions!
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Example 3: “Gaussian-Core" Potential in R
3

Useful model interaction for polymers .

At low and high densities, FCC and BCC crystals are ground
states , respectively, thus establishing another instance of the
equality in relation (2).
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However, in the narrow density interval of FCC-BCC
coexistence , the ground states are not lattices and can be
shown to have lower energies than either FCC or BCC lattices.

This work has been extended to higher dimensions ( Zachary,
Stillinger and Torquato 2008 ).
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Example 4: Completely Monotonic Potentials

A radial function f(r) is completely monotonic if it possesses

derivatives f (n)(r) for all n = 0, 1, 2, . . . and if

(−1)nf (n)(r) ≥ 0. An example of such as admissible potential
is the following:

v(r) = exp(−r), ṽ(k) =
8π

(1 + k2)2
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We believe we can show that this new class of potential
functions exhibits FCC and BCC ground states using results
from Cohn and Kumar, J. Am. Math. Soc. 2007 .
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Sphere Packing Problem in Low Dimensions

For d = 2, solution is triangular lattice: φmax = π/
√

12 ≈ 0.91 (Fejes Tóth,

1940).

For d = 3, Kepler (1606) conjectured that optimal packing is FCC latt ice:

φmax = π/
√

18 ≈ 0.74 (Hales 1998, 2005).

Each dimension has its own distinct properties .

In certain sufficiently low dimensions, optimal packings ar e believed to be

lattice packings . Certain dimensions are amazingly symmetric and dense:

d = 8 (E8 lattice ) and d = 24 (Leech lattice ).

In R
10, the best known arrangement is a non-lattice packing.
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Disordered Packings Might Win in High Dimensions

Based on a well-founded conjecture, we derived the followin g lower

bound on the maximal density φmax for sphere packings in R
d:

φmax ≥ c(d)

2(0.7786...)d
,

which provides exponential improvement over Minkowski’s

100-year-old bound ( φmax ≥ 1/2d) for lattices.

Torquato and Stillinger, Exper. Math. (2006)
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Implies existence of disordered classical ground states for some

continuous potentials in sufficiently high dimensions, i.e ., stable

glasses .
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Disordered Packings Might Win in High Dimensions

Based on a well-founded conjecture, we derived the followin g lower

bound on the maximal density φmax for sphere packings in R
d:

φmax ≥ c(d)

2(0.7786...)d
,

which provides exponential improvement over Minkowski’s

100-year-old bound ( φmax ≥ 1/2d) for lattices.

Torquato and Stillinger, Exper. Math. (2006)

Implies existence of disordered classical ground states for some

continuous potentials in sufficiently high dimensions, i.e ., stable

glasses .

This asymptotic form was shown to be more robust than previou sly

thought - it might even be optimal !

Scardicchio, Stillinger and Torquato (2008)
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CONCLUSIONS

We can tailor potentials to yield unusual classical ground states , including

disordered ones as well as low-coordinated crystals .

Our work suggests that the densest sphere packings are disor dered in

sufficiently high dimensions, implying the existence of continuous potentials

with disordered classical ground states.
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• Süt ő, A., Phys. Rev. Lett. 95 265501 (2005).

• Torquato, S. and Stillinger, F. H., “Local Density Fluctuati ons, Hyperuniform Systems, and Order

Metrics,” Phys. Rev. E 68, 041113 (2003).

• Torquato, S. and Stillinger, F. H., “New Conjectural Lower Bo unds on the Optimal Density of Sphere

Packings,” Experimental Math. 15, 307 (2006).

• Torquato, S. and Stillinger, F. H., “New Duality Relations fo r Classical Ground States,” Phys. Rev. Lett.,

100, 020602 (2008).

• Torquato, S., “Inverse Optimization Techniques for Targeted Self-Assembly,” Soft Matter, (2009). Online

version: DOI: 10.1039/b814211b.

• Zachary, C. E., Stillinger, F. H. and Torquato, S., “ Gaussia n-Core Model Phase Diagram and Pair

Correlations in High Euclidean Dimensions,” J. Chem. Phys. 128, 224505 (2008).

