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This paper is concerned with the problem of predicting the effective rate constant k associated 
with diffusion-controlled reactions in media composed of static and reactive traps (sinks) 
which are generally distributed randomly throughout a region containing reactive particles. 
The effective equation for diffusion-controlled reactions is derived using the method of 
homogenization. This leads to a rigorous definition of k. General variational principles are 
then formulated to obtain rigorous upper and lower bounds on k. These variational principles 
are applied by evaluating them for three different types of admissible fields. The upper and 
lower bounds which result are computed for both random and periodic arrays of equisized 
spherical sinks. 

I. INTRODUCTION 

The problem of predicting the effective rate constant 
associated with diffusion-controlled reactions has been the 
subject of numerous theoretical investigations in both the 
physical and biological sciences and is currently attracting 
much attention (see the excellent review by Calef and 
Deutch l and references therein). A diffusion-controlled re­
action is one in which the time for two bodies to diffuse in the 
same neighborhood is the rate-limiting step, the reaction 
time being negligible in comparison. Diffusion-controlled 
reactions play an important role in heterogeneous catalysis, 
cell metabolism, gaseous diffusion through solid, polymer 
chain growth kinetics, colloid or crystal growth, precipita­
tion, fluorescence quenching, and combustion, to mention 
but a few examples. 

We consider media composed of static and reactive 
traps (sinks) distributed randomly throughout a region con­
taining reactive particles. The reactant diffuses in the trap­
free region but is instantly absorbed on contact with any 
sink. At steady state, the rate of production (J' of the diffusing 
species is exactly compensated by its removal by the sinks. 
For a particular trap or sink volume fraction ¢2' (J' is propor­
tional to the mean concentration field C: the proportionality 
constant defining the effective reaction rate constant k [see 
Eq. (2.12)]. 

The well-known Smoluchowsk? theory deals with reac­
tions among equisized spherical sinks of radius a at suffi­
ciently small sink volume fractions such that interactions 
between sinks can be neglected; the rate constant is given by 
ks = 3¢2/ a2

• At higher concentrations, the reaction rate will 
be affected by competition between neighboring sinks. For 
small ¢2' asymptotic expansions of k for random arrays of 
nonoverlapping sinks (which correct the Smoluchowski re­
suit) have been derived3

•
4 and are found to predict that k 

increases with increasing ¢2' The rate constant, in general, 
depends upon an infinite set of correlation functions which 
statistically characterize the medium, however; and except 

for specially prepared artificial media, this set of functions is 
never known. This explains why there are presently no exact 
analytical results for disordered media at arbitrary ¢2' even 
for simple models of spherical traps that are impenetrable 
but otherwise randomly arranged. Nonetheless, methods 
have been developed which enable one to estimate k for a 
wide range of sink concentrations; these include idealized, 
spatially periodic arrays of sinks,s approximate effective-me­
dium theories,6-9 random-walk techniques, 10 and variation­
al bounds. I 1.12 

This paper will focus on the study and calculation of 
rigorous upper and lower variational bounds on k. Rigorous 
bounds are useful since: (i) they may be used to test the 
merits of a theory, (ii) as successively more microstructural 
information is included, the bounds (generally) become 
progressively narrower, and (iii) one of the bounds can typi­
cally provide a relatively good estimate of the effective prop­
erty, for a wide range of volume fractions, even when the 
reciprocal bound diverges from it. 13

•
14 There are three basic 

steps involved in obtaining variational bounds on effective 
properties: 

( I) defining the effective property in terms of some 
functional; 

(2) formulating an appropriate variational ( extre­
mum) principle for this functional; 

( 3) and constructing trial fields which conform with 
the variational principle (i.e., admissible fields). 

Prager and his co-workers IS pioneered the use of vari­
ational principles to establish bounds on effective transport 
properties of random media. In the present context of diffu­
sion-controlled reactions, Reck and Prager I I derived three­
point lowerboundsonk for random beds of spheres. (By"n­
point bounds" we mean bounds that involve up to n-point 
correlation function information). The same authors II also 
obtained a general two-point upper bound on k. Doi12 de­
rived a general two-point lower bound on the rate constant 
involving different two-point correlation functions. 

In Sec. II, we derive the effective equation for diffusion-
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controlled reactions using the method of homogenization. 
This provides a rigorous definition of k. We then rewrite k in 
terms of an energy functional. In Sec. III we employ this 
functional to formulate rigorous upper and lower bounds on 
the rate constant. This formulation is new. In Sec. IV we 
apply the variational principles by evaluating them for three 
different types of admissible fields. The bounds so obtained 
are computed for specific microstructures. This is followed 
by a discussion in Sec. V. 

