Monte Carlo calculations of connectedness and mean cluster size
for bidispersions of overlapping spheres

In Chan Kim and S. Torquato®®

Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh,

North Carolina 27695-7910
(Received 21 May 1990; accepted 5 July 1990)

The pair-connectedness function and mean cluster size are computed from Monte Carlo
simulations for the continuum-percolation model of overlapping spheres with two different
diameters. The percolation threshold of the spheres is found to be independent of the
distribution (for the cases examined) and slightly higher than that for equisized spheres. Our
simulation results are used to assess the accuracy of the Percus-Yevick approximation

for the aforementioned cluster statistics.

I. INTRODUCTION

There has been a recent upsurge of interest in the sub-
ject of the physical clustering of particles in continuum
(off-lattice) models of disordered many-body systems (see
Refs. 1-14 and references therein). A singularly important
case of physical clustering occurs at the percolation tran-
sition, i.e., the point at which a cluster becomes infinite in
size. The study of the clustering behavior of particles in
continuum systems is of importance in phenomena such as
conduction (thermal or electrical) in dispersions,’ sol-gel
transition in polymer systems,* aggregation of colloids and
microemulsions,'® and the structure of liquid water,’ to
mention but a few examples.

A quantity of key fundamental interest in the study of
continuum percolation is the pair-connectedness function
P(r) which, for statistically isotropic distributions of par-
ticles, is proportional to the probability that two particles,
with relative position 7, are connected (or in the same
cluster).! From P(r) one can obtain other useful quanti-
ties, such as the mean cluster size, percolation threshold,
and mean coordination number.

Theoretical techniques used to obtain P(r) focus on
solving the “connectedness” Ornstein-Zernike integral
equation as described by Coniglio et al.! Closure of the
integral equation requires one to employ an approximation
for the “direct” connectedness function. A commonly em-
ployed closure is the Percus-Yevick (PY) approximation.
This approximation was used by Chiew and Glandt® and
by DeSimone et al® to study equisized spheres in the
permeable-sphere model and penetrable-concentric-shell
model, respectively. Subsequently, Chiew et al ® conducted
an analogous investigation for permeable spheres with a
size distribution. All of these interpenetrable-sphere mod-
els are parametrized by an impenetrability index 4,
0<A<1. The special case of A = 0 corresponds to randomly
centered spheres or spatially uncorrelated spheres and is
sometimes referred to as ““overlapping spheres,” “fully pen-
etrable spheres,” or the “Swiss-cheese” model.
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Although computer simulations of the pair-
connectedness function has been carried out for various
distributions of equisized spheres,!"'%!* to our knowledge,
such computations have not been carried out for systems of
spheres with a size distribution. One of the purposes of this
paper is to compute the pair-connectedness function for
binary mixtures of randomly centered spheres (i.e., over-
lapping spheres having two different diameters) from
Monte Carlo simulations. The mean cluster size S is also
determined independently from the simulations for such
models. From S the percolation thresholds are estimated.
Our simulation results are compared to the theoretical re-
sults of Chiew et al.? in the PY approximation. Thus, we
study the effect of polydispersity in particle size on the
clustering of overlapping spheres.

Il. SIMULATION PROCEDURE

Obtaining statistical measures, such as the pair-
connectedness function and mean cluster size, from com-
puter simulations is a two-step process. First, one generates
realizations of the medium of interest. Second, one samples
each realization for the desired quantity and then averages
over a sufficiently large number of realizations. In the en-
suing discussion, we describe the details of our simulation
methods to obtain the aforementioned cluster measures for
binary mixtures of randomly centered (i.e., spatially un-
correlated) spheres.

A simple and efficient means of generating realizations
of randomly centered or overlapping spheres is to ran-
domly and sequentially place each sphere of diameter o;
(i=1or 2) in a cubical cell until the desired density p; for
each species is reached. This procedure, subject to periodic
boundary conditions, is the one employed in the present
study.

In order to compute cluster measures, one needs to be
able to distinguish between the various clusters in the sys-
tem. By definition, two particles of diameter o; and o; are
assumed to be “directly” connected if the interparticle dis-
tance r satisfies the relation
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FIG. 1. Comparison of the simulation results for the pair-connectedness
function P;;(x) at various system sizes for bidispersed overlapping
spheres at 7=0.1, 0.2, 0.3 and 0.33. Here p,/p = 0.6 and o,/0; = 2.

o;+ 0;
r< ’2 I (1)

Pairs of particles can be “indirectly” connected, however,
through chains of other particles. Existing cluster-counting
algorithms which are able to distinguish particles of dif-
ferent clusters include the “cluster-labeling method”!® and
the “connectivity matrix method.”'? In this study, we em-
ploy a modified cluster-labeling method used by Lee and
Torquato.'*

