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A rigorous expression is derived that relates exactly the static fluid permeability k for flow 
through porous media to the electrical formation factor F (inverse of the dimensionless 
effective conductivity) and an effective length parameter L, i.e., k = L */SF. This length 
parameter involves a certain average of the eigenvalues of the Stokes operator and reflects 
information about electrical and momentum transport. From the exact relation for k, a 
rigorous upper bound follows in terms of the principal viscous relation time O1 (proportional 
to the inverse of the smallest eigenvalue) : k<yO,/F, where Y is the kinematic viscosity. It is 
also demonstrated that yO,<DT,, where T, is the diffusion relaxation time for the analogous 
scalar diffusion problem and D is the diffusion coefficient. Therefore, one also has the 
alternative bound k<DT,/F. The latter expression relates the fluid permeability on the one 
hand to purely diffusional parameters on the other. Finally, using the exact relation for the 
permeability, a derivation of the approximate relation k- h’/8F postulated by Johnson et al. 
[ Phys. Rev. Lett. 57, 2564 ( 1986) ] is given. 

I. INTRODUCTION 

The slow flow of viscous fluids through porous media is 
of importance in diverse technological areas such as oil re- 
covery, hydrology, filtration, and reaction in zeolites. A key 
macroscopic property of porous media is the fluid perme- 
ability k, which is described by the so-called Darcy law’ 

U(x) = - (k/p)VpoW, (1) 
where U(x) is the average fluid velocity, VP,(X) is the ap- 
plied pressure gradient, and ,LL is the dynamic viscosity. The 
permeability, which has dimensions of (length)*, depends 
upon the details of the pore geometry in a complex fashion. 
Physically it may be interpreted as an eff‘ective cross-section- 
al area of pore “channels.” 

Many attempts have been made to relate the permeabil- 
ity to the pore geometry. The most notable empirical relation 
is the Kozeny-Carmen equation’ 

k = qb:/&, (2) 
where #i is the porosity, (T is the specific surface (interfacial 
surface per unit volume), and c is an empirical constant 
(c = 5 models many porous media well). Relation (2) is 
exact for flow in an array of parallel tubes of arbitrary cross- 
sectional area with c a shape-dependent constant. For exam- 
ple, for circular tubes of radius a, Eq. (2) gives 

k = a’qS,/8. (3) 
Various theoretical approaches have been taken to pre- 

dict k. One approach idealizes the microgeometry by flow 
around spheres centered on the points of a periodic lattice.’ 
For random porous media, effective-medium theories3 and 
rigorous bounding techniques4,’ have been employed. 

Recently there has been a resurgence of interest in relat- 
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ing k to different measurable transport properties of the po- 
rous medium. Empirical relations used in the past’ have 
linked the permeability k to the electrical formation factor F, 
which is related to the effective electrical conductivity a, of a 
porous medium containing a conducting fluid of conductiv- 
ity 0, and an insulating solid phase by 

F = a,/~,. (4) 
Thompson6 was the first to propose the relation 

kccIf/F, (5) 
where I, is the length scale obtained in mercury-intrusion 
experiments on porous rocks. More recently, Johnson et aI. 
proposed the following interesting approximate relation in- 
volving the electrical conductivity: 

kz A”/8F, 

where 
(6) 

A -= SIW) I2 dJ3 
2 SIW) I2 dS * 

(7) 

Here the E(r) is the local electric field, dV, denotes an inte- 
gration over the pore volume, and dS denotes an integration 
over the pore-solid surface. The parameter A is a weighted 
pore volume-to-surface ratio that provides a measure of the 
dynamically connected part of the pore region. It arises ri- 
gorously in the dynamic frequency-dependent permeabil- 
itys*9 in the high-frequency limit. Relation (6) yields the 
exact result (3) in the case of flow through parallel tubes 
(A = a and F- ’ = 4, in this case) and provides good esti- 
mates of k for a variety of porous media. 

Nuclear magnetic resonance (NMR) relaxtion times of 
porous media have been experimentally found to provide 
estimates of k.‘O*” Since the nuclear magnetization is gov- 
erned by a diffusion equation (see Appendix A), then such 
correlations relate, in an empirical way, the permeability on 
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the one hand to the diffusion parameters on the other, as 
does (6). Unfortunately, these correlations are not rigorous. 

Torquato” derived the first rigorous expression linking 
the permeability to a diffusion parameter, namely, the mean 
survival time r associated with the steady-state diffusion of 
“reactants” in a fluid with diffusion coefficient D with per- 
fectly absorbing pore walls (see Appendix A). For porous 
media with scalar permeability, his expression is given by. 

k<Dlp,r. _ iSI 
Relation (8) becomes an equality for transport interior to 
parallel tubes of arbitrary cross section; for a-cubic array of 
narrow tubes k = D&r/3 and for a dilute distribution of 
spheres k = 2Dgl,r/3. For porous media with low porosity 
and significant tortuosity, the bound (8) is not sharp he- 
cause.the mean survival time r, unlike the permeability, is 
relatively insensitive to the presence of narrow *‘throats.” 
The result ( 8 ) motivated Wilkinson et aZ. I3 very recently to 
reexamine the problem of NMR relaxation in fluid-satu- 
rated porous media by focusing attention on r instead of the 
NMR relaxation times.~Torquato and Avellanedai4 have re- 
cently obtained, among other results, rigorous lower bounds 
on ?-. 

In this paper we provide what are, to our knowledge, the 
first rigorous expressions that link the static permeability to 
the effective electrical conductivity for arbitrary porous me- 
dia. The-central results we obtain can be summarized bye 
stating three relations derived in the subsequent sections. 
The first of these relations is 

k =-L “,%F: (9) 
whereL is a parameter having dimensions of length, given by 

L”= &f;;;$y (10) 

The numbers b,, n = 1,2,3,.,., are the eigenfuntition expan- 
sion coefficients for a nondimensional electric field E in the 
fluid relative to the basis of the eigenfunctions of the Stokes 
operator [defined by (34) 1, 0, are the viscous relaxation 
times (which are inversely proportional to the eigenvalues) , 
and Y is the kinematic vistiosity. We emphasize that relation 
(9) is exact and involves the Iength parameter L, which is 
shown to contain information about both electrical and mo- 
mentum transport. For a certain universality class, we are 
able to show in Sec. V that the parameter L can be estimated 
in terms of the A parameter of Ref. 7. 

