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Chord-length distribution function for two-phase random media
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A statistical correlation function of basic importance in the study of two-phase random media (such as
suspensions, porous media, and composites) is the chord-length distribution function p(z). We show
that p (z) is related to another fundamentally important morphological descriptor studied by us previ-
ously, namely, the lineal-path function L (z), which gives the probability of finding a line segment of
length z wholly in one of the phases when randomly thrown into the sample. We derive exact series rep-
resentations of the chord-length distribution function for media comprised of spheres with a polydisper-
sivity in size for arbitrary space dimension D. For the special case of spatially uncorrelated spheres (i.e.,
fully penetrable spheres), we determine exactly p(z) and the mean chord length I¢, the first moment of
p(z). We also obtain corresponding formulas for the case of impenetrable (i.e., spatially correlated) po-

lydispersed spheres.

PACS number(s): 47.55.Mh, 05.20.—y, 61.20.Gy

The characterization of the microstructure of two-
phase random media, such as suspensions, composites,
and porous media, is of great fundamental as well as
practical importance [1-11]. The goal ultimately is to
ascertain what is the essential morphological informa-
tion, quantify it either theoretically or experimentally,
and then employ the information to estimate the desired
macroscopic properties of the heterogeneous material.

In this Brief Report, we concern ourselves with the so-
called  chord-length  distribution  function  p(z).
Specifically, p (z)dz is the probability of finding a chord of
length between z and z +dz in one of the phases, say
phase 1. Chords are distributions of lengths between in-
tersections of lines with the two-phase interface (see Fig.
1). Knowledge of the chord-length distribution function
is of basic importance in transport problems involving
“discrete free paths” and thus has an application in
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FIG. 1. Schematic of chord-length measurements for a cross
section of a two-phase random medium. The chords are defined
by the intersection of lines with the two-phase interface.

Knudsen diffusion and radiative transport in porous
media [12—-15]. The function p(z) has also been mea-
sured for sedimentary rocks [16] for the purpose of study-
ing fluid flow through such porous media. The chord-
length distribution function p(z) is also a quantity of
great interest in stereology [11]. For example, the mean
chord (or intercept) length I is the first moment of p (z).

We first show that p (z) is related to another important
morphological descriptor of random media studied by us
earlier [17,18], namely, the lineal-path function L (z)
which gives the probability of finding a line segment of
length z wholly in phase 1 when randomly thrown into
the sample. For heterogeneous media composed of
spheres with a polydispersivity in size, we find an exact
series representation of p (z). In the special case of fully
penetrable (i.e., spatially uncorrelated) spheres, we deter-
mine exact expressions for p(z) and /. Corresponding
analytical formulas are also obtained for impenetrable po-
lydispersed spheres.

The lineal-path function L (z) can be obtained by
counting the relative number of times that a line segment
of length z is wholly in phase 1 when thrown randomly
onto an infinite line in the system. Clearly, the line seg-
ment (of length z) being wholly in phase 1 implies that all
the points on the line segment (of length z) are in phase 1.
The strategy now will be to express L (z) in terms of p (z)
using the following probability argument. First, if we
consider a special point on the line segment, say, the mid-
point of the line segment referred as point A4, then 4 has
to be in phase 1. The probability that point 4 is in phase
1 is simply the porosity of the system, i.e., ¢;. Second,
given the condition that point A4 is in phase 1 (it is then
on a chord), we ask what is the probability that point 4
is on a chord with length between y and y +dy? Since the
length fraction of a chord with length between y and
y +dy is given by
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yp (y)dy / S 0ndy

then the probability that point A4 is on a chord with
length between y and y +dy is this length fraction multi-
plied by the porosity ¢, i.e.,

$1yp (p)dy / Sy .

Third, that point A4 of a line segment of length z (distinct
from length y) is in phase 1, however, does not mean that
the whole line segment is in phase 1. The probability that
a line segment of length z is on a chord of length y under
the condition that point A4 is on that chord is

(y—2H(y—2)/y ,

where H (x) is the Heaviside step function [i.e., H (x)=1
for x >0 and H (x)=0 otherwise]. Now, L (z), the proba-
bility that the line segment of length z is entirely in phase
1, can then be obtained by combining the results given
immediately above, i.e., integrating the probability for
the line segment being on chords with length between y
and y +dy over all possible y, we find

_ ¢1f0w(y —z)p(y)dyH (y —2z)
fo yp (y)dy
Differentiation of (1) yields
dL (z) __ﬁ

dz le

L(z)

(1)
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Differentiation of (2) and rearrangement of terms gives

le d’L(2)
=, 3
p(z) 5 d? 3)

where /. is the mean chord length given by

le=["mp(2)dz . (4)

Formula (3) establishes a new connection between chord-
J

length distribution function p (z) and the lineal-path func-
tion L (z). It is important to note that the above relations
are valid for statistically isotropic systems of arbitrary
microgeometry.

Assume now that the system is composed of included
particles with a continuous distribution of radius 7
characterized by the normalized probability density
f(R). This function includes the discrete particle size
distribution as a special case. For example, in the
discrete case with M different components, the size distri-
bution f(R;)=3M_,(po /p)8(R; —*Roj ), where p,, is the
number density of type-o particles and 8(7?) is the Dirac
6 function. The system is characterized by the probabili-
ty density function p,(r"; R, ..., R)f(R) - f(R,)
associated with finding an inclusion with radius %, at r,,
another inclusion with radius 72, at r,, etc. [19]. In the
instance of statistically homogeneous media, p,(r;;72;) is
simply equal to the fotal number of density p. The re-
duced density 1 in D dimensions in the discrete case is
defined by

o

7TD/2

p,RY | (5)

'rh+ 2
2

where I'(x) is the gamma function. In the continuous
case, we have

_ P72 b
n= m)—p(ﬁ ), (6)
where the average of any function 4 () is given by
(AR = [T 4R (RAR . (7)

Only in the case of hard spheres in 7 equal to the sphere
volume fraction ¢,. For penetrable-sphere systems,
$,=1—¢,= exp(—n) and thus = ¢,.