II. MATHEMATICAL FORMULATION 

A. Derivation of the effective equations using the 
method of homogenization 

The random medium is a domain of space r(ro)eR3 

(where the realization ro is taken from some probability 
space .n) of volume V which is composed of two regions: the 
trap-free region r l of volume fraction ¢I and the trap 
(sink) region r 2 of volume fraction ¢2' Let ar denote the 
surface between r I and r 2' The characteristic function 
I(x,ro) ofthe trap-free region r l (ro) is defined by 

I {
I, xer.(ro) 

(x,ro) = . 
0, xer2 (ro) 

(2.1) 

We denote by c(x) the concentration of the reactive 
particles which diffuse and are being created in r., but in­
stantaneously reacts on ar: 

Dac = - u in r., 
c=O onar. 

(2.2) 

(2.3) 

In Eq. (2.2), D is the diffusion coefficient of the reactive 
particles in r. and a is the Laplacian operator. Equation 
(2.2) states that the rate of production u of the diffusing 
species is exactly compensated by its removal by the traps. 

We assume that the random medium has a microscopic 
length scale I which is small compared to a typical macro­
scopic length scale L. Therefore, there is a small parameter 
E = 1/ L associated with rapid fluctuations in the structure of 
'J/'. (ro), and we assume that the concentration c depends on 
two scales: a slow scale x and a fast scale y = X/E,·6 i.e., 

Dac(x,y,ro) = - u(x) in r·.£(ro), (2.4) 

c(x,y,ro) = 0 on ar£ (ro). (2.5) 

Performing a multiscale expansion 

c = cCo + eCI + ... , (2.6) 

1 2 a = c ay +""'i Vx 'Vy + ax, (2.7) 

one finds that the leading order equation [after substituting 
Eqs. (2.6) and (2.7) into Eq. (2.4)] is given by 

Dayco(x,y,ro) = - u(x). (2.8) 

Hence, we can write 

co(x,y,ro) = D -IU(X)W(y,ro), (2.9) 

where the auxiliary function w is defined through 

ayw(y,ro) = - 1 in r.(ro), (2.10) 

w(y,ro) =0 onar(ro), (2.11) 

and we extend w in the trap region r 2 ( ro) to be zero. We 
now add the assumption that the medium is locally (Le., on 

scale) stationary. Then the ensemble average of any function 
g(x,y,ro) is a simple function ofx only, i.e., 

(g(x,y,ro» = (g)(x), 

where ( . ) denotes an ensemble average. Homogenization re­
fers to averaging on the fast scale. 16 Averaging Eq. (2.9) 
then yields 

u(x) = kDC(x), (2.12) 

where the constant k is the reaction rate constantl7 given by 

k -I = (w(y,ro» = (w(y,ro)I(y,ro)} (2.13) 

and 

C(x) = (co)(x). (2.14) 

To our knowledge, this is the first time that the effective 
equation which defines the rate constant has been derived 
using the method of homogenization. 

B. Energy characterization of the rate constant 

We now rewrite k in terms of an energy functional. 

1. Proposition 1 

k- I = (Vw(y,ro)·Vw(y,ro)I(y,ro». (2.15 ) 

2. Proof 

Let VR be a large ball of radius R centered at the origin. 
Then we have 

(wawI) = (waw) 

= _1 f (waw)dy = (_1 r waw dY) 
VR VR JVR 

= (~ r VW'VWdy ) 
VR JVR 

+ - w-dy (Ii aw I 
VR aVR an 

+(_1 {wawdYI 
VR Ja1 an 

= _ (VW'Vw) + _1_ r (w aw ) dy. 
VR JavR an 

The last integral of the second line vanishes identically be­
cause of condition (2.11). The quantity aVR denotes the 
trap-free part of the surface of the large ball. Letting R ..... 00, 

we find 

(wb.w) = - (Vw'Vw) 

and since by Eq. (2.13), 

k -1 = (wI) = - (wb.w) 

the proof is complete. 

3. Remllrk 

In subsequent analysis, we shall exploit the stationarity 
of the medium to derive other identitites (by the same meth­
od employed here) without spelling out the details. 
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III. VARIATIONAL BOUNDS 

We consider deriving upper and lower bounds on the 
rate constant k using variational principles. To do so, we 
modify Eq. (2.10) slightly by introducing the function 
v = yw. The quantity v solves 

ayv(y,ro) = - y in r.(ro), (3.1) 

v(y,ro) = 0 on ar(ro) and in r 2 (ro). (3.2) 

Then k satisfies 

y = k (v) = k (vI). (3.3) 

A. Lower bound 

Let A be the class of functions u defined by the set 

A = {smooth, stationary u(y,ro); au = - y in VI}' 

(3.4) 

Then k is bounded from below by 

k> r \;JuEA. 
(Vu'VuI) 

1. Proof 

From Proposition 1, it follows that 

k= r 
(Vv'VvI) 

Let now uEA. Then writing u = v + g, we get 

(3.5) 

(3.6) 

(Vu'VuI) = (Vv'VvI) + (Vg'VgI) + 2(Vv·VgI). 