Using (9) and (lo), we show that the permeability k is 
bounded from above according to the relation 

k<yOI/F, (111 
where 0, is the principal (largest ) viscous relaxation time. It 
is also demonstrated here that YO,<DT,, where T, is the 
principal d@usion relaxation time (see Sec. IV and Appen- 
dix A), and hence combination of this result with ( 11) yields 

kcDT,/E (12, 
In principle, Tl can be obtained from NMR experiments. 
Thus, the tiuid permeability is related to purely diffusional 
parameters, i.e., T, and F. How sharp are the bounds ( 11) 
and ( 12)? To answer this question, let us focus on the bound 

( 12) and compare-it to the mean survival bound f 8) derived 
by Torquato. r’ In Appendix B, it is shown that for flows 
through arrays ofcircular tubes-of radius a the upper bound 
(11) is 

k<i&i5.784, (131 
in contrast to ig), which is exact for this microgeometry. 
Moreover, for porous media characterized by a wide range 
of pore sizes,~ T, is substantially larger than r and hence rela- 
tion (8) is expected to provide a better estimate of the perme- 
ability than ( 12). On the other hand, for porous media with 
a small and finite range of pore sizesand significant tortuo- 
sity, relation (12) should yield a sharper estimate of k than 
( X?, especially at low porosities. This follows for two basic 
reasons. First, it is rigorousIy true that Fp ’ q(t, (see, for 
example, Ref. 15 and references therein). Significant tortuo- 
sity results~in an inverse formation factor that is consider- 
ably smaller than the porosity, especially at low porosities. 
Indeed, it is noteworthy that in contrast to formula (81, 
which is nonzero when the pore space is disconnected, for- 
mula ( 12) is identically zero, as it should be, since F- ’ = 0. 
Second, although it is rigorously true that T,>r, the au-- 
thors’4 have shawn that Y’, will be of the order of r provided 
that there is a small and finite range of pore sizes. 

The essential purpose of this paper is to present the deri- 
vation of the above results. Our permeability relations are 
computed here for flow through arrays of parahel tubes, and 
give reasonable agreement in comparison with exact values. 
The application of the results of this paper to more realistic 
microgeometries wilI be examined in a future work. 

II. MkTHEMATlCAL PRELIMDJARIES 
A. Basic equatfans 

The random porous medium is a portion of space 
Y( w )ER’ (where the realization w is taken from a probabil- 
ity-space fz) of volume V, which is composed of two regions: 
the void (pore) region FS’rio j through which fluid flows of 
volume fraction (porosity) &, and a solid-phase region 
Y”;(o) of the volume fraction #*. Let Yi be the volume of 
region ZFi, V;=: F; -t Y2 be the total system volume, dY(w) 
be the surface between F/t and Y2, and Sbe the total surface 
area of the interface dP”. The characteristic function of the 
pore region is defined by 

Ifr,wf = 
i 

I, PEF’(co), 
0, EF-Jo&). 

The characteristic function of the pore-solid interface is de- 
fined by 

Mlr,w~ = IVllr,uf 1. ~~ (151 
For statistically homogeneous, but possibly anisotropic, me- 
dia, the ensemble averages of ( 14) and ( 15) yield 

Cl L= (1) = &,hlm ( v,,vJ, (161 

CT== $34) = $n* (S/v), (17) 

which are, respectively, the porosity and specific surface. 
Here angular brackets denote ensemble averaging. 
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El. Relation between electrical conductance and 
viscous relaxation 

Consider the unsteady Stokes equations for the fluid ve- 
locity vector field v(r,t) at position r and time t in P*,: 

dv -V p +YAv+ u,ea(t), in ;Y/‘,, 
at= p 0 (18) 

V-v = 0, in y,, (19) 
v = 0, on dr. (20) 

Herep (r,t) is the pressure,p is the constant fluid density, yis 
the kinematic viscosity, u,, is a constant, e is an arbitrary unit 
vector, and 6(t) is the Dirac delta function. The solution of 
( 18)-(20) can be expressed as a sum of normal modes as 
follows: 

v(V) = $, b - t’%J,z (r) , 
00 

(21) 

where the vector eigenfunctions Y,, satisfy 
AY,, -t VQ,, = - E,Y, in yI, (22) 
V-Y,, = 0, in P-,, (23) 
Y,, = 0, on dy, (24) 
0” = l/YE,,. (25) 

Here the O,, are viscous relaxation times and so the nth 
eigenvalue E,, has dimensions of (length) - * . The functions 
Q,* in (22) are the corresponding pressures. The eigenfunc- 
tions Y,, are orthonormal, in the sense that 

1 - 
f v, 7--, Ym (rPY, (rldr = S,,, 

where S,,,, is the Kronecker delta, and the eigenfunction ex- 
pansion coefficients are given by 

b,, = f 
s 

e-Yn (r)dr. 
1 T, 

(27) 

Here V, denotes the total pore volume. It is important to 
recall that the set of orthonormal eigenfunctions Y, is com- 
plete in the closed subspace of square integrable, divergence- 
free fields having zero normal component on dY.lb Accord- 
ing to the classical Hodge decomposition,‘7 we can express 
the constant unit vector e as the sum of a solenoidal field 
with vanishing normal component on the pore-surface in- 
terface, and the gradient of a potential, as follows: 

e=E+V& (28) 
Here E is a dimensionless field satisfying 

V-E = 0, in SF,, (29) 
E-n -0, on dy,, (30) 

where n is the unit outward normal from the pore region. 
Relation (28) implies that 

VxE=O, in T/I. (31) 
We observe that the field E then solves the corresponding 
electrical conduction problem for a porous medium filled 
with a conducting fluid of conductivity (rl and having an 
insulating solid phase. Hence, E can be physically interpret- 
ed as a scaled electric field, i.e., the actual electric field divid- 

ed by the modulus of the ensemble-averaged electric field. 
The field E is related to the scaled effective conductivity of 
the porous medium cr,fa, by the well-known energy repre- 
sentation formula 

a,/a, = F - ’ = (E-E). (32) 
Here F denotes the formation factor that is the commonly 
employed designation for G,/c~ and angular brackets denote 
ensemble averaging. For statistically homogeneous media, 
ergodicity enables us to equate ensemble averages with vol- 
ume averages, so that, for an arbitrary stochastic function 
f(r) that is defined in rI, 

V> = Fe”, #-, f(r)dr. (33) 

Substitution of (28) into (27) yields, after integration by 
parts, 

b, =+ 
s 

E(r)*Y, dr 
I J ‘I 

=$ (E-Y,). (34) 
1 

Therefore the coefficients {b, ) coincide with the coefficients 
of the normal mode expansion of the dimensionless field E in 
the orthonormal set of solenoidal eigenfunctions {Y,}. 
Since the \Lm are complete in the aforementioned subspace, 
we have 

2 b,Y, = E 
n-1 

and 

2 62, z+(E.E) =-++. 
n=l I I I 

(35) 

Relation (36) will provide valuable to us in the subsequent 
section. The product F4, is referred to as the “tortuosity.” 

