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The problem of tiling or tessellating (i.e., completely filling) three-dimensional Euclidean space R3 with
polyhedra has fascinated people for centuries and continues to intrigue mathematicians and scientists today.
Tilings are of fundamental importance to the understanding of the underlying structures for a wide range of
systems in the biological, chemical, and physical sciences. In this paper, we enumerate and investigate the most
comprehensive set of tilings of R3 by any two regular polyhedra known to date. We find that among all of
the Platonic solids, only the tetrahedron and octahedron can be combined to tile R3. For tilings composed of
only congruent tetrahedra and congruent octahedra, there seem to be only four distinct ratios between the sides
of the two polyhedra. These four canonical periodic tilings are, respectively, associated with certain packings
of tetrahedra (octahedra) in which the holes are octahedra (tetrahedra). Moreover, we derive two families
of an uncountably infinite number of periodic tilings of tetrahedra and octahedra that continuously connect the
aforementioned four canonical tilings with one another, containing the previously reported Conway-Jiao-Torquato
family of tilings [Conway et al., Proc. Natl. Acad. Sci. USA 108, 11009 (2011)] as a special case. For tilings
containing infinite planar surfaces, nonperiodic arrangements can be easily generated by arbitrary relative sliding
along these surfaces. We also find that there are three distinct canonical periodic tilings of R3 by congruent regular
tetrahedra and congruent regular truncated tetrahedra associated with certain packings of tetrahedra (truncated
tetrahedra) in which the holes are truncated tetrahedra (tetrahedra). Remarkably, we discover that most of the
aforementioned periodic tilings can be obtained by “retessellating” the well-known tiling associated with the
face-centered-cubic lattice, i.e., by combining the associated fundamental tiles (regular tetrahedra and octahedra)
to form larger polyhedra.
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I. INTRODUCTION

The study of three-dimensional tilings by polyhedra is
of fundamental importance to the understanding of a wide
range of systems in the biological [1,2], chemical [3,4],
and physical sciences [5,6]. Tilings are naturally related
to networks (underlying connected graphs) [7] and present
an alternative way to visualize three-dimensional structures.
Systematic enumerations of tilings based on their symmetry
have been made possible by the use of combinatorial methods
[8]. These allow scientists to gather useful information on
the possible ways in which matter aggregates both at the
microscopic (e.g., atomic and molecular) and macroscopic
length scales. For example, the combinatorial tiling theory,
and algorithms and methods based upon it [9], provide a
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powerful tool for the study of the structure of zeolites,
silicate networks, aluminophosphates, nitrides, chalcogenides,
halides, carbon networks, clathrate hydrates, and ice [10].
A wide range of systems, such as block copolymers, liquid
crystals, colloids, and metallic alloys, also form structures with
various types of long-range order, both periodic [11] and ape-
riodic [12–14]. Macroscopic examples include arrangements
of cells in living tissues [2], the structure of foams, and any
aggregate of spherical soft particles appearing in nature and
synthetic situations [1]. Additionally, exploring the connection
between packings and tilings has the potential to deepen our
understanding of packing problems [15–18]. For example,
Conway and Torquato constructed dense packings of regular
tetrahedra from the “Welsh” tiling of irregular tetrahedra [19],
corresponding to the structure of MgCu2, also referred as the
Laves phase C15 by Frank and Kasper (with space group
Fd3̄m) [20].

In this paper, we mainly focus on the problem of tiling three-
dimensional Euclidean space R3 periodically with regular
polyhedra (i.e., the Platonic solids), including tetrahedron,
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TABLE I. The dihedral angles of the Platonic solids.

Polyhedron Dihedral angle

Tetrahedron 2 tan−1(
√

2/2) ≈ 0.392π

Icosahedron 2 tan−1[(3 + √
5)/2] ≈ 0.768π

Dodecahedron 2 tan−1[(1 + √
5)/2] ≈ 0.648π

Octahedron 2 tan−1(
√

2) ≈ 0.608π

Cube π/2

octahedron, icosahedron, dodecahedron, and cubes. (We also
consider tilings by the Archimedean truncated tetrahedron and
regular tetrahedron.) Except for cubes, none of the remaining
four regular polyhedra can individually tile R3. Thus, we first
investigate the tilings with two types of regular polyhedra
other than the obvious tessellations that can be constructed by
using cubes of two different sizes. From simple considerations
based on their dihedral angles, no pair of regular polyhedra can
completely fill R3 apart from tetrahedra and octahedra, either
periodically or nonperiodically, which we show now. Consider
an edge of a regular polyhedron: in order to have a space-filling
structure consisting of pairs of Platonic solids, the edge needs
to be surrounded by other tiles, whether or not the polyhedron
has face-to-face contact with its neighbors. This means that
dihedral angles taken from other Platonic solids should add
up to either π (non-face-to-face matching) or 2π (face-to-face
matching). From the list of dihedral angles (see Table I), it is
clear that the only possibilities of tiling R3 by a pair of regular
polyhedra are given by either different-size cubes or a mixture
of tetrahedra and octahedra.

It is well known that a periodic tiling of R3 by congruent
regular tetrahedra and congruent regular octahedra can be
derived from the face-centered-cubic (FCC) lattice by con-
necting the nearest-neighbor lattice sites (i.e., the FCC tiling).
The net associated with this tiling, called “octet truss” by
Fuller, is also known as the alternated cubic honeycomb, or
tetrahedral-octahedral honeycomb (stored as fcu on the Retic-
ular Chemistry Structure Resource (RCSR) [21] database). A
related family of tilings by octahedra and tetrahedra that are not
as well known as the octet truss are those associated with the
infinite number of Barlow packings of identical spheres [22].
We note that in this family of tilings, the number of nonperiodic
tilings is overwhelmingly larger than the periodic ones. These
tilings, together with the FCC tiling, are the only possible
ones composed of regular octahedra and tetrahedra when
face-to-face matching of polyhedra (i.e., the tiles) in the tiling
is required.