Papers from the Torquato group can be downloaded from
http://cherrypit.princeton.edu/papers.html

. – p. 32/32


	 small hspace {0.2in} Unusual Classical Ground States of Matter
	
	 hspace {0.2in} Classical Ground States
	 hspace {0.2in} Classical Ground States
	 hspace {0.2in} Classical Ground States

	�ootnotesize hspace {0.25in} Definitions
	small hspace {0.25in} Simple Pair Interactions 
	small Local Density Fluctuations for General Point Distributions
	small Local Density Fluctuations for General Point Distributions
	small Local Density Fluctuations for General Point Distributions

	small SINGLE-CONFIGURATION FORMULATION
	small SINGLE-CONFIGURATION FORMULATION
	small SINGLE-CONFIGURATION FORMULATION

	small RESULTS FOR BRAVAIS LATTICES & NUMBER THEORY
	 small Quantifying Degree of Order
	 small Minimum of Epstein Zeta Function in Higher Dimensions
	 small Minimum of Epstein Zeta Function in Higher Dimensions
	 small Minimum of Epstein Zeta Function in Higher Dimensions
	 small Minimum of Epstein Zeta Function in Higher Dimensions
	 small Minimum of Epstein Zeta Function in Higher Dimensions

	small hspace {0.25in} Inverse Problem of Statistical Mechanics 
	small hspace {0.25in} Inverse Approach 
	small hspace {0.25in} Motivation 
	hspace {0.2in}small Challenges
	small hspace {0.25in}Designer Potentials for Targeted Configurations Via Optimization
	small hspace {0.25in}Designer Potentials for Targeted Configurations Via Optimization
	small hspace {0.25in}Designer Potentials for Targeted Configurations Via Optimization
	small hspace {0.25in}Designer Potentials for Targeted Configurations Via Optimization

	small hspace {0.25in}Honeycomb Lattice as Ground-State Structure
	small hspace {0.25in}Honeycomb Lattice as Ground-State Structure
	small hspace {0.25in}Honeycomb Lattice as Ground-State Structure

	small hspace {0.25in} What Are Limitations of Isotropic Interactions?
	small hspace {0.25in} What Are Limitations of Isotropic Interactions?
	small hspace {0.25in} What Are Limitations of Isotropic Interactions?
	small hspace {0.25in} What Are Limitations of Isotropic Interactions?
	small hspace {0.25in} What Are Limitations of Isotropic Interactions?

	small hspace {0.25in}Disordered (Highly Irregular) Ground-State
Structures
	small hspace {0.25in}Disordered (Highly Irregular)
Ground-State Structures
	small hspace {0.25in}Disordered (Highly Irregular)
Ground-State Structures

	small hspace {0.25in}Disordered (Highly Irregular) Ground-State
Structures
	small hspace {0.25in}Disordered (Highly Irregular)
Ground-State Structures
	small hspace {0.25in}Disordered (Highly Irregular)
Ground-State Structures
	small hspace {0.25in}Disordered (Highly Irregular)
Ground-State Structures

	small hspace {0.25in}Ground States Via Collective-Coordinate Control
	small hspace {0.25in}Ground States Via Collective-Coordinate Control
	small hspace {0.25in}Ground States Via Collective-Coordinate Control

	small hspace {0.25in}Duality Relation in Ensemble Setting
	small hspace {0.25in}Duality Relation in Ensemble Setting
	small hspace {0.25in}Duality Relation in Ensemble Setting
	small hspace {0.25in}Duality Relation in Ensemble Setting

	small hspace {0.25in}Duality Theorem
	small hspace {0.25in}Duality Theorem

	small hspace {0.25in} Applications and Questions
	small hspace {0.25in}Example 1: Localized Real-Space Potentials in $mathbb {R}^3$
	small Example 2: One-Dimensional Ground States
	small Example 2: One-Dimensional Ground States
	small Example 2: One-Dimensional Ground States
	small Example 2: One-Dimensional Ground States

	small hspace {0.25in}Example 3: ``Gaussian-Core" Potential in $mathbb {R}^3$
	small hspace {0.25in}Example 4: Completely Monotonic Potentials
	small hspace {0.25in} Sphere Packing Problem in Low Dimensions 
	small hspace {0.25in}Disordered Packings Might Win in High Dimensions
	small hspace {0.25in}Disordered Packings Might Win in High Dimensions
	small hspace {0.25in}Disordered Packings Might Win in High Dimensions

	 CONCLUSIONS
	small REFERENCES
	small REFERENCES