But ag = 0 implies (Vv'VgI) = 0, so that 

(Vu'VuI) > (Vv·VvI). 

This last inequality combined with Eq. (3.6) leads to Eq. 
(3.5): the equality sign applying when u is the exact solution 
to Eqs. (3.1) and (3.2), i.e., u = v. The lower bound (3.5) is 
new. 

B.Upperbound 

Let B be the class of functions u defined by the set 

B = {smooth, stationary u(y,w); 

u =Oonar. and (UI) = (vI)}. (3.7) 

Then k is bounded from above by 

k (Vu'VuI) \;J eB 
"(V}2 U. (3.8) 

1. Proof 

Eliminating yfrom Eqs. (3.1) and (3.3), and applying 
Proposition 1 yields 

k = (Vv'VvI) . (3.9) 
(vI)2 

Consider ueB and define u = v + g. Then 

(Vu'VuI) = (Vv'VvI) + (Vg'VgI) + 2(Vv·VgI). 

Integrating by parts as in the proof of Proposition 1, we find 

(Vv'VgI) = y(gI} = 0 

since (gI) = (uI) - (vI), so that again 

(Vu·VuI»(Vv·VvI). This inequality together with Eq. 
(3.9) proves upper bound (3.8) which is new. 

2. Remark 

In certain instances it may be advantageous to use 
bounds that are cruder than Eqs. (3.5) and (3.8), namely 

k> r \;JuEA, (3.10) 
(Vu'Vu) 

k" (Vu'Vu) \;JueB. (3.11) 
(V)2 

The reason for this is that computation of (Vu'Vu) 
( > (Vu' VuI » involves less detailed microstructural infor­
mation (i.e., lower order correlation functions) than the 
evaluation of (Vu·VuI). 

c. Volume-average approach 

Thus far we have used an ensemble-average approach. 
An alternative derivation is possible by considering averages 
over a large but finite volume and then allowing the volume 
to expand to infinity. Let Vbe a large domain (in which we 
ultimately take the limit V ..... R3

), a V be the surface of the 
domain, and consider 

av= -y in J/., 

v = 0 on aJ/, 

av 
-=0 on avo 
an 

Next we define the volume average 

iJ=~ ( vdV 
V);, 

and the reaction rate constant 

kiJ=y. 

The following bounds hold for k. 

D. Lower bound 

r k> __ \;JuEA., 
VU'Vu 

(3.12 ) 

(3.13 ) 

(3.14 ) 

(3.15 ) 

(3.16 ) 

(3.17) 

AI = {u; au = 

E.Upperbound 

- y in ]/.,!!:!.. = 0 on av}. (3.18) 
an 

k< VU'Vu \;JuEB., 
iJ2 

B. = {u; u = 0 on aJ/, ii = v}. 

(3.19 ) 

(3.20) 

The bounds (3.17) and (3.19) may be proved in a similar 
fashion to the previously derived ensemble-averaged bounds 
and hence the proofs are not presented here. Note the vol­
ume averages of Eqs. (3.17) and (3.19) are defined in the 
same sense as Eq. (3.15) (i.e., the domain of integration is 
the trap-free region r I) and it is implicit that the limit 
V ..... 00 is taken. 

IV. EXAMPLES OF TRIAL FIELDS AND BOUNDS 
In order to apply the rigorous bounds on k (derived in 

the previous section) for models of random media, we must 
choose admissible trial fields, substitute such trials fields 
into the bounds, and then perform the necessary averaging. 
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A. Interfacial-surface lower bounds 

We rederive a lower bound obtained by Doi 12 using our 
variational lower bound (3.10). Our derivation is different 
than his, and in fact we show his bound corresponds to a 
special choice of a trial field in the setA, Eq. (3.4), and notto 
a new variational principle as Doi stated. Specifically, we 
choose 

u, (y,ro) = r [i, G(y - x)dx - Ll G(y - X)t(X)dX] , 

(4.1 ) 

where 

G(x,y) =_1 ___ 1_ 
41r Ix - yl 

(4.2) 

is the Green's function of the Laplacian operator tl.. The 
quantity t(x) is an arbitrary function which is defined on 
the interfacial surface ar. Accordingly, we refer to this pro­
cedure as the interfacial-surface approach. 

To get a lower bound we compute the ensemble average 

(VU1'Vu,) = y [(f, f., VG(y - x) 'VG(y - z)dx dZ) - 2(f, Ll' VG(y - x) 'VG(y - z)t(x)dx dZ) 

+ (Ll/ Ll' VG(y - x)· VG(y - z)t(x)t(z)dx dZ) ] . 