When the face-to-face matching is not required, the poly-
hedra only share part of their faces with their neighbors. Very
recently, Conway, Jiao, and Torquato [23] have shown that
one such tiling by congruent octahedra and small congruent
tetrahedra can be derived from the densest lattice packing
of regular octahedra [24], which has been conjectured to be
the densest among all octahedron packings [25]. This new
tiling consists of fundamental repeat units composed of one
octahedron and six tetrahedra whose edge length is one third of
that of the octahedra. Moreover, these authors [23] also discov-
ered a one-parameter family of periodic tilings containing an
uncountable number (i.e., a continuous spectrum) of tilings by

congruent octahedra and small tetrahedra with two different
sizes, connecting the tiling associated with the conjectured
densest octahedron packing [25] at one extreme and the FCC
tiling at the other extreme.

Are these the only possible tilings by regular octahedra
and regular tetrahedra? In general, a complete enumeration
of all possible tilings by tetrahedra and octahedra in R3 is
a notoriously difficult problem. Given that the number of
configurations is uncountable, any attempt to classify these
tilings would only make sense if such a classification is subject
to a set of restrictions. One natural constraint is that the tiles
are congruent tetrahedra and octahedra, as in the FCC tiling
and the tiling associated with the conjectured densest packing
of octahedra [25], henceforth referred to as the “DO” structure.

In this paper, we report on the discovery of two additional
distinct canonical tilings of R3 by congruent octahedra
and congruent tetrahedra, besides the DO and FCC and
related tilings. Our tilings are, respectively, associated with
a dense uniform packing [26] of regular tetrahedra reported
in Ref. [19], henceforth referred to as the “UT” structure, in
which the holes are small congruent regular octahedra, and a
dense packing of octahedra constructed here, in which parallel
layers of hexagonally packed octahedra are stacked one on
top of the other, henceforth referred to as the “LO” structure.
Together with the FCC tiling and the tiling associated with
the densest octahedron packing, these four distinct canonical
tilings of R3 are the basic tessellations containing congruent
octahedra and congruent tetrahedra.

When more than one type of octahedron or tetrahedron is
allowed, one expects that the number of possible tilings should
increase dramatically. Consider, for instance, a Sierpinski
tetrahedron [27] at some intermediate stage, which is an
example of how space can be filled by regular congruent
tetrahedra and any given number of noncongruent octahedra.

Indeed, we show that there exist two families of periodic
tilings of tetrahedra and octahedra that continuously connect
the aforementioned four canonical tilings (FCC, DO, UT, and
LO) with one another (see the figure in Sec. IV). Thus, this
constitutes an uncountably infinite number of tilings for each
family. The tiles include either congruent large octahedra and
small different-size tetrahedra or congruent large tetrahedra
and small different-size octahedra. Specifically, we find a
two-parameter tiling family that connects the DO and LO
tilings to the FCC tiling, whose fundamental repeat unit is
composed of one large octahedra and six small tetrahedra with
three different sizes. This family contains the Conway-Jiao-
Torquato family of tilings [23] as a special case. We also obtain
a one-parameter family of tilings by large tetrahedra and small
octahedra, connecting the UT tiling to the FCC tiling. The
fundamental repeat unit of these tilings contains two congruent
large tetrahedra and two small octahedra with different sizes.

Moreover, we introduce a unified description of the tilings
by octahedra and tetrahedra using the idea of “retessellation,”
which we illustrate by examining the FCC tiling. First, we
identify a useful and singular property of this tiling, namely,
its self-similarity. In particular, each octahedron in the tiling
can be dissected (i.e., retessellated) into TO small tetrahedra
and OO small octahedra with the same edge length (see Fig. 1).
In a similar way, each tetrahedron can be dissected into TT

small tetrahedra and OT small octahedra. The numbers of
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FIG. 1. (Color online) Scale-invariance property of the FCC
tiling via the “retessellation” process. Each tile can be split into
a self-similar tile cluster containing smaller tiles of the only two
available types (either tetrahedra or octahedra). The top and bottom
sets of images depict the two simplest possible decompositions or
retessellations of a regular tetrahedron and a regular octahedron,
respectively.

tetrahedra and octahedra, each of unit edge length, contained
in an octahedron of side n are

TO = 4(n − 1)n(n + 1)

3
, OO = n(2n2 + 1)

3
. (1)

The numbers of unit tetrahedra and unit octahedra contained
in a tetrahedron of side n are

TT = n(n2 + 2)

3
, OT = (n − 1)n(n + 1)

6
. (2)

Extending this process, referred to as “retessellation,” to the
entire FCC tiling leads to a FCC tiling with smaller tiles whose
side is 1/n of the original tiles. From a different point of view,
one can also start with an infinitely large FCC tiling and single
out large octahedra composed of OO original octahedra and TO

original tetrahedra of the FCC tiling (see Fig. 1). This process,
also referred to as retessellation, leads to a FCC tiling with
larger tiles than those in the original tiling.

Remarkably, we find that this “retessellation” approach can
be applied to construct all of the aforementioned basic tilings
of regular tetrahedra and regular octahedra, including the four
distinct canonical tilings and the two families of tilings. In
other words, the tilings can be constructed by singling out a
finite number of the octahedron and tetrahedron tiles in the
FCC tiling to form compound octahedra and tetrahedra with
different sizes that are tiles of the corresponding tilings. In
addition, we report a tiling by large regular tetrahedra and
small regular truncated tetrahedra that has not been identified
in the literature to the best of our knowledge. We find that
this tiling, the tilings by large regular truncated tetrahedra and
small regular tetrahedra associated with recently discovered
dense packings of regular truncated tetrahedra [19,23], and
a tiling by irregular truncated tetrahedra associated with the
β-tin structure [28] can also be obtained by retessellations of
FCC tiling. Thus, the retessellation process provides a unified
approach to determine the possible tilings of R3 by elementary
polyhedra, including regular octahedra, regular tetrahedra, as
well as regular and irregular truncated tetrahedra.