The arguments in this subsection show that the response 
of the Stokes fluid to the external force e is identical to the 
response obtained ife is replaced by E, the dimensionless elec- 
tricfield. The reason for this is that, in steady state, the gradi- 
ent of the potential, V#, in the Hodge decomposition of e 
corresponds to a pressure fluctuation that does not affect the 
velocity field. 

C. Steady-state equations defining the fluid 
permeability 

The isotropic fluid permeability k arising in Darcy’s law 
U = - ,u - ’ k Vp, can be expressed in terms of a certain 
scaled velocity field for periodic media” and random me- 
dia.5 The permeability is given by the formula 

k = (woe), (37) 
where the vector velocity field w satisfies 

Aw =V?r--e, in F/I, (38) 
V-w = 0, in yI, (39) 
w = 0, on dy. (40) 

The fields w and IT are defined to be zero in the solid region 
T2. 
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III. RlGOWOUS LINK BETWEEN FLUID PERMEABILITY, 
FORMATION FACTOR, AND VISCOUS RELAXATION 
TIMES 

Here we show that the fluid permeability k is related to 
certain averages of the relaxation times 0,. We also demon- 
sfrate that k is bounded from above and below in terms ofthe 
principal (largest ) relaxation time 0 ,. These statements are 
given and proven in the form of two propositions. 

Proposition I: i”or porous media of arbitrary topology 
with scalar permeability at porosity #rB the follawing expres- 
sion holds: 

k =v4, 2 b;O, 
tl=I 

= L “/W: (41) 
where Fis the formation f?zctor, 0, are the uiscous relaxation 
times, and b, are the eigen&nction expansion coeficientsgiv- 
en by 1%). 

Prooj? First we take the Laplace transform in time of 
(1X)-(20) and find 

A+& - Vi@/pj + YA$+ u,e, 
v*o = 0, 

8 = 0, 
where 

(421 

(43) 

(-44 1 

s 

cc 

‘$(r,s) = v(r,t)e “dt. (451 
0 

Settings = 0 in Eqs. (42) and (43) yields 
,trAD(r,O) = V[j(u,O)/p] - v,e, 
W(r,O) = 0,. 

$(r,O) = 0. 

Letting 

(46) 

(47) 
(48) 

w(r) = ti(r,O)/uO, z-(r) ==$(r,O)/pu, (49) 
in (46)--(48) yields the canonical equations (38)-(40), 
which determine the fluid permeability. Therefore the solu- 
tion of (38) -( 40) can be expressed in terms of the eigenfunc- 
tions {Y,) that solve (22)-(24) by Laplace transforming 
the normal mode solution (2 1) : 

8(r s) 
L = ,tzI b,Y, (r j &---- . 

*a *n is 
(50) 

Settings = 0 in (50) and employing (45) gives 

w(r) =.= Y ‘f b,Y,(r)O,. 
lZ=l 

(51) 

Forming the scalar product of the scaled electric field E with 
(5 I), ensemble averaging, and using (34)-(36) along with 
the identity 

(w-e} = (W-E), 
yields 

(521 

k =qb, 2 b;O,, 
n=t 

y S:x,ba,S, =- 
F -=F- b” ii?=1 n 

= L 2/sF, (53) 
according to the definition of the parameter L. This proves 
the proposition. 

Remark I: Relation (41) applies not only to statistically 
isotropic media but to anisotropic porous media as well, with 
the obvious modifications. 

Remark-2: For subsequent results, it will be useful to 
introduce- a Laplace-variable-dependent fluid permeability, 
defined as 

k(s) - Y(?(r,s)*e)/q,. (54) 

Notice that k(O) EZ k is just the standard steady state or static 
permeability defined by (37). Substitution of (50) into (54) 
yields 

k(s) = v$b, 7 b: 
fiYI l/O, =/-s C 

If a porous medium saturated with a viscous fluid iasubject- 
ed to an oscillatory pressure gradient Vp,(w ) (where w is the 
frequency j, then the induced averaged velocity U(w) will 
also be oscillatory and proportional to the pressure gradient .e 
according to U(w) = ~- k(w)Vpo(o)&. Here k(o) is the 
so-calIed dy~amicper~neab~~ity~9 and it can be related to the 
Lapiace-variable-dependent permeability defined by (54) 
according to the relation 

L(w) = k(s= - iwj, (541 
Proposition 2: For porous media of arbitrary topology 

with scafarpermeabiiity atporosity I$$, thefluidpermeability 
k is bounded.from above according to 

k6yoJF* (57) 
andfrom below according to 

k>q$b to,, (5X) 
where F i.r the formation factor and 6, is the first eigenjciinc- 
tion coeflcient giuea by ( 341. 

Pruo$ Since the eigenvalues E are positive-and E,<E, 
(O,)Q,) for n# 1, then 

2 b:O,< 2 b:O,. 
m-i it=1 

(59) 

This result, in combination with (36) and Proposition 1 
gives the upper bound _ 

k<v@ 1/F. (60) 
Furthermore, Proposition 1 combined with inequality 

2. b;O,>b;O,, C61) 
ii = I 

gives 
k;;3&b :E+. i62) 
Proposition 3: For porous medid of arbitrary _topoiogy 

with scalar permeability, thefluidpermeabifity k is bounded 
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from above as jdlows: 

k<DT,/F, (63) 
where D is the d@usion coe#icient of the fluid and T, is the 
princigal relaxation time for dtjiision-controlled processes 
among static, perfectly absorbing traps. 

Proofi This follows immediately from Proposition 2 and 
Proposition 4 (discussed in the next section), which states 
that yO,<DT,. 

Remark 3: The diffusion-controlled trapping problem is 
described in detail in Appendix A. 

Remark 4: The calculations made in this section assume 
implicitly that the spectrum of the Stokes operator in V, is 
discrete-a hypothesis that is justified if the pore volume ,v, 
is finite or if the microstructure is periodic. However, the 
reader will easily verify that Proposition 1 is valid also for 
arbitrary statistically homogeneous porous media, with the 
series in (41) replaced by integrals over the density of states. 
Also notice that the upper bounds (57) and (63) are valid 
for general random porous media. On the other hand, the 
lower bound (58) makes sense only for microstructures cor- 
responding to a discrete spectrum (0, 1, n>O. 