In carrying out the averages ofEq. (4.3) we will make use of 
the following two-point correlation functions: 

Fpp (r) = (/(y)/(y + r», (4.4) 

Fsv(r) = (IV/(y)l/(y+r», (4.5) 

Fss(r) = (IV/(y)IIV/(y + r)I). (4.6) 

These functions are called void-void, surface-void, and sur­
face-surface correlation functions, respectively. These cor­
relation functions and their generalizations (e.g., Fssv,Fsss' 
etc.) have been extensively studied by Torquato. 14 We are 
free to choose t(x) subject to the constraint that the right­
hand side ofEq. (4.3) is finite. For simplicity, we choose t to 
be a constant to. Then Eqs. (3.5) and (4.3) imply 

k>[f G(r){t~Fss(r) -2toFsv(r) +Fvv(r)}dr]-'. 

(4.7) 

The asymptotic behavior as Irl-+ 00 of the correlation func­
tions in Eq. (4.7) is well known: 

Fss (r)-+s2, Fsv(r)-+s¢I' Fvv(r)-+¢i. (4.8) 

where ¢I = (I(y» is the expected volume fraction of the 
trap-free region r l (porosity) and s = (IV/(y) I) is the ex­
pected area of the interface ar per unit volume (specific 
surface). Hence, the only choice of to for which the integral 
of Eq. (4.7) exists is 

to = ¢.;s. (4.9) 

Therefore, 

{f 1 [¢2 2¢ ] } - I 
k> 41Tr -fFss (r) - --;- Fsv (r) + Fvv (r) dr . 

(4.10) 
The two-point lower bound (4.10) was first derived by 

Doi. 12 The derivation ofEq. (4.10) presented here, however, 
is new. The trial field Eq. (4.1) corresponds to a special 
choice of admissible fields in the set A, Eq. (3.4), for the 
minimum energy principle (3.5) and not to a new variation­
al principle as Doi claimed. We further remark that Doi 
made the choice (4.9) after "optimizing" Eq. (4.7) over all 

(4.3) 

I 
possible to. However, as we have argued, any other choice 
for to will provide a trivial bound (namely, k>O), so there is 
actually no room for optimization. 

B. Evaluation of the interfacial-surface lower bound for 
distributions of spherical traps 

We now evaluate the lower bound (4.10) foranisotrop­
ic distribution of equisized spherical sinks of radius a. The 
sinks are distributed with an arbitrary degree of impenetra­
bility A.. The impenetrability parameter A. varies continuous­
ly between zero (in the case where the sphere centers are 
randomly centered, i.e., "fully penetrable" spheres) and uni­
ty (in the instance of totally impenetrable spheres). Two 
examples of such interpenetrable-sphere models are the per­
meable-sphere (PS) 18 and penetrable-concentric-shell 
(PeS) 19 models. In the PS model, the spheres are assumed 
to be (structurally) noninteracting when nonintersecting, 
with a probability of intersection given by a radial distribu­
tion function g( r) = 1 - A., independent ofthe interparticle 
separation distance r when r < 20. In the PCS model, spheri­
cal particles of radius a are randomly distributed subject to 
the condition of a mutually impenetrable core region of radi­
us A.a, O<A.< 1. Each sphere may be thought of as being com­
posed of an impenetrable core of radius A.a, encompassed by 
a perfectly penetrable concentric shell of thickness 
(1 - A. )a. In Figs. 1 and 2 computer-generated realizations 
of two-dimensional distributions of disks in the PS and PCS 
models are shown. In the former model, two particle centers 
may lie arbitrarily close to one another such that the proba­
bility of overlap is 1 - A.; in the latter model no two particle 
centers may lie closer than the distance loA.. 

Note that for fully penetrable spheres (A. = 0), the vol­
ume fraction of the trap-free region is ¢I = exp [- TJ] 
(where TJ = 41Ta3p/3 is a reduced density) and the specific 
surface is s = 3TJ¢I/ a. 14 In the opposite limit of totally im­
penetrable spheres (A. = 1), ¢1 = 1 - TJ (or, ¢2 = TJ) and 
s = 3¢2/a. These results indicate that 
¢2(A. = 1 »¢2(A. = 0) and seA. = 1 »s(A. = 0): the equa-
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.­
•• I 

FIG. 1. A computer-generated realization of a distribution of disks of radius 
a (shaded region) in the PS model (Ref. 18). Here the impenetrability pa­
rameter A = 0.5 and the sink volume fraction;2 = 0.3. 

lity sign applying in the dilute limit (i.e., through first order 
in 17). 

Utilizing the series representation ofthe two-point cor­
relation functions of Eq. (4.10) in terms of the n-particle 
probability densities14 [defined by Eq. (4.17)], we compute 
Eq. (4.10) through second order in the sink volume fraction 
ifJ2 in the PS model and find 

• • • • • 
·tI~ 

FIG. 2. A computer-generated realization of a distribution of disks of radius 
a = u/2 (shaded region) in the PCS model (Ref. 19). The disks have an 
impenetrable core of diameter AU indicated by the smaller, black circular 
region. Here A = 0.5 and ;2 = 0.3. 

k /k;;;.1 + K2ifJz + O(ifJ~), 
where 

and 

(4.11 ) 

(4.12) 

(4.13) 

Note that through first order in ifJ2' the bound gives the exact 
Smoluchowski result k •. The next term accounts for interac­
tions between pairs of sinks; as the impenetrability param­
eter A increases, the second-order coefficient K2 increases, as 
expected, since the surface area available for reaction in­
creases. 