The rest of the paper is organized as follows: In Sec. II,
we present the four canonical periodic tilings of R3 by

congruent regular tetrahedra and congruent regular octahedra
(i.e., the FCC, DO, LO, and UT tilings). In Sec. III, we
construct two families of periodic tilings whose tiles contain
congruent octahedra (tetrahedra) and tetrahedra (octahedra) of
different sizes that continuously connect the aforementioned
four distinct canonical tilings with one another. In Sec. IV,
we present the general formulation of the retessellation
process and show that it can be applied to obtain the most
comprehensive set of tilings of R3 by octahedra, tetrahedra,
and truncated tetrahedra known to date. In Sec. V, we provide
concluding remarks.

II. TILINGS OF R3 BY CONGRUENT REGULAR
TETRAHEDRA AND CONGRUENT

REGULAR OCTAHEDRA

In this section, we describe the four distinct canonical tilings
of R3 by congruent regular octahedra and congruent regular
tetrahedra. These include the FCC tiling, the tiling associated
with the conjectured densest packing of octahedra (the DO
tiling), the tiling associated with the dense uniform packing
of regular tetrahedra (the UT tiling) [19] in which the holes
are small congruent octahedra, and the tiling associated with
a layered packing of octahedra (the LO tiling) in which the
holes are small congruent tetrahedra. Although the FCC tiling
is well known, the DO tiling associated with the conjectured
densest octahedron packing was only discovered recently [23].
The latter two tilings have not been reported in the literature
to the best of our knowledge.

A tiling of R3 by congruent octahedra and congruent
tetrahedra can be classified based on their side ratio s, which
is defined as follows:

s = sO

sT
, (3)

where sO is the side length of the octahedra and sT is that of
the tetrahedra in the tiling. Another relevant parameter is the
tile ratio t = nO/nT, where nO and nT are, respectively, the
number of octahedra and tetrahedra in the fundamental repeat
unit of the tiling.

Interestingly, we find that for the aforementioned four
distinct canonical tilings discussed in this section, the tile ratio
t turns out to be inversely proportional to the side ratio s:

t = nO

nT
= 1

2s
. (4)

This leads to an explicit formula for the packing density φ (i.e.,
the fraction of space covered by the polyhedra, also referred
to as packing fraction) of either octahedra or tetrahedra, which
can be expressed as a function of the side ratio s alone, i.e.,

φO = 1 − φT = 1

1 + 1
2s2

, (5)

where φO and φT are, respectively, the packing density
of octahedra and tetrahedra in the tiling. In Table II, we
summarize the main features of the four canonical tilings that
will be described in detail below. Note that only the FCC tiling
has cubic symmetry.
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TABLE II. The four canonical tilings by regular tetrahedra and
octahedra, i.e., the tiling associated with the uniform packing of
tetrahedra (UT), the FCC tiling, the tiling associated with the layered
packing of octahedra (LO), and the tiling associated with the conjec-
tured densest octahedron packing (DO) [25]. Note the relationship
between the side ratio s, tile ratio t , and packing fraction of the
octahedra. The space group associated with each tiling is also given.

Name s t φo Space group

UT 1/2 1 1/3 P 4/mmm

FCC 1 1/2 2/3 Fm3̄m

LO 2 1/4 8/9 trig.
DO 3 1/6 18/19 R3̄

A. The tiling associated with the uniform packing
of tetrahedra (UT tiling)

In Ref. [19], Conway and Torquato constructed a dense
periodic packing of regular tetrahedra, whose fundamental
cell contains two tetrahedra forming partial face-to-face con-
tacts. Specifically, the tetrahedra are arranged on a primitive
tetragonal lattice [19] and oriented in two mutually orthogonal
directions. The vertex coordinates of the two tetrahedra in the
fundamental cell are given by

PT 1 = {0,1/2,0}, {1, − 1/2,0}, {1,1/2,1}, {0, − 1/2,1},
(6)

PT 2 = {−1/2,0,0}, {1/2,1,0}, {1/2,0,1}, {−1/2,1,1}.
And the lattice vectors of the uniform packing are given by

a1 = (1,0,0)T , a2 = (0,1,0)T , a3 = (1/2,1/2,1)T . (7)

The center of a contacting region is also the inversion
center associated with the contacting tetrahedron pairs. Every
tetrahedron in the packing can be mapped to another one by
translation and center-inversion operation. Thus, this packing
is referred to as the “uniform tetrahedron packing.” At the
time of this discovery, no mention was made of the holes in
this packing.

Interestingly, we find that the holes in the uniform tetrahe-
dron packing are in fact regular octahedra whose edge length is
half of that of a tetrahedron. Filling the holes with octahedra of
proper size leads to a novel tiling ofR3 by tetrahedra and small
octahedra. In the tiling, each tetrahedron has face contacts
with four tetrahedra and eight octahedra, and each octahedron
shares its faces with eight tetrahedra. The fundamental repeat
unit contains two tetrahedra and two small octahedra. A portion
of the net of the octahedra surrounding each tetrahedron is
shown in Fig. 2. In the full, triply periodic net, each octahedron
shares four of its edges with four different neighbors.

TABLE III. The three canonical tilings by regular truncated
tetrahedra and regular tetrahedra. Note the relationship between side
ratio s, tile ratio t , and packing fraction of the truncated tetrahedra
φtt . The space group associated with each tiling is also given.

Name s t φtt Space group

TH 1/3 3 23/32 trig.
crs 1 1 23/24 Fd3̄m

TT 3 1/3 207/208 trig.

FIG. 2. The eight octahedra surrounding each tetrahedron in the
UT tiling, which is associated with the uniform packing of tetrahedra.
Each octahedron shares four of its edges with four of its neighbors.