A. Pair-connectedness function

In a bidispersed, isotropic system of generally interact-
ing particles, the pair-connectedness function Py(r)
(4j=12) is defined such that the quantity
ppiPy(r;3)dr, dr, is the joint probability of finding parti-
cles of species i and j, centered in volume elements dr; and
dr, about r; and r,, respectively, and that these two parti-
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FIG. 2. Pair-connectedness function Pj;(x) for bidispersed overlapping
spheres at p,/p = 0.6 and 0,/0; = 2. The solid lines are the PY results
(Ref. 8).
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FIG. 3. As in Fig. 2 for the pair-connectedness function Pp,(x).

cles are physically connected, i.e., belong to same cluster.
Computing Py(r) from computer simulations is relatively
straightforward. First one constructs concentric shells of
radii

re=kAr, k=123,.. 2)

up to r = L/2 around each particle of diameter o; in the
system (where Ar is a distance which is small compared to
0;). One then counts the number of particles of diameter
o; in each shell which are connected to each of the central
particles. The pair-connectedness function Py(r) is readily
obtained from the number of the connected particles for
each value of k. ‘

In order to minimize the effect of system size in sim-
ulations of Py(r), the central cell is surrounded with rep-
licas of itself. Cluster identification depends upon the type
of boundary conditions employed. The standard practice
has been to use “simple” periodic boundary conditions
over the central cell. Lee and Torquato'# have shown that
“free” boundary conditions over the central and replicating
cells lead to a pair-connectedness function which converges
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FIG. 4. As in Fig. 2 for the pair-connectedness function Py, (x).
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to the infinite-system behavior much more rapidly than the
application of simple periodic boundary conditions. We
therefore apply free boundary conditions to compute
P ’]( r ).

B. Mean cluster size and percolation threshold

Given P;i(r), one can determine the mean cluster size
S from the relation®

S=1+p 2 X xx f Py(rdr, (3)
i
where p = 2 p; and x; = p/p or from an alternative defini-
tion

S___Z,szns ,
2 sng

(4)

where n, is the mean number of clusters of size s. Note that
the size of a cluster s is simply the number of particles in
that cluster, regardless of the species of the constituent
particles. We employ the latter definition (4) to compute S
from our simulations. Unlike the determination of Py(r),
the values of the mean number of clusters of size s, n,, and
hence § are the same for both free boundary conditions and
simple periodic boundary conditions. We therefore utilize
the latter to compute S since use of simple periodic bound-
ary conditions is much less computer intensive. Note that
mean cluster size .S becomes infinite at the sphere volume
fraction ¢ = ¢, the percolation threshold. Thus, we esti-
mate ¢, by extrapolating the data for the inverse mean
cluster size S~! as a function of ¢ to the S~!-0 limit.
Extrapolation is achieved by employing the least-squares fit
equation of the data for S~ in the range of ¢ from about
0.25 t0 0.3.

lil. RESULTS AND DISCUSSION

We have carried out computer simulations of the pair-
connectedness function P;(r) and the mean cluster size §
for bidispersions of overlapping spheres for selected values
of the sphere volume fraction ¢. Such calculations require
substantially more CPU time than corresponding compu-
tations for monodispersed systems of particles since in the
former roughly twice as many total particles (up to 1000
particles) are needed to obtain sufficient accuracy. Two
different distributions are examined: (i) one in which
p1/p=02 and o,/0,=2 and (ii) the other in which
p1/p=0.6 and o0,/0y = 2. Recall that p; and o; are the
density and the diameter of species i, respectively, and
p = 2p;. It is useful to introduce the reduced number den-
sity 7 defined by

m ko
N="5 P10} + £p203. (5)

The sphere volume fraction is then given by

p=1—e". (6)
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FIG. 5. Pair-connectedness function P;,(x) for dispersed overlapping
spheres at p;/p = 0.2 and 0,/0, = 2. The solid lines are the PY results
(Ref. 8).

A. Pair-connectedness function

We first studied the effect of system size on our results
for Py(r) by computing it for X, total number of particles,
equal to 100, 200, 300, 500 and 1000. It is found that in all
cases systems with N = 500 or N = 1000 are sufficiently
large to neglect finite-size effects. To illustrate this point we
depict, in Fig. 1, Py,(r) for selected values of the reduced
number density 7 at several different system sizes for the
case py/p = 0.6 and 0,/0; = 2. Here we see that a system
as small as N =300 is sufficiently large to yield P/(7)
accurately. Beyond the discontinuity which occurs at
r=0,, Py;(r) decreases monotonically as r increases, as
expected. Note that Py(r) is trivally equal to unity for
r<og

Displayed in Figs. 2—4 are the functions P;;(7), Py,(7)
and P,,(r), respectively, at selected values of 1 for the case
pi/p =0.6 and 0,/0, = 2. Here N =500 for n =0.1, 0.2,
and 0.3 and NV = 1000 for 7 = 0.33. In Figs. 5-7 we depict
corresponding plots for the case p;/p = 0.2 and 0,/0, = 2.
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FIG. 6. As in Fig. 5 for the pair-connectedness function Pj,(x).
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FIG. 7. As in Fig. 5 for the pair-connectedness function P;;(x).