We also evaluate K2 in the PCS model for 0 <A < 1; in 
the extreme limits A = 0 and A = 1, the results are of course 
the same as that for the PS model, Eq. (4.12). For intermedi­
ate values of A, K2 had to be computed numerically: for 
A = 0.2, 0.4, 0.6, and 0.8, K2 = 1.88, 1.96, 2.30, and 3.19, 
respectively. Therefore, the second-order coefficient in the 
PCS model is always less than the corresponding value in the 
PS model for intermediate values of the impenetrability pa­
rameter. 

It is of interest to compare our low-density bounds to a 
low-density expansion of k for impenetrable spherical sinks 
(A = 1) recently derived by Mattern and Felderhof': 

.!5.... = 1 + .J3ifJf2 - 3EI ( 6,J3?J;) ifJ2 + 5.7321ifJ2 + h.o. t. 
k. 

(4.14) 

Here EI is the exponential integral. A notable feature ofthis 
asymptotic expansion is the nonanalytic dependence on ifJ2' 
The expansion (4.14) predicts an O(ifJ2 1/2 ) correction to the 
Smoluchowski result as opposed to an O(ifJ2) correction 
from the bound (4.11). This leading order correction has 
been obtained by others.3.6-IO The nonanalyticity is a direct 
consequence of diffusional screening effects. We note that at 
ifJ2 = 0.01, the expansion predicts k / k. = 1.20, whereas the 
lower bound (4.11) for A = 1 gives k / ks > 1.05. Clearly, for 
dilute conditions, the ifJr2 term is the dominant term. It is 
difficult to construct trial fields which incorporate screening 
and simultaneously satisfy the conditions of the set A, Eq. 
(3.4 ). Means of obtaining nonanalytic bounds shall be dealt 
with in a future work. 

We remark that lower bound (4.10) has been numeri­
cally computed to all orders in ifJ2 for fully penetrable spheri­
cal sinks l2 and for totally impenetrable sinks.20.21 For subse­
quent discussion, we plot these results in Fig. 3. Note that 
effective-medium theories which attempt to approximate k 
(for impenetrable sinks) for arbitrary sink concentra­
tions,6,9 while giving an order ifJrz correction to the Smolu­
showski result, fall below (i.e., violate) the lower bound of 
Fig. 3 for impenetrable sinks at moderate values of ifJ2.9.20.21 

C. Multiple-scattering lower bounds 

If the medium is composed of a distribution of inclu­
sions, we can construct trial fields which are based on the 
solutions for scattering from a single inclusion, pairs of in­
clusions, etc. Accordingly, we refer to bounds so obtained as 
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FIG. 3. Lower bounds on the reduced rate constant k / k, vs the sink volume 
fraction ¢>,. Solid (-) line is two-point bound (4.10) for totally impenetra­
ble spherical sinks (A = 1) computed in Ref. 20. Dashed (---) line is two­
point bound (4.10) for fully penetrable spherical sinks (A = 0) computed 
in Ref. 12. Dotted ( ... ) line is our three-point bound (4.29) for fully pene­
trable sinks. 

multiple-scattering bounds. For the case of a distribution of 
N identical spheres of radius a, we can construct the follow­
ing single-scatterer trial field: 

Ut = r[f G(y - x)dx - a ;il G(y - r;)e(ly - r;I)] , 

(4.15 ) 

where 

t
o, r<a 

e(r) = 1, r>a 
(4.16) 

is the characteristic function of the exterior of a single 
sphere, r; is the position ofthe ith sphere, and a is a param­
eter. It turns out that the only choice for which the energy 
(VU2'VU2/) is finite, is a = lip (where it is to be recalled 
that P is the number density of the spheres). Trial functions 
of this type have been employed recently in the problems of 
conduction in composite mediaz2 and in viscous flow in po­
rous media.23 

Before computing (Vuz' Vuzl ), we introduce the follow­
ing statistical distribution functions for the random medium: 

Pn(rn) = N! fpN(rN)drn+1 "'drN, 
(N- n)! 

( 4.17) 

N' G (x'rq ) = . 
n' (N _ q)! 

X f I(x)PN(rN)drq + I" ·drN• n = 1 + q. 