IV. RIGOROUS LINK BETWEEN VISCOUS AND 
DIFFUSION RELAXATION TIMES 

Measurement of the viscous relaxation time 0, can be 
used to determine information about the diffusion relaxation 
time T,, and vice versa. Here T, is the principal relaxation 
time for diffusion of reactants among static traps (see Ap- 
pendix A for details). In fact, we shall demonstrate that an 
inequality between 0, and T, holds for all porous microgeo- 
metries. Thus, an upper bound, or estimate, on the relaxa- 
tion time T,, obtainable, in principle, from NMR relaxation 
experiments,‘O~” can be used to bound the viscous relaxa- 
tion time from above. 

Proposition 4: For any porous medium, the following in- 
equality holds between 0, and T,: 

.vo,<DT,. (64) 
Proo$ To prove the inequality (64)) recall that 
0, = l/ye, and T, = l/DA,, (65) 

where E, and il, are, respectively, the fundamental eigenval- 
ues for the Stokes equation and the Laplace equation in Y,. 
We shallprove (64) by showing that, for allporous microgeo- 
metries, we have E, >A ,. 

For this, we recall the classical Rayleigh-Ritz variation- 
al principle, l9 according to which 

E, = min spp, IVv(r) I2 dr 
(66) V-v(r) = 0 

v(r) -0 on dF# .fy, Iv(r) I2 dr ’ 

The eigenfunction Y, (r), associated with the principal 
eigenvalue E,, minimizes the Rayleigh quotient in (66). The 
constraint V-v(r) = 0 in this variational principle is neces- 
sary to guarantee incompressibility. If this constraint is 
dropped, then the minimum possible value that can be 
achieved by the quotient .f7’., IVv12 dr/J7 ., lv12 dr cannot in- 
crease, and hence 

$2 . So-, (Wr) I2 dr 
VW =?k JY, Jr, Iv(r) I2 dr ’ (67) 

where the minimum is now taken over the larger class of trial 
fields consisting of vector-valued functions v( r ) vanishing 
on cW,, but not necessarily satisfying the incompressibility 
condition. Let V,in (r ) denote a minimizer of the right-hand 
sideof (67), such that s7.., Iv,,, (r) I” dr#O. Such a function 
necessarily satisfies the equations 

Av,,, (r) + XV,in (r) = 0, in Y,, 
V,in (r) = 0, on dY, (68) 

where 2 is a suitable Lagrange multiplier. If v(‘) (r), uC2) (r), 
d3)(r) denote the components of vmin (r) in a fixed coordi- 
nate frame, we have, from (68), 

Au’“(r) + ;zv”,(r) = 0, in Y,, 
u”‘(r) = 0, on Jr,, 

(69) 

for i = 1,2,3. This means that 2 is necessarily an eigenvalue 
of the Laplacian on Y[, and u(‘) (r) are eigenfunctions with 
the same eigenvalue, /2. Multiplying both sides of Eq. (69) 
by vCi, (r) and integrating both sides of the equation yields 

I 7 ‘, IVv[“(r)12dr=X~, IuCi,(r)12dr. 
I 

Summing over i =I 1,2,3, we conclude that 

2 = 17 ., IVVrnin (r) I2 dr 
ST-, Ivm,,(r)12dr ’ 

(71) 

and hence, from (67)) that E, satisfies 
E&l. (72) 

Recalling that A, is the smallest eigenvalue of the Laplacian, 
we have 

mz, (73) 
and hence 

El>&. (74) 
Using the expressions for the viscous and diffusion relaxa- 
tion times given in (65), we obtain the inequality (64), as 
claimed. 

Remark I: A further inspection of (69) and (73) shows 
that 2 = il , and that a vector-valued function that minimizes 
the right-hand side of (67) is necessarily of the form 

vmin 0) = 54 (r)vo, (75) 
where $, (r) is the first eigenfunction of the Laplacian (no- 
tice that the first eigenvalue ;I, is nondegenerate” ), and v. is 
a constant, nonzero vector. 

Remark 2: For transport interior to parallel channels of 
arbitrary cross section, (64) becomes an equality, i.e., 
Y@ = DT, for the same reasons that the Torquato bound (8) 
relating k to the mean survival time T becomes an equality, 
i.e., since the pressure gradient is constant. 

V. A DERIVATION OF THE EMPIRICAL FORMULA (6) 
INVOLVING THE A PARAMETER 

In this section we evaluate the effective length L, defined 
by the formula 
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L 2 = 8~T,b 2% 
-CL2 J G’6f 

in terms of the so-called A parameter, or electrically weight- 
ed volume-to-surface ratio, given by 

A = ZflEW12 dV, 
XjEfr) 1’ ds ’ 

(77) 

thereby showing that our formula k = L ‘/8F reduces to 
ksA’/8F under reasonable assumptions, 

The fundamental interest in the Johnson-Koplik- 
Schwartz empirical formula ( 6 ) resides in the fact that A can 
be measured by performing high-frequency experiments in 
the porous medium consisting of imposing an oscihatory 
pressure gradient and measuring, the dynamic fluid re- 
sponse. In fact, it can be shown, following a boundary-layer 
analysis suggested by Sheng and Zhou3 (see Appendix D), 
that the following exact relation holds for the dynamic per- 
meability in the high-frequency limit: 

l&n [ w3r, Re g(w) 1 = $‘2@/AE (78) Cd--FCC 

This result provides a dynamical characterization of the A 
parameter (77), and the Johnson-KoplikSchwartz for- 
mula (6) can be viewed as the result of attempting to use the 
high-frequency information on k(w) to obtain information 
on i(O). 

We will argue here that the asymptotic result (78) pro- 
vides a relation between the length scales L and A, implying 
that we have 

L-CA, (79) 
where C is a numerical constant on the order of unity, for a 
wide class of porous materials. Thus, from (79) and our 
basic identity k = L ‘/&F, we obtain a relation that agrees 
well with the empirical formula (6). 