B. The FCC and related tilings

Consider an octahedron PO defined by the relation

PO = {x ∈ R3 : |x1| + |x2| + |x3| � 1}, (8)

which is placed on the lattice sites specified by

a1 = (1,1,0)T , a2 = (−1,1,0)T , a3 = (0,1,1)T . (9)

In this octahedron packing (with a density φ = 2/3), four
octahedra, with each making contacts by sharing edges per-
fectly with the other three, form a regular-tetrahedron-shaped
hole with the same edge length as the octahedra. If tetrahedra
of proper size are inserted into the holes of the packing, then the
FCC tetrahedron-octahedron tiling is recovered (see Fig. 6). In
this periodic tiling, each octahedron makes perfect face-to-face
contacts with eight tetrahedra. The fundamental repeat unit
of this tiling contains one octahedron and two congruent
tetrahedra. Individual layers of this tiling completely fill the
space between two parallel planes at a distance equal to the
diameter of an inscribed sphere in an octahedron (the distance
between two opposite faces of an octahedron). This property
allows the generation of an infinite family of tilings based on
stackings of layers of the type described above, all having the
same side ratio, but that cannot be retessellated into the FCC
tiling. One well-known example is hexagonal close packed
(HCP) structure, but it is also possible to generate nonperiodic
arrangements.

C. The tiling associated with the layered packing
of octahedra (LO tiling)

Here, we derive a heretofore undiscovered canonical tiling
of R3 by congruent octahedra and small congruent tetrahedra,
which has not been presented before in the literature to the best
of our knowledge. Consider an octahedron defined by Eq. (8)
that is placed at each lattice site specified by the lattice vectors
a1, a2, and a3:

a1 = (− 1
2 ,1, 1

2

)T
, a2 = (−1,1,0)T , a3 = (− 1

2 , 1
2 ,1

)T
.

(10)

This lattice packing has a density of φ = 8/9, in which each
octahedron makes face contact with eight neighbors, leading
to small tetrahedral holes. The edge length of the tetrahedral
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FIG. 3. (Color online) The 16 tetrahedra surrounding each
retessellated octahedron in the tiling associated with the layered
packing of octahedra (i.e., the LO tiling). The tetrahedra share
corners and each tetrahedron shares two of its edges with two of its
neighbors.

holes is a half of that of the octahedra. The coordinates of
vertices for the tetrahedra can be written as (n1/2,n2/2,n3/2),
where n1,n2,n3 = 0, ± 1, ± 2. The insertion of tetrahedra
of the proper size into the holes leads to a new tiling of
R3 by congruent octahedra and congruent tetrahedra. Each
octahedron makes face contact with 16 small tetrahedra
(Fig. 3). The fundamental repeat unit of this tiling contains one
octahedron and four small tetrahedra. As with FCC, individual
layers of this tiling can arbitrarily slide relative to one another,
leading to other periodic and nonperiodic tilings with the same
side and tile ratios.

D. The tiling associated with the densest packing
of octahedra (DO tiling)

Consider an octahedron defined by Eq. (8) that is placed at
each lattice site specified by the lattice vectors a1, a2, and a3

of the optimal lattice packing of octahedra:

a1 = (
2
3 , 2

3 , 2
3

)T
, a2 = (−1, 2

3 , 1
3

)T
, a3 = (− 1

3 , 1
3 , 4

3

)T
.

(11)

This conjectured densest known packing of octahedra [25]
has a density of φ = 18/19. The octahedra make contact with
one another in a complex fashion to form a dense packing
with small regular tetrahedral holes. The edge length of a
tetrahedron is only one third of that of the octahedron and
therefore the ratio of the volume of a single octahedron to
that of a tetrahedron is 108. The coordinates of vertices for
the tetrahedra can be written as (n1/3,n2/3,n3/3), where
n1,n2,n3 = 0,±1,±2,±3. Insertion of tetrahedra of appropri-
ate size into the holes results in the new tetrahedron-octahedron
tiling of R3 [23], in which each octahedron makes contacts
with 24 small tetrahedra (Fig. 4). The fundamental repeat unit
of this tiling contains one octahedron and six small congruent
tetrahedra.

III. FAMILIES OF PERIODIC TILINGS OF R3

BY REGULAR TETRAHEDRA
AND REGULAR OCTAHEDRA

In this section, we present two families of an uncountably
infinite number of periodic tilings of R3 by octahedra and
tetrahedra, connecting the four distinct canonical periodic

FIG. 4. (Color online) The 24 tetrahedra surrounding each retes-
sellated octahedron in the conjectured densest packing of octahedra
(i.e., the DO tiling). The tetrahedra only share corners.

tilings discussed in the previous section. Specifically, we
construct a two-parameter tiling family that continuously
connects DO and LO tilings to the FCC tiling. This family
contains the Conway-Jiao-Torquato family of tilings [23] as
a special case. We also obtain a one-parameter continuous
family of tilings, connecting the UT tiling to the FCC tiling,
whose fundamental repeating unit contains two congruent
large tetrahedra and two small octahedra with different sizes.

A. Family of periodic tilings connecting
the DO and LO tilings to the FCC tiling

In Ref. [23], the authors constructed a one-parameter
continuous family of tilings of R3 by octahedra and tetrahedra,
connecting the FCC tiling to the DO tiling associated with
the densest octahedron packing. Each tiling in the family is
obtained by inserting regular tetrahedra with proper sizes into
the tetrahedral holes of the associated lattice packing of regular
octahedra, whose lattice vectors are given by

a1 = (1 − α,1 − α,2α)T ,

a2 = (−1 + α,1,α)T , (12)

a3 = (−α,1 − 2α,1 + α)T ,

where α ∈ [0,1/3]. As α moves immediately away from zero,
each octahedron in the packing makes partial face-to-face
contact with 14 neighbors, leading to 24 tetrahedral “holes”
for each octahedron, three on each face of the octahedron,
with edge length

√
2α,

√
2α, and

√
2(1 − 2α). Thus, the

fundamental repeat unit of the tilings in this family contains
one large octahedra and six small tetrahedra with two different
sizes, except for the extreme cases where α = 0 and 1/3. In
the former case, the tiling unit contains one octahedron and
two equal-size tetrahedra; and in the latter case, the tiling unit
contains one octahedron and six equal-size tetrahedra. As α

increases from 0 to 1/3, the octahedron packing continuously
deforms from the FCC packing to the optimal lattice packing,
during which every octahedron moves relative to one another in
a particular way specified by the parameter α, without violating
the nonoverlap constraints.