(4.18) 

Here PN(rN) is the probability density function associated 
with the event of finding particles 1, ... , Nwith configuration 
rN={rl, ... ,rN}, respectively. Thenpn (rn) is the probability 
density associated with finding any n particles with configu­
ration fn, while G n (x;rq) is the correlation function associat­
ed with finding x in the trap-free region and any q particles 
with configuration rq,n = 1 + q. The Gn have been ex­
pressed as an infinite series involving the Pn :14,22 

q+ k 

X II m(zj)drj , ( 4.19) 
j=q+1 

where 

mer) = 1 - e{r) (4.20) 

is the characteristic function of the interior of an inclusion, 
Z; = x - ro andz; = Iz; I. The condition of stationarity (sta­
tistical homogeneity) implies than the n-particle probability 
density can be written aSPn (rn) = pngn (rn). When the mu­
tual distances between the n particles become large, the n­
particle distribution function gn -1, assuming no long­
range order. Relation (4.19) is important since it enables 
one to compute the Gn when the ensemble is fully specified, 
i.e., when the Pn are given. Note that the factor multiplying 
the infinite series ofEq. (4.19) ensures that Gn (x;rq) = 0 for 
any Ix - r; I < a, i.e., whenever the point x is contained with­
in a sink. 

We now observe that 

(Vu2 'VuzI) = ('T"'T'/) < ('T"'T'), 

where 

(4.21) 

'T' = r[f VG(y - x)dx - J... .f VG(y - f;)e(ly - r;I>]. 
P 1=1 

(4.22) 

Thus, Eqs. (3.5) and (4.21) yield the following two-point 
lower bound: 

k~ [J... i VG(ZI) . VG(ZI )dzl 
P Z,>o 

+ 1.>oL>o h(rdVG(ZI)'VG(Z2)dZldZ2rl, (4.23) 

where 

(4.24) 

is the total pair correlation function and rij = rj - rio Note 
that the integrals of Eq. (4.23) are absolutely convergent; 
the second one is convergent since her) tends to zero much 
more rapidly than r- 3 as r- 00. In fact, the first integral in 
Eq. (4.23) can be evaluated explicitly and we get the follow­
ingbound: 

k~[_I_+i i h(fd VG(ZI)·VG(Z2)dZ1 dz2 ]-I. 
41Tap Z,>Q Z,>O 

(4.25) 

Use of Eq. (3.5) together with Eq. (4.15) yields the 
following three-point lower bound: 
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k:> [ ;2 f G2 (ZI) IVG(ZI )j2dzl 

+ ;2 f f Q3(ZI,~)VG(ZI)'VG(Z2)dzl d~rl, 
(4.26) 

where 

Q3(ZI'ZZ) = G3(X;fl,fz) - pG2(X;f l ) 

- pG2 (X;f2 ) + p2rPI · (4.27) 

The asymptotic behavior of Q3 for large separationsz2 en­
sures the absolute convergence of the second integral of Eq. 
(4.26). 

D. Evaluation of multiple-scattering lower bounds for 
distributions of spherical traps 

Here we compute the multiple-scattering lower bounds 
(derived in the previous subsection) for distributions of 
equisized spherical traps of radius a. First consider the exact 
evaluation of the two- and three-point lower bounds to all 
orders in rP2 for the case of fully penetrable spheres (A = 0). 
For such a microstructure, her) = 0 for all r, and the two­
point lower bound (4.23) gives 

.!:....;;> _ InrPl . (4.28) 
ks rP2 

Comparing Eq. (4.10) for the instance offully penetrable 
spheres to Eq. (4.28) reveals that the two-point interfacial­
surface bound is sharper than the two-point multiple-scat­
tering bound through all orders in rPz. For this model, the G n 

described by Eq. (4.19) are trivial,14.22 and the three-point 
lower bound (4.26) gives 

.!:....:> -In rPl , (4.29) 
ks rPlrPZ 

which is clearly a better lower bound than Eq. (4.28). There­
fore, incorporation of additional statistical information in 
multiple-scattering-type bounds leads to progressively 
sharper bounds. In Fig. 3 we include lower bound (4.29). 
Even though Eq. (4.29) contains three-point information, it 
is seen (from Fig. 3) that, for the geometry of fully penetra­
ble spheres, it is inferior to the interfacial-surface lower 
bound (4.10) which contains only two-point information. 

This last statement will not be true for all A, however. 
For example, using the low-density expansion of Eq. (4.19) 
for the cases n = 2 and n = 3, the three-point multiple-scat­
tering bound yields an expansion of the form of Eq. (4.11) 
with 

K 2 =l+A(2+-Y ln3) , 

in the PS model and 

K2 = l- A 6 + 3A 4 + ~ Z - ~ 

+ j(1 + 4A 2)1n(1 + U). 