Our argument is based on the observation that (78) pro- 
vides a dispersion relation between the coefficients b “, and 
the relaxation times 0,) as n -) CO, which can be stated as 

In order to derive this formula and analyze its consequences, 
it Is convenient to introduce the cumulative distribution of 
relaxation times, 

8, <*b2, 
G(Q) zzzz --L, 

&Lb: 
(81) 

which is a nondecreasing, right-continuous function on the 
real axis, such that 

G(O) =O, for @GO 
and WI 

G(O) = 1, for Q>@,. 
The frequency-dependent permeability defined in (56) can 
be conveniently expressed in terms of G(O) as the Stieltjes 
integral 

j&j) =$ “yy”d ; 
I k 

in particular, we have 
0 dG(0) 
1 + w202 

and 

Im&(@) =$ 02w dGfO) --------. 
” 1 f w2EJ2 

(83) 

(84) 

(85) 

The fundamental result characterizing the real part of the 
dynamical permeability in the high-frequency limit is equiv- 
alent, using (84)) to 

lim mJa ~~J@$.. = --;I-, 
i- 

Y’/2Jz 

s-m _ 
(861 

In Appendix C, it is shown, by analyzing the propertiesof 
the StieItjes integral in (84), that (84) implies the scaling 
relation 

G(0) = (4&*t’lmjW2 + o(W"j (871 
for 0 4 1, which agrees with the claim (80). The importance 
of this result, underscored in Refs. 9 and 10, is that the shape 
of G(O) near 0 = 0 is universal, i.e., geometry independent 
for a wide class of porous media, and is characterized solely 
in terms of the parameter A. Accordingly, defining the e@c- 
the relaxation time 

6.3, i A”j821, c.88) 
we can write the cumulative reIaxation time distribution in 
scaled form, 

G(O) = .H(O/O,), (891 
where H(x), Ogx <O,fO, is the probability distribution 
function of a nondimensional random variable on the posi- 
tive real axis, satisfying 

W(x) = (&h-)x’/” +- 0(x”*), .x-Q 1. W) 
Using expressions (g9) and (84) with w = 0, we obtain 

(91) 

In particular, we obtain the following relation between L and 
A: 

“a 
L”=A’ 

(J 0 
(92) 

The numerical factor J+;X dH(Xj depends on the microgeo- 
metry of the porous medium. According to the universal 
scaling relations (78), (80), and (87) and the nondimen- 
sional form (go), the fluctuations in the numerical ratio 
L /A from one porous material to another must be due to 
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differences in the shapes of the corresponding functions 
G(O) at large values of 0 [or, equivalently, of H(x) for 
large X] . The complete form of the function H(x) for a given 
porous medium is very difficult to calculate. In a first ap- 
proximation, we can obtain information about the variations 
of L /A by considering a class of ideal porous media formed 
of arrays of parallel tubes of circular or rectangular cross 
sections. For circular cylinders, we have L /A = 1; this cor- 
respondstotakingG(O) =G,(O)in(91),whereG,(O)is 
defined in Appendix B, Eq. (B12). For rectangular cross 
sections, with dimensions a, b, with c = h /a, we have 

L’ 512 
c 

(1 +c)? -p- 
AZ 1T6 ,n,n o&J m”n’( c2m2+ * (93) 

This relation, derived in Appendix B, shows that L/A is, 
strictly speaking, a geometrical constant that depends on the 
specific microgeometry under consideration. As the aspect 
ratio varies from c = 1, corresponding to a square cross sec- 
tion, to c = CO, for an infinitely elongated cross section, we 
find that the ratio L ‘/A2 varies in the range (cf. Appendix 
B) 

0.66<L2/A2(1.112. (94) 

One can argue in this approximation that for porous rocks 
the aspect ratios of the channels will be polydispersed, and 
hence that the ratio L 2/A2 will lie somewhere between the 
bounds. The range of the ratio L /A indicated by the inequal- 
ities in (94) lends support to the idea according to which, 
after averaging over a distribution of pore aspect ratios, we 
have L /A.=: 1. This simple argument neglects, of course, the 
influence of the tortuosity of the porous medium microstruc- 
ture on the L parameter. A more detailed study of the L 
parameter requires a better understanding of the geometric 
distribution H(x) associated with a random porous medi- 
um. The recent results of Sheng and Zhou” on the universal- 
ity properties of the dynamic permeability /; (o ) suggest, in 
fact, that the entire distribution H(x) should exhibit univer- 
sal properties justifying the L =: A approximation. This ques- 
tion will be taken up in a forthcoming work. 
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APPENDlX A: RIGOROUS LINK BETWEEN 
FREQUENCY-DEPENDENT FLUID PERMEABILITY AND 
MEAN SURVIVAL TIME 
1. Diffusion relaxation times 

The relaxation times associated with the decay of diffu- 
sional quantities such as concentration field and nuclear 
magnetization are intimately related to the characteristic 
length scales of the pore region. Let c( r,t) generally denote 
the physical quantity of interest at position r and time t, 
which obeys the following equations: 

dC at = D Ac + q+(t), in TI, 

c = 0, on dY,, (AZ) 
where D is the diffusion coefficient and cc is a constant. The 
boundary condition (A2) implies an infinite surface reac- 
tion rate, i.e., the process is diffusion controlled. From a 
Brownian motion viewpoint, a Brownian particle “survives” 
provided it does not reach the interface dY, at which point 
the Brownian motion ceases. Torquato and Avellaneda14 
considered the more general case where the surface reaction 
rate is finite, but for present purposes we limit our discussion 
to the diffusion-controlled limit. Note that in the NMR con- 
text, the field c plays the role of the nuclear magnetiza- 
tion 10~11,13 

The solution of (Al) and (A2) can be given as an ex- 
pansion in orthonormal eigenfunctions {$, ): 

c(r,t)= 2 v df’T,t*, (r), 
co n=l 

where 
A@, = -A,*,,, in Y’“,, (A4) 
$, = 0, on ay,, (A5) 

with conditions analogous to (26). Here a,,, n = 1,2,3,..., 
represent the eigenfunction coefficients of the function 
I( r,w ) in ( 14) and the T, are the diffusion relaxation times, 
where 

T, = l/DA,. (A61 

2. Mean survival time 
A different but related diffusion problem is the steady- 

state diffusion of reactants (Brownian particles) among stat- 
ic traps, in which the production rate of the reactants per 
unit pore volume is G(x) . The trapping constant y is defined 
through an analogous “Darcy’s law” given by 
G(x) = y DE(x), where z(x) is a mean concentration 
field. This problem for statistically homogeneous media in 
the diffusion-controlled limit was investigated by Rubinstein 
and Torquato2’ using the method of homogenization. They 
demonstrated that the trapping constant is given by 

y= b-‘9 (A7) 
where the scaled concentration field u (r ) solves 

Au = - 1, in Y,, (A81 
u = 0, on a7-. (A9) 
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The trapping constant (having dimensions of inverse length 
squared) is trivially related to the mesa suroiual time T- of a 
Brownian particle by 

7 = l/&D, (A101 
and thus application of (A9) gives 

T = (u)/D#,. (Al 1) . 
The authors” also considered the survival problem for 

the general case of finite reaction rate. Among other results, 
they introduced afregtcency-dependent mean survival time, 
which is defined by 

ds9 = Ww9 j/co4,, (A129 
where Z(r,s) is the Laplace transform of field, which solves, 
in the diffusion-controlled limit, i.e., it solves 

s”(r,s) = D AS(r,s) + c,, in Y,, (Al39 
2 = 0, on ax (Al49. 