The aforementioned construction is based on the fact that
the FCC packing of octahedra is not collectively jammed
[23,29], i.e., the particle in the packing can continuously
move relative to one another without violating the nonoverlap
conditions. As pointed out in Ref. [23], the particular collective
octahedron motion leading to the continuous family of tilings
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is just one of an uncountably infinite number of unjamming
collective motions of the packing.

In particular, the collective motion of octahedra specified
by the following transformation brings the FCC tiling to the
LO and DO tilings:

a1 = (1 − α,1 − β,α + β)T ,

a2 = (−1,1 − β,β)T , (13)

a3 = (−α,1 − α − β,1 + β)T ,

where α,β ∈ [0,1]. For α = β = 0, one has the FCC tiling.
When α = 1/2 and β = 0, the LO tiling is obtained. During
the transformation, the octahedra slide relative to one another
along the edges, maintaining face contact. This leads to four
tetrahedral holes of two different sizes associated with each
octahedra. At the LO limit, the tetrahedral holes are of the
same size. Since this configuration can be split along parallel
planes, an infinite number of tilings of R3 by octahedra and
tetrahedra can be constructed from the LO tiling by relative
translations and rotations of these layers. When α = β = 1/3,
the DO tiling is formed. During the transformation from the
FCC tiling to the DO tiling, three types of tetrahedral holes
are observed. The sum of their side lengths coincides with the
side length of the octahedron.

B. Family of periodic tilings connecting the FCC tiling
to the UT tiling

Consider the packing of regular tetrahedra associated with
the FCC lattice, in which each fundamental cell contains two
tetrahedra and an octahedron. The density of this packing is
φ = 1/3. It is clear that this packing is not collectively jammed
and the tetrahedra can slide relative to one another with fixed
orientations.

Specifically, we find a collective motion of tetrahedra that
continuously transforms the FCC packing to the uniform
packing of tetrahedra, during which the holes in the packing
are regular octahedra of two sizes. For the tetrahedra with
orientations specified by Eq. (6), the transformation of the UT
tiling to the FCC tiling is specified by the centers of the two
tetrahedra in the fundamental cell, i.e.,

T1 =
(

−1

2
,
α − 1

2
,
1

2

)
, T2 =

(
1 − α

2
, − 1

2
,
1

2

)
, (14)

and the associated lattice vectors,

a1 = (1,1 − α,0)T ,

a2 = (α − 1,1,0)T , (15)

a3 = (α/2,1 − α/2,1)T ,

where α ∈ [0,1]. When α = 0, one obtains the UT tiling; and
when α = 1, one has the FCC tiling.

IV. “PHASE DIAGRAM” FOR
OCTAHEDRON-TETRAHEDRON TILINGS

The aforementioned two families of tilings enable one to
continuously connect any of the four canonical tilings with
congruent octahedra and congruent tetrahedra to one another
via an infinite number of tilings associated with noncongruent
octahedra or tetrahedra. During the transformation from one

tiling to another, one of the polyhedron tiles changes in size.
For example, the tiling associated with the uniform packing
of tetrahedra (the UT tiling) and the tiling associated with
the layered packing of octahedra (the LO tiling) can be
transformed into the FCC tiling, and vice versa, by sliding
a subset of tiles along their edges as described above.

A schematic “phase diagram” showing the connections
between the octahedron packing fraction and octahedron-
tetrahedron tilings is given in the left panel of Fig. 5. The
vertical axis in the plot of the diagram is the density of
the octahedron packings φO associated with the tilings. The
horizontal axis is the side ratio s of the tilings. The quantitative
relationship between φO and s is specified by the following
equations for transformations from FCC to UT tiling and from
FCC to LO and DO tilings, respectively:

φo = 1 − 1

3(2s2 − 2s + 1)
, (16)

φo = 1

1 + α3+β3+(1−α−β)3

2

, (17)

where α = s and β ∈ [0,s]. In the right panel of Fig. 5, a
detailed subdiagram showing the transformation from FCC to
LO and DO tilings specified by Eq. (17) is given. The density
of the octahedron packings varies across all possible inter-
mediate configurations in the FCC-LO-DO family, reaching
its maximum value of φo = 18/19 ≈ 0.947368 . . . in the DO
packing.

We note that although direct transformations are possible
between any tiling and FCC, a transition between the tiling
associated with the uniform packing of tetrahedra and the
tiling associated with the layered packing of octahedra (or
the tiling associated with the densest packing of octahedra)
without passing through the FCC configuration is not possible.

V. UNIFIED DESCRIPTION OF TILINGS
BY RETESSELLATING THE FCC TILING

In Sec. I, we introduced the idea of the “retessellation” of
the FCC tiling, which is based on a remarkable property of
the FCC tiling (see Fig. 6), i.e., self-similarity. Specifically,
each tile (an octahedron or a tetrahedron) can be dissected
into a large number of smaller tiles, which are associated with
a “rescaled” FCC tiling with finer tiles. This retessellation
process is shown in Fig. 1. On the other hand, one can single
out large octahedra and tetrahedra composed of a large number
of the original tiles of the FCC tiling to obtain a rescaled FCC
tiling with coarser tiles.