( 4.30) 

(4.31 ) 

ComparingEqs. (4.30) and (4.31) to the corresponding re­
suIts for the two-point interfacial-surface bounds obtained 
above, reveals that for a large range of A (for A> 0.37 in the 
PS model and A> 0.60 in the PCS model) the three-point 
multiple-scattering bounds are sharper than the two-point 

interfacial-surface bounds. The reason why the former are 
superior to the latter for large A is discussed in the subse­
quent section. Finally, we remark that the behavior of the 
lower bounds at low densities gives an indication of how the 
bounds will behave at all sink concentrations.22.23 For exam­
ple, for totally impenetrable sinks (A = 1), the three-point 
bound (4.26) should be sharper than the two-point bound 
( 4.10) for all rP2' 

E. Security-spheres upper bounds 

The construction of a trial concentration field u for the 
upper bounds (3.8) or (3.19) is more problematical than the 
lower bound because of the condition that u = 0 on the inter­
face a r. Consider constructing a trial field for a distribution 
of N identical spheres of radius a. Let the distance between 
the ith sphere and it nearest neighbor be denoted by 2b j • In 
addition we assume bi > a Vi. It is more convenient here to 
use the expanding-volume formulation (3.19). A trial field 
t/JEB. [whereB] is given Eq. (3.20)] is chosen as follows: for 
every sphere i we consider the domain defined by itself and a 
concentric 'security' sphere of radius bj' In that domain we 
solve 

I:ltPj(X} = 0 in a < Ix - f;1 <b;, 

tPj = 0 on Ix - fj I = a, 

tP; = t on Ix - f; I = b;. (4.32) 

The trial field tP is chosen to be equal to tP; in the ith security 
shell and to be t elsewhere. Finally, we choose t such that 
"if = v. The security-spheres method has been employed in 
the related problems of bounds on the viscosity of suspen­
sions24 and the permeability of porous media.2s 

Solving Eq. (4.32) and eliminating tin Eq. (3.19) 
yields 

kiN Y [ rP 1 N ]2 -<-Id({3;) 1-.2-I/({3;) , 
ks N ;=1 2 N ;=1 

x 
d(x)=--, 

x-I 
I(x) = x(1 + x), 

(4.34) 

(4.35) 

(4.36) 

where{3; = b;la andrP2 = 'TJ = 41Ta3p/3. In the lower bound 
( 4. 34 ), it is understood that the "thermodynamic" limit is 
taken (i.e., N .... 00, V .... 00, such thatp = N IVis fixed). Us­
ing the law of large numbers, we can write Eq. (4.34) as 

~<a ('" d({3)H(a{3)d{3 / 
ks Jl I 

[1 - a;2 S'" 1({3)H(a{3)d{3 r (4.37) 

Here H(a{3) is the probability density of spheres with near­
est neighbor at the distance 2 a{3. Note that Eq. (4.37) is a 
two-point upper bound. 

F. Evaluation of security-spheres upper bounds 

1. Simple cubic lattice 

As the first special case we consider evaluating the secu­
rity-spheres upper bound for a simple cubic lattice with a 
lattice spacing of 2a{3. Then rP2 = 1T1( 6{3 3) and Eq. (4.34) 
gives, 
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A" d(/3) 
k. [1- (t/J2/2)j(/3)]2 

(4.38) 

For small sink concentrations, Eq. (4.38) yields 

:. ,,1 + [ 1 + ~ ]( !Y/3 t/J~/3 + O(t/Jr3) 

~ 1 + 1.8903t/Jr3 + O(t/J~/3). (4.39) 

This upper bound is of the same form as the exact low con­
centration result of Felderhof.s His coefficient is 1. 76, so Eq. 
(4.39) does indeed give an upper bound. We also compare 
Eq. (4.38) to the exact result for all volume fractionsS in Fig. 
4. For small t/J2' the bound is very sharp; the bound becomes 
poorer as t/J2 increases. 

2. Random distribution of spheres 

Next we consider a random distribution of equisized 
spheresofradiusa. We see from Eq. (4.35) thatd(/3) has a 
simple pole at /3 = 1. Therefore, in general, the integral in 
the numerator of Eq. (4.37) diverges and yields the trivial 
upperboundk"oo.IfH(/3) vanishes as (/3-1)£ at/3= 1, 
where E> 0, the integral involving d (/3) converges and Eq. 
(4.37) gives a finite, positive upper bound on k [assuming 
the integral in the denominator of Eq. (4.37) is always less 
than or equal to 2/at/J2]' We shall only treat such H(/3). 

Consider now the case oflow concentration and choose 
for H(a/3) the function2s 

{

O' /3</30 
H(a/3) = 12t/Jfl 2e -a44J'(P'-P~), (4.40) 

/3>/30 

When the dimensionless cutoff distance /30 is zero, H (a/3) is 
the nearest neighbor probability density for independently 
uniformly distributed points with number density p. Substi­
tuting Eq. (4.40) into Eq. (4.37) yields 

(4.41) 

15~----------~------------~ 

10 

k 
k; 

5 

o~------~--------~--------~ 0.0 0.2 0.4 0.6 

FlO. 4. The reduced rate constant k / k, for a simple cubic array of spherical 
sinks vs ¢>2. The dashed line (---) is the numerical result of Felderhof (Ref. 
5) and the solid line (-) is our two-point upper bound (4.38). 