Relation f A 12 9 implies the existence of a frequency-depen- 
dent mean survival time. Note that r(O) =r is just the stan- 
dard static survival time. 

APPENDIX B: TRANSPORT INTERIOR TO PARALLEL 
TUBES 
1. Circular cross section 

Consider the Eqs. (18)-(20) for unsteady Aow in a cir- 
cular cylindrical tube of radius a: 

+ u(&tf, mO<r<a, WI 
u(a,t) =o, U32) 

where u( r,t) is the axial component of the velocity and Y is 
the radial coordinate measured with respect to-the center of 
the tube. The solution of (Bl 9 and (B2) is given by 

- .z i 2 b,e-“@m-V, (r), (B3) 

where 

b, = 2/aJZ,,-, @49 

‘pn =Jo(rJE,)/J,(aJE,j, (B5) 
J0CaJE,9 = 0, (B69 

2 b,~n(Y9 = 1, (B71 n-1 

E, = 2,/a=, 0, L-; a’ivz2,. (B11) 

We deduce from this that the relaxation-time distribution 
G(O) defined in (81) is, for an array of parallel tubes with 
circular cross-section, given by 

G,(O) = C 4 
0 i,>&‘,c~ z;; 

iB129 

The first zero ofJo occurs at ~~~-2.405 and thus 
en L- 5*784/ca’, (B13) 
149 1 t-- 0. t729a”, -(B14) 
z/b:@, =O.l196a”. (B159 

Application of Proposition 2 I Eq. (57) 1 for an array of 
tubes gives 

0.1196&S,+k z= 0.125a2&<0.1729a’qS,, (BIS) 
which shows that the bounds on k = O.l25a”4, are reasona- 
bly sharp. Therefore, the static permeabihty k can be reason- 
ably estimated in terms of the principal relaxation time Or, 
as given by Proposition 2, provided that the porous medium 
is characterized by a finite range of pore sizes, 

As previously discussed, the flow and diffusion prob- 
lems are isomorphic for transport interior to parallel tubes. 
Therefore, we have 

T = k = (2A3)#*, w79 
DT, = vo*, fIBI 

where the relaxation times 0, are determined from (B6). 

2. ReCtangular cross secfions 
For an arrayof’parallel tubes with rectangular cross 

sections, the quantities-of interest can be computed using 
Fourier series. Accordingly, if a and b denote the dimensions 
of the cross section, we have 

“u,,, (x,yj = 2 sin(mvrx/a)sin(nny/b), WI93 
b msn -- 8/2mn, WOI 
E m,n = -ri?(m2/a2 + n2/b 2), 03219 

and 
@m,, = [v2(m2,Rti2 + n2fb2)]--1, m221 

where m, n are odd, positive integers. The parameter L cor- 
responding to an array of rectangular tubes with dimensions 
a and b is given, from (B20), (B229, by 

2 b:=l, 
n=I 

(B8) L”- 512 1 --- 
n6 c -~~-. 

m,n odd m’n’ ( m2/az $: n2/b ’ 9 iB239 

0, = l/l$ fB91 On the other hand, the A parameter for this geometry coin- 
Here Jo and J, are, respectively, the zeroth-order and tirst- tides with the (usual) volume to surface ratio, since the elec- 
order Bessel functions. tric field is uniform, so that 

For arrays of parallel tubes at porosity & the static ab 
permeability is given by A+- 2ab --___=, 

2a -I- 26 a+b 
(B24) 

k = (ciL/89q5,, (BlO) Introducing the aspect ratio c = b/a, we have 
so that L = a = A. Notice that the eigenvalues E, and relax- 
ation times O,, YI = 1,2,3 ,..., are related to the zeros z,, L” 

- E - (1 fCf2 
n=173 of the Bessel function Jo, by the formulas .A’ - 

512 p 
-~__ _- 7 03251 t&f >***, nb *.%dd m”n’(c2m2 + 2) 
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which shows that the ratio L/h is not, strictly speaking, 
geometry independent. For a square cross section (c = 1) 
we have, with A = u/2, 

L; 2048 -=- 
A2 8 m,nodd m2n2(m2 $- i’z*) ’ 

(B26) 

while for an infinitely long cross section (flow between two 
parallel surfaces) we obtain, with c = CO, A = a, 

L” L2 
2 = 2 = $=0.66. 

A2 a2 
(B27) 

The numerical value of L :/A* can be evaluated with two 
significant decimal digits by summing the first four terms of 
the series in (B26), yielding 

L:/A*1!1.112. 0328) 
Finally, we compare the bounds of Proposition 2 with exact 
results in both cases. Accordingly, for the square cross 
section, 

k,er(1.112)$1A;/8~(0.139)$1A; (B29) 

represents the exact result. The corresponding upper bound 
(57) is 

k,<(0.203)+,Af, (B30) 
while the lower bound (58) is 

k,>(O.l33)qWf, 0331) 
where A, = a/2. For the slablike cross section, the exact 
result is 

k, = a’$,/12= (0.083)@‘, (~32) 
and the upper and lower bounds are, respectively, 

k, <(O.lOl)~,a* (J333) 
and 

k, >(O.O67)&a*. 0334) 
For the purposes of Sec. V and for comparison with (B 12)) 
we note that the general relaxation time distribution for ar- 
rays of tubes with rectangular cross sections is 

f&b (0) = (B35) 
d/d + n’/b=>4A’/A@ 

APPENDIX c: SCALING PROPERTIES OF THE 
STIELTJES TRANSFORM 

Define the Stieltjes transform of a probability distribu- 
tionG(O),O<@<co bytheformula 

s 

m 
S(w) = 0 

0 1 +02w2 
dG(O). (Cl) 

In this section we show, based on classical Tauberian theo- 
rems,” that the scaling properties of S( w ) for w % 1 and of 
G( 0) for 0 4 1 are related in a simple way. In fact, we have 
the following. 