The retessellation process provides an extremely useful
unified means to investigate periodic tilings by elementary
polyhedra. In this section, we show that besides the FCC tiling,
all of the aforementioned two families of tilings by octahedra
and tetrahedra can be obtained by certain retessellations of the
FCC tiling. In addition, we report a tiling of large regular
tetrahedra and small regular truncated tetrahedra here. We
show that this tiling, together with the tilings by regular
truncated tetrahedra and regular tetrahedra associated with
the recently discovered dense packings of regular truncated
tetrahedra, and a tiling by irregular truncated tetrahedra
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FIG. 5. (Color online) Left panel: A schematic phase diagram showing the continuous paths between the four canonical octahedron-
tetrahedron tilings (UT, FCC, LO and DO tilings). The vertical axis in this plot is the density of the octahedron packings φO associated with the
tilings. The horizontal axis is the side ratio s of the tilings. Right panel: Detailed phase diagram depicting the φo-α-β surface as obtained from
the packing density formula (17) associated with the octahedron packings that are in turn associated with the FCC (φ0 = 2/3), LO (φo = 8/9),
and DO (φo = 18/19) tilings. One path to go from the LO to DO structure involves a two-step process (solid blue line in the α-β plane): first
the parameter α is increased from 0 to 1/3, leading to an intermediate tiling configuration (shown in Fig. 9). The continuous transformation
from the FCC tiling to the DO tiling discovered by Conway et al. [23] is also shown (dashed orange line in the α-β plane). Then β is increased
from 0 to 1/3, leading to the DO tiling. The projections of the three canonical points, FCC, LO, and DO, on the surface to the α-β plane are
marked with asterisks.

associated with the β-tin structure, can also be obtained by
retessellations of FCC.

A. Tilings associated with octahedron packings
via retessellations of the FCC tiling

For the LO tiling (i.e., the tiling associated with the dense
lattice packing of octahedra), each repeat unit contains four
tetrahedra and one octahedron. As shown in Fig. 7, this tiling
can also be dissected into an FCC tiling (Fig. 6) by splitting
each octahedron into six smaller octahedra and eight smaller
tetrahedra. Note that octahedra layers can be freely stacked
on top of each other with arbitrary orientations, leading to a
family infinite number of tilings with the same tiles. In this
family, the number of nonperiodic tilings is overwhelmingly
larger than that of the periodic ones.

FIG. 6. (Color online) The FCC tiling with side ratio 1 and tile
ratio 1/2.

The DO tiling (i.e., the tiling associated with the densest
packing of octahedra) can be obtained by retessellating the
FCC tiling. Each repeat unit of this tiling contains one
octahedron and six tetrahedra (Fig. 8). Specifically, each
octahedron is dissected into 32 small tetrahedron tiles and
19 small octahedron tiles, whose edge length is the same
as that of the small tetrahedra in the original packing. A
three-dimensional model of the net by the tetrahedra only can
be viewed online [30].

FIG. 7. (Color online) Dissected view of the LO tiling with
side ratio 2. The associated packing by regular octahedra contains
tetrahedral holes of side 1/2. The associated tile ratio is 1/4.
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FIG. 8. (Color online) Dissected view of the DO tiling [23] with
side ratio 1/3. This is associated with the conjectured densest known
packing of octahedra [25], which is a lattice packing [24]. The image
shows the net of vertex-sharing tetrahedra filling the gaps of the
packing by octahedra.

Tilings of R3 by congruent octahedra and small tetrahedra
with different sizes are shown in Fig. 9. These tilings are
rational approximants of intermediate configurations during
the continuous transformations that bring, respectively, LO and
DO tilings to the FCC tiling. The edge length of the tetrahedra
compared to the edge length of the octahedra are, respectively,
1/3 and 2/3 for the tiling shown in the left panel of Fig. 9,
and 1/2, 1/3, and 1/6 for the tiling shown in the right panel
of Fig. 9.

B. Tilings associated with tetrahedron packings
via retessellations of the FCC tiling

In the UT tiling (i.e., the tiling associated with the uniform
packing of tetrahedra), each tetrahedron tile is associated with
one octahedron tile whose side length is 1/2 of that of the
tetrahedron with centers lying on a primitive tetragonal lattice
[19]. The fundamental repeat unit of this tiling contains two

FIG. 9. (Color online) Rational approximants of intermediate
configurations during the continuous transformations that bring,
respectively, the LO and DO tilings into the FCC tiling. The two
tetrahedral holes of different size are visible in the LO tiling. The
three types of tetrahedra have been added to the DO configuration
for clarity. Note how each intermediate configuration, although now
composed of more than two kinds of tile (voids are not identical), can
still be retessellated as an FCC tiling. Animations showing the relative
motion of the octahedra in the tiling can be viewed online [31,32].

FIG. 10. (Color online) Dissected view of the UT tiling. The
gaps in the uniform packing by tetrahedra described in Ref. [19]
are regular octahedra of side 1/2, whose centers lie on a primitive
tetragonal lattice. Note that each larger regular tetrahedron can be
dissected into five smaller units, as shown in Fig. 1, leading to the FCC
tiling. The repeating unit contains two tetrahedra and two octahedra
(tile ratio is 1).

tetrahedra and two octahedra (with tile ratio t = 1). Note that
each large tetrahedron tile can be dissected into five smaller
tiles (one octahedron and four tetrahedra), as shown in Fig. 1.
Together with the small octahedra, the tiles associated with the
dissected tetrahedra lead to the FCC tiling (see Fig. 10).

A tiling of R3 by large tetrahedra and small noncongruent
octahedra obtained via retessellation is shown in Fig. 11. The
side lengths of the small octahedra are, respectively, 1/3 and
2/3 of that of the tetrahedra. This tiling is a member of the
family described in Sec. III B, with the parameter α = 1/3.
Together with the smallest octahedra, the tiles associated with
the dissected tetrahedra and the intermediate octahedra lead to
the FCC tiling.

C. Tilings by truncated tetrahedra and tetrahedra
via retessellation of the FCC tiling

It has recently been shown that Archimedean truncated
tetrahedra can pack to the extremely high density of φ =
207/208 = 0.958333 . . . [34]. It was shown that this packing
can be achieved by a continuous deformation of the packing of
truncated tetrahedra discovered by Conway and Torquato [19]

FIG. 11. (Color online) A rational approximant of an intermediate
configuration during the continuous transformation that brings UT
into FCC. Each intermediate configuration can still be retessellated
as an FCC tiling. An animation showing the relative motion of the
tetrahedra can be viewed online [33].
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FIG. 12. (Color online) Retessellation of the quarter cubic honey-
comb, which is the tiling associated with the structure of cristobalite
crs (in the RCSR database). As in FCC, the tiling contains four sets
of planar surfaces along which each layer can slide relative to its
neighbors without affecting packing density.

with φ = 23/24 = 0.958333 . . .. It was observed that the
holes in both of these packings are regular tetrahedra and
so both packings also are associated with tilings of R3 by the
Archimedean truncated tetrahedron and regular tetrahedron.
We note here that the tiling associated with the Conway-
Torquato packing is the same as the tiling associated with
the cristobalite structure (referred to as crs; see Fig. 12)
discovered over a century ago by Andreini [35,36]. Notice
that although the crs structure was previously known [35,36],
the observation that it corresponds to a dense packing of
truncated tetrahedra with density φ = 23/24 was only recently
made [19].