Lu and Torquato [17,18] have shown that the lineal-
path function L (z) can be represented by the following
exact series:

© __1)\k k
L=1+ 3 ( kl‘) [dR, - AR5 R, . ROFR) - FRY) L my(x s, (8)
= . j=
where
1, yEQg(z,R;)
m;(y;2)= 14 , otherwise ©)
and Qg(z,%;) is the “exclusion” region which is a spherocylinder of cylindrical length z and radius 77 ; with hemispher-

ical caps of radius 7;. Here y is measured with respect to the centroid of Q.
For fully penetrable spheres, the n-particle probability densities are trivial (i.e., p, =p") and hence we find the chord-

length distribution function is exactly given by

72 23
_%ln¢1<7{2)/<7{3>¢%(ﬁ Y2/ (4R%)
—2Ing (R Y /(m(R2) )2 R/ (R
_1n¢1/<7{>¢f/<7{> , D=1

D=3

plz)=

D=2

(10)
(11)
(12)
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where ¢, is the volume fraction of phase 1. The mean
chord length [, for fully penetrable spherical systems is
obtained by applying formula (4). We find that

—4(R*) /(3{R*)In,) , D=3 (13)
le={—m(R?*) /(2{R )Ing,), D=2 (14)
—(R)/Ing,, D=1. (15)

Note that for D =1, polydispersivity has no effect on p (z)
or I for fixed ().

In the instance of totally impenetrable or hard spheres,
the exact series representation of L (z) and, thus, p (z) can
only be evaluated exactly for the case D=1 (i.e., hard
rods). It is impossible to evaluate the series for D =2 ex-
actly because the n-particle probability densities p,(r")
are not known exactly. One must therefore devise ap-
proximate schemes to evaluate and sum the series. Lu
and Torquato [18] evaluated L(z) for polydispersed
hard-sphere systems in a certain accurate approximation.
Using this result and expression (3) yields the chord-
length distribution functions p (z) as

2 2
E‘z(_ﬁ—>exp[—rrpz <1__ ) l, D=3 (16)
_ | 2p(R) 20z{R) -
p(z) - exp 1= , D=2 (17)
—&exp —PZ | p=1. (18)
1—7 1—7

The corresponding explicit expressions for the mean
chord lengths are given by

1 1—¢
— , D=3 (19)
TP (R?)
1 1-n _
Ie IRTIN D=2 0)
I=n  p—y 1)
p

A commonly employed size distribution function f(R)
is the Schulz distribution function and is given by

m+1
_ 1 m+1 m
SR Fm+ |3 7
X exp _—(%}_—)%}, m>—1 (22)

The nth moment of the Schulz distribution function is

G | (AR (23)
i=0
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FIG. 2. Chord-length distribution function p(z) vs dimen-
sionless distance z/2{(# ) for a three-dimensional totally impe-
netrable polydispersed system characterized by a Schulz distri-
bution (22) with m = o (solid line) and m =0 (dashed line) at a
sphere volume fraction of ¢,=0.4 as obtained from (16).

By increasing m, the variance decreases, i.e., the distri-
bution becomes sharper. In the monodisperse limit,
z— o0, f(R)=8(R—(R)). Note that for homogeneous
and isotropic media, the density of the particles with ra-
dius between R and R +dR is pf (R)dR with p the total
density.

To illustrate the results given above, we consider
polydispersed-sphere systems characterized by a Schulz
distribution (22). In Fig. 2, we plot our analytical results
of p(z) for totally impenetrable polydispersed systems
characterized by a Schulz distribution with m =0 and
m = oo at the sphere volume fraction ¢,=0.4 for D=3
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FIG. 3. Mean chord length /- vs the sphere volume fraction
¢, for a three-dimensional totally impenetrable polydispersed
system characterized by a Schulz distribution (22) with m = o

(solid line) and m =0 (dashed line) as obtained from (19).
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[Eq. (16)]. As expected, p(z) is a monotonically decreas-
ing function of z. The figure shows that the effect of in-
creasing the degree of polydispersivity is to broaden the
distribution function p (z), i.e., increasing polydispersivity
decreases p (z) for small z but increases p (z) for large z.
The same general trends are found for D=2. In Fig. 3,
we depict the analytical results for the mean chord length
[Eq. (21)] for totally impenetrable spheres for D=3 at a
sphere volume fraction ¢,=0.4 with m =0 and m = .
What is the effect of increasing the degree of particle
penetrability on p(z)? If one compares expressions (10)
and (11) for fully penetrable spheres to relations (16) and
(17) for impenetrable spheres, one sees that increasing

penetrability, at fixed volume fraction, broadens p(z).
Otherwise, the behavior of p (z) for these two models are
qualitatively similar.

Elsewhere, [20] we study a more general lineal-path
function L (z,a) associated with the space available to a
spherical “test” particle of radius @ which is inserted or
diffusing in the two-phase random medium. The corre-
sponding chord-length distribution, termed the free-path
distribution function p (z,a), is also examined.
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