Proposition: Let 0 <a < 1. Then if 

lim [w l +“s(w)] = c,, co- + m 
then 

cc21 

lim [@-“G(0)] = cl c~~~,‘2’ . 
0-O 

(C3) 

For applications to porous media, for which the asymp- 
totic formula (78) holds, we shall take a = 4. Then, this 
proposition provides a justification for Eq. (87) in Sec. V. 

Proof of the Proposition: Since 

s 

+C.D 
,-id-[[rl/Odt= 20 

-co 1 +OW (C4) 

we have 

I 

+C.D 

(I 

m 
2S(w) = e-‘“‘dt e-ltl’@ dG(O) , (C5) 

-cc 0 > 
and 2S(o) can be viewed as the Fourier transform of the 
function 

s 

+CO 
g(t) = e ‘t”O dG(O). ((3) 

0 

Our assumption on S(w), given in (C2), states that the 
Fourier transform of g(t) decays like w - Cl + a) as w + ~-a. 
Therefore, by a standard Abelian theorem for the Fourier 
transform, we have 

g(t) =g(O) + c*t” + o(t”) 
= 1 + c2ta+ o(t"), (C7) 

as t + 0, where C, is a numerical constant. This equation can, 
in turn, be rewritten as 

l”(‘-:“@)dG(@)--&, ((3) 

for t( 1. Introducing the auxiliary distribution function 
G;(s) = 1 - G(l/s), we have, from (C8), 

Lm (‘-te”)d&s)--+, (C9) 

for t< 1. Performing integration by parts, on the left-hand 
side of (C9), we obtain 

s 

m 
em”[l -c(s)]ds---&, t-0. (ClO) 

0 t 
We apply next the Tauberian theorem” to conclude that 

a 1 - G(s) -C,s- , S--Co, (Cl11 
where C’ is a constant depending on a and C,. Recalling the 
definition of G(s) we conclude that 

G(O) -C3W, O-0, (Cl21 
which proves the claim, insofar as the exponent in (C3) is 
concerned. To evaluate explicitly the constant C,, we substi- 
tute the function C,O” in the place of G(O) in (Cl) and 
apply (C2). The conclusion is that 

lim C, 
s 

a++nOdOa c 
n,-. m 1+ “332 = *’ 

so that 

C,-a -= 
s 

m @“do 
0 l+@ 

c 
” 

(C13) 

(C14) 

The integral in this last formula can be readily computed 
using contour integration, leading to the final answer 
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c 
3 

=; Cl ~0s Cad21 
[an-/Z] ' 

This proves the proposition. 
Taking a = 4 in (C3) we obtain, using the asymptotic 

relation (86), the asymptotic formula for the relaxation time 
distribution 

G(O) - (4~“~/n;h)O”~. (C16) 

APPENDIX D: HIGH-FREQUENCY LIMIT OF THE 
DYNAMIC PERMEABILITY AND THE A PARAMETER 

Here we derive the asymptotic relation (78), i.e., 

lim w3j2 Re %( o ) = yf”&f&‘A, 
m-m 

where 

A _ 2S, lE(r) 1’ dV 
- b, IE(r) 1’ d,S’ ’ 

032) 

The proof of ( D 1) and (D2 ) that we give follows the bound- 
ary-layer calculation suggested by Sheng and Zhou in Ref. 9, 
with the important difference that we incorporate in the 
boundary-layer expansion of the Stokes velocity terms up to 
order w - 3’2 :The necessity of considering terms beyond the 
leading-order term (which is of order o ‘- ’ ) was overlooked 
in Ref. 9, leading to a value of the “A parameter” that is 
different from the Johnson-Koplik-Schwartz weighted vol- 
ume-to-surface ratio [compare (D2) with Eq. (30) in Ref. 
9 1. We believe that the asymptotic analysis given hereafter 
clarifies this discrepancy. 

We assume, as in Sheng and ZhorP that the pore-surface 
&‘F’i is a smooth, twice-differentiable surface.“” According 
to Ref. 9 [also see (56) 1 the dynamic permeability i(w) is 
given by 

k(w) = (we), (D3) 
where w is the solution of the Stokes boundary-value 
problem 

Aw + i(o/v)w = Vp + e, 
‘V-w = 0, in F”,, (D4) 
w = 0, on dSvrl. 

We introduce the small parameter E = (Y/W) “’ (with di- 
mensions of length) and rewrite the Stokes equation in (D4) 
as 

,?Aw+iW==$(Vpfe). (D5) 
We wish to study the behavior of Re w as ~40. E’or this, 
observe that the fundamental solution of the equation 

AG(r) + (i/2)G(r) -S(r), CD61 
in three-space, where 6(r) is the Dirac delta function, 
satisfies 

G(r) = (1/4n-lrl)e-J’[“~‘, CD71 

with fi = ( 1 i i)/& A standard argument then shows 
that, for each positive length Z, the solution of (D5), w(r), 
converges to zero exponentially as e-+0 for Irl>l. More pre- 

cisely, we have the estimate 1 w( ri 1 <c,e - ‘A unifarm[v for 
all IT that lie at a distance l or more from d ;?/‘,$ where c, 
and c, are positive constants depending on E but not on E. 
Therefore, the leading contribution to the integral 

J w(r)+e dV 0381 
%+-, 

comes from a boundary layer of width I near cX~;, 1 being 
an arbitrary, finite Iength. The smoothness of dY, assumed 
here implies that the pore surface has bounded curvature. 
Therefore, we can partition the boundary layer for small 
enough E into a union of ‘“slablike” regions that project sim- 
ply onto portions of the pore surface dY, and cover com- 
pletely the boundary layer. In each such region we can intro- 
duce a local coordinate system and study Eq. CDS). In a 
system of normal coordinates,‘” an elementary slablike re- 
gion is described by the inequalities - 

-aax<a,- --b<yil?, O<%<l, CD91 
where x, )’ represent (curvilinear) coordinates on the pore 
surface dP’-,, -and z denotes the distance from the point 
r(x%y,z)_to dFr,. In these coordinates, the Euclidean length 
elemeat satisfies 

ds2 == g, 1 dx2 + 2gk dx dy + gz2 dy’ + ilz’, (DlO) 
where gIj are functions of (x,p,z). The equations for the ve- 
locity w -i- (w,,w,,ur,) in the coordinate system (x+w~ are 

V,P + 

-$-+ e, 

and 
wax 

( 1 
dwos vs* -+~=a 

WOV 
where the operators V, and A, are given, respectively, by 

A, =-g-$-$$:: $] 

Here w] denotes the inverse of the matrix CR? defined in 
(DlO) and g=det(gii j =g,,g,, _ &,. Note that in this 
coordinate system we have 

dV=&dx+dz 

and CD151 
dS=&dxdy (for z=O). 

