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We have formulated the problem of generating dense packings of nonoverlapping, nontiling nonspherical
particles within an adaptive fundamental cell subject to periodic boundary conditions as an optimization
problem called the adaptive-shrinking cell �ASC� formulation �S. Torquato and Y. Jiao, Phys. Rev. E 80,
041104 �2009��. Because the objective function and impenetrability constraints can be exactly linearized for
sphere packings with a size distribution in d-dimensional Euclidean space Rd, it is most suitable and natural to
solve the corresponding ASC optimization problem using sequential-linear-programming �SLP� techniques. We
implement an SLP solution to produce robustly a wide spectrum of jammed sphere packings in Rd for d=2, 3,
4, 5, and 6 with a diversity of disorder and densities up to the respective maximal densities. A novel feature of
this deterministic algorithm is that it can produce a broad range of inherent structures �locally maximally dense
and mechanically stable packings�, besides the usual disordered ones �such as the maximally random jammed
state�, with very small computational cost compared to that of the best known packing algorithms by tuning the
radius of the influence sphere. For example, in three dimensions, we show that it can produce with high
probability a variety of strictly jammed packings with a packing density anywhere in the wide range �0.6,
0.7408…�, where � /�18=0.7408. . . corresponds to the density of the densest packing. We also apply the
algorithm to generate various disordered packings as well as the maximally dense packings for d=2, 4, 5, and
6. Our jammed sphere packings are characterized and compared to the corresponding packings generated by
the well-known Lubachevsky-Stillinger �LS� molecular-dynamics packing algorithm. Compared to the LS
procedure, our SLP protocol is able to ensure that the final packings are truly jammed, produces disordered
jammed packings with anomalously low densities, and is appreciably more robust and computationally faster
at generating maximally dense packings, especially as the space dimension increases.
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I. INTRODUCTION

Hard-particle packings have provided a rich source of out-
standing theoretical problems and served as useful starting
points to model the structure of liquids �1,2�, glasses �3–5�,
crystals �7–9�, colloids �2,10�, granular media �11–14�, living
cells �6,15�, random media �6,16–18�, and polymeric sys-
tems �19,20�. We focus our attention in this paper on the
venerable idealized hard-sphere model in d-dimensional Eu-
clidean space Rd in which the only interparticle interaction is
an infinite repulsion for overlapping particles, which can be
thought of as the “Ising model” for hard spheres �14�.

There has been resurgent interest in hard-sphere packings
in dimensions greater than three in both the physical and
mathematical sciences. For example, it is known that the
optimal way of sending digital signals over noisy channels
corresponds to the densest sphere packing in a high-
dimensional space �21,22�. These error-correcting codes un-
derlie a variety of systems in digital communications and
storage, including compact disks, cell phones and the Inter-
net. Physicists have studied hard-sphere packings in high di-
mensions to gain insight into ground and glassy states of
matter as well as phase behavior in lower dimensions
�23–28�. The determination of the densest packings in arbi-
trary dimension is a problem of longstanding interest in dis-
crete geometry and number theory �22,29,30�.

The hard-sphere Ising model enables us to be precise
about the important concept of “jamming.” The generation
and characterization of jammed packings are the main con-
cerns of this paper. A jammed packing is one in which the
particle positions are fixed by the impenetrability constraints
and boundary conditions �e.g., hard-wall or periodic bound-
ary conditions�. For sphere packings, one can define hierar-
chical jamming categories beginning from the least restric-
tive to the most stringent one �13�. In particular, a packing is
locally jammed if no particle in the system can be translated
while fixing the positions of all other particles, requiring that
each sphere in the packing be in contact with at least d+1
spheres not all in the same hemisphere. A collectively
jammed packing is a locally jammed packing such that no
subset of spheres can simultaneously be continuously dis-
placed so that its members move out of contact with one
another and with the remainder set. A packing is strictly
jammed if it is collectively jammed and all globally uniform
volume nonincreasing deformations of the system boundary
are disallowed by the impenetrability constraints. The reader
is referred to Refs. �13,14� for further details. Our main con-
cern in this paper will be packings that are at least collec-
tively jammed.