In the Conway-Torquato packing, each truncated tetrahe-
dron in the fundamental cell is associated with a tetrahedral
hole whose edge length is the same as the truncated tetrahe-
dron. Here we show the existence of an additional packing
by truncated tetrahedra that contains large tetrahedral holes
(referred to as the “TH” tiling). The packing and the associated
retessellated tiling are shown in Fig. 13. Its periodic unit
contains six truncated tetrahedra and two tetrahedra with edge
length 3.

In the densest known packing of truncated tetrahedra, each
particle in the fundamental cell is associated with three small
tetrahedral holes, whose edge length is one third of that of
the truncated tetrahedron. If tetrahedra with proper sizes are
inserted in the holes of these packings, one obtains tilings by
truncated tetrahedra and regular tetrahedra (referred to as the
“TT” tiling). A truncated tetrahedron can be retessellated into
small regular octahedra and tetrahedra. Due to the arrangement
of the polyhedra, the aforementioned tilings by truncated

FIG. 13. (Color online) A low-density packing by truncated
tetrahedra and tetrahedra with side ratio 1/3. A subset of the packing
showing the tetrahedral holes of side 3 and a periodic unit of the
tiling. There are no variants to this tiling, since it is not possible to
slide layers relative to each other. The tile ratio, i.e., the number of
tetrahedra over that of truncated tetrahedra in the tiling, is equal to 3.

FIG. 14. (Color online) The tiling associated with the densest
known packing by truncated tetrahedra (i.e., the TT tiling) can be built
based upon the FCC tiling. The image shows four dimers belonging
to the packing. The six tetrahedral holes per dimer are clearly visible
at the center of the picture. Similar to the TH tiling, there are no
variants associated with the TT tiling, since it is not possible to slide
layers relative to each other in the TT tiling.

tetrahedra and regular tetrahedra can also be obtained from
the retessellations of the FCC tiling (Fig. 14).

Specifically, for the tiling associated with the Conway-
Torquato packing of truncated tetrahedra, if the size of
the tetrahedra in the tiling is chosen to be the same
as the fundamental tetrahedra for the retessellation, then the
truncated tetrahedron in the tiling can be retessellated into four
fundamental octahedra and seven fundamental tetrahedra (see
Fig. 12). For the tiling associated with the densest packing of
truncated tetrahedra, if the size of the small tetrahedra in the
tiling is chosen to be the same as the fundamental tetrahedra
for the retessellation, then the large truncated tetrahedron in
the tiling can be retessellated into 104 fundamental octahedra
and 205 fundamental tetrahedra (see Fig. 14).

As a final example, we show that a recently discovered
periodic tiling by irregular truncated tetrahedra associated with
the β-tin structure [28] can be dissected into an FCC tiling.
Specifically, the irregular truncated tetrahedron is obtained
by chopping the four corners of a regular tetrahedron with
edge length 1/4 of that of the original tetrahedron. The FCC
retessellation of this tiling is shown in Fig. 15, in which each
truncated tetrahedron contains 20 tetrahedra and 10 octahedra.

FIG. 15. (Color online) The tiling by irregular truncated tetrahe-
dra associated with the β-tin structure can be dissected into an FCC
tiling.
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VI. CONCLUSIONS AND DISCUSSION

In this paper, we enumerated and thoroughly examined
the most comprehensive set of tilings of R3 by a number of
elementary polyhedra, including simplices (regular tetrahe-
dra), cross polytopes (regular octahedra), and the simplest
among the Archimedean solids (regular truncated tetrahedra)
known to date. Importantly, we presented a fundamental link
between all these configurations, which is the underlying FCC
tessellation that forms the basis for their constructions. Contin-
uous transformations can bring each known configuration into
the FCC tiling, and vice versa, and each intermediate state can
be represented by a tiling that can itself be dissected into an
FCC tiling.

Since it is not possible to tile space using a single regular
polyhedron (i.e., Platonic solids) other than the cube, we
thoroughly investigated the possibility of constructing tilings
containing two different regular polyhedra. We found that the
only pair of regular polyhedra that tileR3 is the octahedron and
tetrahedron. This is because only the dihedral angles of these
two polyhedra can add up to integer multiples of π , which is
a necessary condition for tilings, as we discussed in Sec. I.
Moreover, if we require that the tilings only contain congruent
octahedra and congruent tetrahedra, there seem to be only four
possible side ratios for two polyhedra. (In future work, we will
explore a possible proof of this statement.) The four canonical
periodic tilings associated with the aforementioned side ratios,
i.e., the FCC, UT, DO, and LO tilings, were discussed in detail.
We also found that there are three distinct canonical periodic
tilings of R3 by congruent regular tetrahedra and congruent
regular truncated tetrahedra, i.e., the TH, crs, and TT tilings. In
future work, we will pursue a possible proof of this statement.

We note that the main focus of the current work is periodic
tilings of R3 by regular polyhedra other than the cube. As
mentioned in Sec. III, a family of an uncountably infinite
number of tilings associated with the LO tiling can be derived,
in which the number of nonperiodic tilings is overwhelmingly
larger than that of the periodic ones. In general, these
tilings cannot be obtained via the retessellation of the FCC

tiling. However, they could result from retessellating the tilings
associated with the stacking variants of FCC.