To study the limit as e-0 of the Stokes velocity w, we intro- 
duce the “stretched” variable 
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&J = Z/E. CD161 
The equations satisfied by the velocity w = w, become 

2A)wrE) + --&-$(p 5) vppw + ex + jw(E) = 2 0 eY [ 1 i ap(f) --+ez 
E al 

and 
@ iS) 

V(E). x 
[ I 

1 a&) 
0 ~ = 0, ~(6) + E al Y 

CD1 ‘1 

CD181 

in the domain 
--a<x<a, - b<y<b, Q<z<I/e, CD191 

with the no-slip boundary condition 
WCs)===0 for c=O. CD201 

Superscripts (E) are used to indicate the dependence of var- 
ious quantities on the parameter E. To calculate the limit of 
w(‘) as e-+0, we use the ansatz 

WC”) = E’w&ry,S) + dw, ky,g> + - * - , 
0321) 

P (E) =PokY,S) + Epl(x,Y,g) + --* , 
substituting these expressions in (D17) and (D18) and 
equating powers of E. This leads to a hierarchy of equations 
that can be solved explicitly. To leading order, we find that 

(3322) 

and 

azw q”)p, + ex 
.--AL + iwo = 0 eY 
a62 [ 1 $+ez 

> (D23) 

where Vi” denotes the operator V, with z = 0 in the coeffi- 
cients g? We conclude from these equations that 

PO =PohY) (~24) 
and that 

woz (X,Y,O = 0. 
This, in turn, leads to 

$+e, =0, 

which determines the functionp, (x,y,g) up to a function ofx 
and y. Solving (D2 1) for w,, and wo,, yields 

The first-order term in the expansion for the pressure 
po(xg) can be identified by recalling the well-known fact 
that the pressure gradient Vp(x,y,z) + e approaches, as 

w--r CO or e-+0, the scaled electric field E. From this it fol- 
lows that Vp’p + (2) coincides with the electric held on the 
pore surface, i.e., 

E(xg,O) = [“““,+ G)] . (D26) 

Hence the (normalized) leading-order term in the expan- 
sion of w is 

wo(x,y,g) = (l/i)E(x,y,O) (1 - e.... \li5). (~27) 
This expression was derived by Sheng and Zhou in Ref. 9 by 
the same method. The real part of w. is given by 

Rew,(xyc) =E(xyO)e~j’~” 9 , I , sin(C/$). CD281 

Is it sufficientto take the leading-order term Re w,(x,y,<) to 
evaluate Re k(w) as w--t OO? The answer to this question is 
no, because the domain of integration has dimension I /E in 
the 5 direction, so that terms of order E (corresponding to 
w, ) can yield finite contributions to the volume integral, 
unless they decay rapidly as g-+ CO. Due to the exponential 
decay of the tangential components of Re w1 (this can easily 
be verified) it is sufficient to consider only the higher-order 
correction arising from w,, (x,y,c). Using the incompress- 
ibility condition (D 18) we obtain 

Re wlz (x,Y,O = - (VF)*E) (x,y> 

s E 
x e 

0 
dc, iD29) 

where (V”‘*E) (x,y) represents thesurface divergence of the 
electric fifld E on dY,. In general, this quantity is nonzero, 
and then Re wiZ (x,y,Q converges to a finite limit as <-+ CO. 
To calculate the contribution to Re(w,.e) arising from the 
“slab” under consideration we set 

so that 

, (D30) 

Re w, ix,y,z) 

r.?E(x,y,O)e--Z”Jz sin(z/&) 

- E3(Vr)*E) (x,y)qly6e- CfJr sin(a142)do; 

(D31) 

where 
0 

q= 0 0 1 

represents that normal to Jr,. Let us consider an arbitrary 
field 

Fe (XY,Z) = Fo(x,y) + EF, Gv,{) + O(E). 

Using (D3 1) , we have 

(D32) 
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I 3-b * 

ss s 0)’ -b -B 
Re w,=Fe dV = 2 1" S_tgb J:: E(xg,O)*Fo(x,y)em-gfa sin(-$-)dScS1 d< 

2/E 

JO J-b J-a 
VL”)-E(x,y) ]F,,(x,y) 

s 0 
ID331 

According to (D3), we are interested in F, (x,y,z) =  e, 
where e  is the applied pressure drop, Substitution of this 
value in (D33) yields 

Re w, (x,y>z>*e dx dy dz 

= $ 
h 

ss 
_ b -:uu E(x,y,O)-e dS (“) 

[V,*Eix,~)]e, dV. CD341 

The second term in this equation does not reduce, apparent- 
ly, to a  boundary integral. A more explicit calculation of this 
lim it can be  made using the fact that e  = E + Vq5, where 4  is 
a  scalar. A simple way of eliminating the volume integral 
contribution to (D33) is to replace e  by E in (D3)- which 
is legitimate since (w=VqS) = 0. Accordingly, if we set 
Fe  (x*y,z) = E(x,y&) in (D34) we observe that, to leading 
order, E,(x,y) = E(x,y,O) is tangential, i.e., E,, = 0, and 
hence the volume integral correction in (D34) vanishes. 
Thus, using (D33), we conclude that 

I +b -4-n 
&$-I E-- 3  fS J Re w, (x,y,z)=E(x,y,z)dx dy dz 

0 --h -; 
1 +b +a 

ZC- 
s s [WKY) I” ds’“‘(w), t.D35) 

,/2 -b --13 

wheredSe(x+y) = @@dx dyisthesurfaceelementond~,. 
W e  can now sum all the contributions to (D3) arising from 
elementary slablike regions in the boundary layer. Recalling 
that E = &%, we conclude that 

lim  CL?” Re( woe,,} 
<L--* m  

= lim  CL? Re(w*E) /.A 4  tx. 

E= v=- 1 ~- 
f ,l? I,* ay6c1 

IE(r) [’ dS. (D36) 

F inally, using the definition (D3) for the A parameter and 
the formula 

we conclude that lirn~,~, 03R Re Eiw j = y3i2j?/M, as 
claimed. 
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