It is helpful here to restate the three-point multiple-scatter­
ing lower bound for the case A. = 1 obtained in the previous 
subsection: 

(4.42) 

For t/J2 = 0.01, the two-point upper bound (4.41) gives 
k I k." 1. 73 and the three-point lower bound yields 
k Ik.> 1.06, this is to be contrasted with the expansion 
(4.14) which predicts k Ik. = 1.20. Therefore, for small t/J2' 
the lower bound gives the better estimate of k for a random 
distribution of impenetrable spherical sinks. 

Finally. we remark that in a future work we shall com­
pute upper bound (4.37) for a random distribution of 
spheres of arbitrary concentration using an appropriate 
nearest-neighbor probability density H(a/3). 

V. DISCUSSION 

A. Relationship to previous work on bounds 

Reck and Prager I I were the first to formulate variation­
al principles for the upper and lower bounds on the rate 
constant. Using these variational principles, they derived a 
three-point lower bound and a two-point upper bound on k. 
The present work differs in several important ways. First of 
all, the effective equation which defines k, Eq. (2.12), is 
derived here using the method of homogenization. Reck and 
Prager, on the other hand, assume the existence of such a 
relation. Secondly, both our variational lower bounds, (3.5) 
and (3.17), and upper bounds, (3.8) and (3.19), are ob­
tained from the same starting point, namely, Proposition 1, 
Eq. (2.15). Two different starting points were employed by 
Reck and Prager to derive their variational principles for 
bounds on k. Thirdly, Reck and Prager use a volume-aver­
age approach, whereas we utilize both a volume-average and 
an ensemble-average approach. Although our variational 
principle for the volume-averaged upper bound, Eq. (3.19), 
is identical to their corresponding principle, the same is not 
true for the respective variational principles associated with 
the lower bounds. Referring to the expression describing the 
admissible fields u, Eq. (3.18), for the volume-averaged low­
er bound, we see that Reck and Prager correctly required 
that t:.u = - r in r I but did not include the condition that 
the normal derivative of u on the macroscopic boundary 
must be equal to zero. It is difficult to construct trial fields 
which satisfy the latter condition. The variational principle 
for the lower bound obtained here using the ensemble-aver­
age approach, Eq. (3.5), has the advantage that this condi­
tion does not have to be satisfied. To our knowledge, the 
present formulation in terms of ensemble averages is new. 
Lastly, the trial fields employed in the present paper are dif­
ferent than the ones employed by Reck and Prager and hence 
all of the bounds derived in Sec. IV [except for Eq. (4.10)] 
are entirely new. 

B. Comparison of the Interfacial-surface and multiple­
scattering lower bounds 

We first observe an interesting relation between the in­
terfacial-surface trial field Eq. (4.1) and the multiple-scat­
tering trial field Eq. (4.15). Consider a distribution of N 
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totally impenetrable spheres (A. = 1), and restrict u)(y,ro) 
to yer). Then, sex) = <,6\/s implies 

u\(y,ro) = r [( G(y - x)dx - -4- ( G(y - X)dX] L, 41Ta p Jal 

= r[ (. G(y - x)dx - PJ. ± G(y - r j )] , (5.1) 
J,., P ;=1 

where we have used the mean-value theorem for harmonic 
functions. Equation (5.1) is strikingly similar (but not iden­
tical) toEq. (4.15). TheadvantageofusingEq. (4.1) and 
not Eq. (4.15) is obvious when there is a large degree of 
penetrability (small A. ) , since the union of N nonoverlapping 
sphere surfaces does not represent the surface of the medium 
ar well in such instances. This explains why, for example, 
the three-point multiple scattering bound (4.29) is poorer 
than the two-point interfacial bound (4.10) for A. = 0 (cf. 
Fig. 3). Therefore, bounds which incorporate a certain level 
of information on the medium are not always necessarily 
sharper than bounds which involve less microstructural in­
formation. Nonetheless, within a certain class of trial fields 
(interfacial-surface fields, multiple-scattering fields, securi­
ty-spheres fields, etc.), increasing the level of information 
leads to improved bounds. As the degree of impenetrability 
increases, the union of N nonoverlapping sphere surfaces, 
however, better represents the surface ar. For large A., 
therefore, the three-point multiple-scattering bound is supe­
rior to the two-point interfacial-surface bound because the 
former contains a greater amount of statistical information. 

The interfacial-surface and multiple-scattering bounds 
have their own merits. The main advantage of the former is 
that it can be applied to media of arbitrary geometry (not 
just models such as distributions of spheres) and hence to 
"real" materials. On the other hand, the multiple-scattering 
bounds can be applied to any system composed of distribu­
tions of inclusions and can be systematically upgraded to 
include sophisticated mUltiple-scattering solutions. 
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