An outstanding question is whether there exist aperiodic
tilings by congruent regular octahedra and tetrahedra with
prohibited crystallographic symmetry (e.g., icosahedral or
12-fold rotational symmetry Ref. [14]), i.e., three-dimensional
quasicrystal tilings. We can provide a partial answer to this
question. For the four canonical tilings discussed in the paper,
the side ratios s between the octahedra and tetrahedra are all
rational numbers. In the case that s = 1, it is clearly impossible
to obtain quasicrystal tilings due to the dihedral angles of the
two polyhedra, as discussed in Sec. I. This should also be true
for the other three side ratios for the other three canonical
polyhedra, although currently a rigorous proof is lacking. If
the side ratios are allowed to be irrational numbers, we cannot
rule out the possibility that octahedra and tetrahedra can tile
R3 aperiodically with prohibited crystallographic symmetry,
although we doubt it.

In future work, we would like to investigate these possi-
bilities and generalize the retessellation idea to investigate
nonperiodic tilings. In addition, it would be interesting to
study tilings in high-dimensional Euclidean spaces using the
retessellation idea.

ACKNOWLEDGMENTS

We would like to thank Davide Proserpio for his help
with the determination of the space groups. All of the
images have been generated with the software 3dt included
in the Gavrog Project [37], which has been essential for the
realization of this work. R.G. was supported by Provincia
di Autonoma di Trento and Princeton University. Y.J. and
S.T. were supported by the Office of Basic Energy Sciences,
Divisions of Materials Sciences and Engineering, under Grant
No. DE-FG02-04-ER46108. S.T. gratefully acknowledges the
support of a Simons Fellowship in Theoretical Physics, which
has made his sabbatical leave this entire academic year
possible.

[1] R. E. Williams, Science 161, 276 (1968).
[2] E. B. Matzke, Am. J. Bot. 33, 58 (1946).
[3] A. Wells, Three-dimensional Nets and Polyhedra (Wiley,

New York, 1977).
[4] O. Delgado-Friedrichs, M. O’Keeffe, and O. M. Yaghi, Acta

Crystallogr. Sect. A 59, 22 (2003).
[5] W. Thomson, Philos. Mag. 24, 503 (1887).
[6] C. S. Smith, in Metal Interfaces (ASM, Cleveland, 1952), p. 65.
[7] V. A. Blatov, O. Delgado-Friedrichs, M. O’Keeffe, and D. M.

Proserpio, Acta Crystallogr. Sect. A 63, 418 (2007).
[8] A. Dress, in Algebraic Topology Göttingen 1984, Lecture

Notes in Mathematics edited by L. Smith, Vol. 1172 (Springer,
Berlin/Heidelberg, 1985), pp. 56–72.

[9] O. Delgado-Friedrichs, Theor. Comput. Sci. 303, 431 (2003).
[10] O. Delgado-Friedrichs, A. W. M. Dress, D. H. Huson, J.

Klinowski, and A. L. Mackay, Nature (London) 400, 644 (1999).

[11] P. Ziherl and R. D. Kamien, Phys. Rev. Lett. 85, 3528 (2000).
[12] X. Zeng, G. Ungar, Y. Liu, V. Percec, A. E. Dulcey, and J. K.

Hobbs, Nature (London) 428, 157 (2004).
[13] S. Fischer, A. Exner, K. Zielske, J. Perlich, S. Deloudi,

W. Steurer, P. Lindner, and S. Förster, Proc. Natl. Acad. Sci.
USA 108, 1810 (2011).

[14] D. Levine and P. J. Steinhardt, Phys. Rev. Lett. 53, 2477 (1984).
[15] H. Cohn and N. Elkies, Ann. Math. 157, 689 (2003).
[16] T. Aste and D. Weaire, The Pursuit of Perfect Packing, 2nd ed.

(CRC, New York, 2008).
[17] S. Torquato and F. H. Stillinger, Rev. Mod. Phys. 82, 2633

(2010).
[18] S. Torquato and Y. Jiao, Phys. Rev. E 86, 011102 (2012).
[19] J. H. Conway and S. Torquato, Proc. Natl. Acad. Sci. USA 103,

10612 (2006).
[20] F. C. Frank and J. S. Kasper, Acta Crystallogr. 11, 184 (1958).

041141-10

http://dx.doi.org/10.1126/science.161.3838.276
http://dx.doi.org/10.2307/2437492
http://dx.doi.org/10.1107/S0108767302018494
http://dx.doi.org/10.1107/S0108767302018494
http://dx.doi.org/10.1080/14786448708628135
http://dx.doi.org/10.1107/S0108767307038287
http://dx.doi.org/10.1016/S0304-3975(02)00500-5
http://dx.doi.org/10.1038/23210
http://dx.doi.org/10.1103/PhysRevLett.85.3528
http://dx.doi.org/10.1038/nature02368
http://dx.doi.org/10.1073/pnas.1008695108
http://dx.doi.org/10.1073/pnas.1008695108
http://dx.doi.org/10.1103/PhysRevLett.53.2477
http://dx.doi.org/10.4007/annals.2003.157.689
http://dx.doi.org/10.1103/RevModPhys.82.2633
http://dx.doi.org/10.1103/RevModPhys.82.2633
http://dx.doi.org/10.1103/PhysRevE.86.011102
http://dx.doi.org/10.1073/pnas.0601389103
http://dx.doi.org/10.1073/pnas.0601389103
http://dx.doi.org/10.1107/S0365110X58000487


FAMILIES OF TESSELLATIONS OF SPACE BY . . . PHYSICAL REVIEW E 86, 041141 (2012)

[21] M. O’Keeffe, M. A. Peskov, S. J. Ramsden, and O. M. Yaghi,
Acc. Chem. Res. 41, 1782 (2008).

[22] W. Barlow, Nature (London) 29, 205 (1883).
[23] J. H. Conway, Y. Jiao, and S. Torquato, Proc. Natl. Acad. Sci.

USA 108, 11009 (2011).
[24] H. Minkowski, in Dichteste gitterförmige Lagerung kongru-
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