Here N = 1000. It is seen that Py(r) at fixed 7 and 0,/0,
is not very sensitive to changes in the density of species 1.
Included in Figs. 2-7 are the Percus—Yevick (PY) theo-
retical results of Chiew ef al.® Their theoretical results are
generated by numerically computing the factorized form of
the mixture Ornstein-Zernike equation using the algo-
rithm of Perram.!” As in the case of monodispersed sys-
tems of overlapping spheres, the agreement between our
simulations and the PY approximation is generally poor,
except at low reduced number densities. As the percolation
threshold is approached from below, the PY approxima-
tion considerably underestimates P;(r) and hence signifi-
cantly overestimates the percolation transition density.
This is due to the well-known fact that the PY approxima-
tion leaves out important cluster integrals from the exact
expression for P;i(r)."”® However, as shall be shown, the
PY approximation does capture another important feature
regarding the percolation threshold of such systems.

B. Mean cluster size and percolation threshold

We present results for S as a function of ¢ and estimate
¢, for the two bidispersed systems of overlapping spheres
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FIG. 8. Mean cluster size S~! for bidispersed overlapping spheres. Here
pi/p=0.6 and 0,/0y = 2. The solid line is the PY result. The arrow
indicates the percolation threshold.

TABLE 1. The inverse mean cluster size S=! for bidispersed overlapping
spheres extrapolated to the /!0 limit. The parameter yalues for the
two cases examined are: (i) p,/p = 0.6.and 0,/0; = 2 and (ii) p\/p =0.2
and 0,/; = 2. The error bounds are determined'from the linear regres-
sions. From these data, the critical reduoced: density 7, is estimated to be
0.38 for both distributions and hence, from Eq. (6), the.critical particle
volume fraction ¢, is estimated to be 0.32.,

S—l
n ¢ p/p=02 p/p=0.6
0.10 009516  0.43917+0.00065  0.447 69+0.001 00
0.14 0.13064  0.295680.00168 . . 0.30098=0.001 71
0.18 0.16473  0.188 57000174 0.186 25+0.000 82
0.22 0.19748  0.109 37000148  0.10596=0.000 59
0.25 022120  0.064130.00155  0.062 26=0.000 92
0.28 024422 0031294000098  0.03225+0.001 21
0.30 025918  0.01751=0.00119  0.015 850,000 69
0.31 026655 0011292000055  0.012 440.001 09
0.32 027385 = 0.007 58000041  0.010 70+0.000 88
0.33 028108  0.00450=0.00052  0.005 710.000 60
0.34 028823  0.00263+0.00044  0.004 350.000 29
0.35 0.295 31 0.001 960.000 31 0.002 754:0.000 29
0.36 030232 000112000024  0.001 73+0.000:17
0.37 030927  0.00063+0.00007  0.001 040.000 17
0.38 031614  0.00044+0.00016  0.000 680.000 17

(ie, pi/p=0.6, 0y/0y=2 and p,/p=0.2, 6,/0,=2).
The data are obtained by extrapolating S~! for various
system sizes (N = 100, 140, 200, 300, 500, 1000) to the
N~150 limit. (Such extrapolations are necessary since, for
any finite system, the mean cluster size will be underesti-
mated.) We then estimate ¢, by extrapolating these data to
S~'-,0 limit. Table I shows our results for S~! as a func-
tion of the reduced number density % and of the volume
fraction of the particle phase ¢. The volume fraction ¢ and
the reduced number density 7 are related by Eq. (6). The
error bounds given in the table are determined from errors
associated with the linear regression. For the two different
bidispersions examined here, we find that ¢.~0.32 which is
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FIG. 9. Mean cluster size S~! for bidispersed overlapping spheres. Here

p/p=0.2 and 0,/0) =2. The solid line is the PY result. The arrow

indicates the percolation threshold.
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slightly higher than the value ¢.~0.29 for monodisper-
sions of overlapping spheres.>'>!* This finding is consistent
with the Monte Carlo results of Kertesz and Vicsek® who
find that ¢, for two-dimensional distributions of overlap-
ping disks with a polydispersity in size is slightly larger
than ¢, for monodispersed overlapping disks.

In Figs. 8 and 9, our extrapolated results for S~! are
plotted versus ¢ and compared with PY approximation
which is seen to overestimate $~! or underestimate S. This
observation is consistent with the fact that the PY approx-
imation underestimates the pair-connectedness function.
At any rate, the PY approximation is known to predict
¢. = 0.39, regardless of the values of p,/p and o,/0y, and
hence overestimates the percolation threshold. Nonethe-
less, the PY approximation does, in fact, appear to capture
the important feature that the percolation theshold is not
very sensitive to particle size distribution.

The procedure used here to estimate the percolation
thresholds has been shown to yield results accurate to
within two significant figures.!>'* More accurate estimates
of the thresholds could have been obtained by using the
scaling law for the mean cluster size and finite-size scaling
analysis.'® Such an analysis is considerably more complex"”
and will be carried out in a future study.
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