The packing density �, the fraction of Rd covered by the
spheres, is the simplest characteristic of a jammed packing.
However, such a characterization is clearly not sufficient in
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order to distinguish between ordered and disordered pack-
ings. In fact, jammed packings may be produced with vari-
able degrees of disorder/order. It has been suggested that a
scalar order metric � be employed to measure the degree of
order in a packing, such that �=1 corresponds to fully or-
dered �e.g., the perfect face-centered cubic �fcc� crystal in
three dimensions� and �=0 corresponds to perfectly a disor-
dered Poisson distribution of sphere centers �4,31�. Thus,
very large jammed packings have been classified based on
their locations in the density-order �-� plane, called the or-
der map. The points on the boundary of the jammed domain
in the order map constitute optimal packings. For example,
in R3, the maximally dense fcc lattice sphere packing ��
=� /�18=0.7048. . .� �32� also has the highest order metric
��=1� when appropriately defined. Another extremal state of
special interest is the maximally random jammed �MRJ�
state, which is the one that minimizes a scalar order metric �
subject to the condition of the degree of jamming �4,14�.
Studies of different order metrics �33� for three-dimensional
frictionless spheres have consistently led to a minimum at
approximately the same density ��0.64 for collective and
strict jamming in the order map �4,31�. Such MRJ packings
have also been shown to be hyperuniform, i.e., infinite-
wavelength density fluctuations vanish �34�. The lowest den-
sity strictly jammed states in R3, thought to be tunneled crys-
tals �8�, are a fascinating set of extremal loci in the jamming
region of the order map �14�. The frequency of occurrence of
a particular configuration is irrelevant insofar as the order
map is concerned, i.e., the order map emphasizes a
“geometric-structure” approach to analyze packings by char-
acterizing individual configurations, regardless of their oc-
currence probability �14�.

During the last two decades, the Lubachevsky-Stillinger
�LS� algorithm �35� has been the premier workhorse to gen-
erate a wide spectrum of dense jammed sphere packings with
variable disorder in both two and three dimensions �4,31,33�.
This is an event-driven �or collision-driven� molecular-
dynamics algorithm in which an initial configuration of
spheres of a given size within a periodic box are given initial
random velocities and the motion of the spheres are followed
as they collide elastically and also expand uniformly until the
spheres can no longer expand. This algorithm has been gen-
eralized by Donev, Torquato, and Stillinger �36� to generate
jammed packings of smoothly shaped nonspherical particles,
including ellipsoids �37�, superdisks �38�, and superballs
�39�.

Not surprisingly, this packing protocol is not without
some inadequacies. Event-driven packing protocols with
growing particles do not guarantee jamming of the final
packing configuration, since jamming is not explicitly incor-
porated as a termination criterion. To produce jammed ran-
dom packings, for example, a large expansion rate is neces-
sary in the early stages of the simulation to suppress
crystallization, but using a high expansion rate is highly un-
desirable toward the end of the simulation, which often leads
to unjammed configurations. Thus either a variable expan-
sion rate must be used �which decreases as a function time in
some arbitrary fashion� or, if a uniform expansion is em-
ployed, the spheres of the terminal packing must be shrunk
by some arbitrary small amount and then this initial packing

configuration must be redensified using a very small expan-
sion rate. Maximally dense jammed packings are highly
computationally expensive to generate, especially in high di-
mensions, because a very small expansion rate is necessary
�on the order of 10−6 to 10−10 �40�, dependent on dimension�.
We will see that in five and six dimensions, even a expansion
rate of 10−10 fails to produce the maximal-density packings.
Moreover, a large number of total collisions per particle is
required; for MRJ packings and the densest known maxi-
mally dense packings, on the order of 105 and 107 collisions
per particle are required, respectively, the latter of which is
computationally very costly. Finally, such event-driven pack-
ing protocols evolve stochastic velocity initializations, which
makes one have less control of the final packings via the
initial configuration.

The next generation packing protocol to generate jammed
sphere packings should retain the versatility and advantages
of the LS algorithm while correcting its imperfections, in-
cluding improving computational speed. We show that our
proposed sequential-linear-programming �SLP� solution of
the adaptive-shrinking cell �ASC� optimization problem for-
mulated elsewhere for general particle shapes �including
polyhedra� �43� indeed has all of these desirable features in
so far as jammed sphere packings with a size distribution are
concerned. Because the design variables �including periodic
simulation box shape and size� and impenetrability con-
straints can be exactly linearized for spheres packings, the
deterministic SLP solution in principle always leads to
jammed packings �up to a high numerical tolerance� with a
wider range of densities and degree of disorder than packings
produced by the LS algorithm. Each linear-programming so-
lution step starting from some initial particle configuration
involves a deterministic collective motion of the entire par-
ticle configuration to a higher density and, because the peri-
odic simulation box can simultaneously deform and shrink,
the final state is guaranteed to be at least collectively jammed
in principle. Whereas the LS algorithm requires between 105

and 107 collisions per particle without ensuring jammed final
states, the deterministic SLP solution, which is easy to imple-
ment, requires only 10 to 100 linear-programming steps to
achieve jammed packings, depending on the desired density,
which can be controlled by tuning what we call the size of
the influence sphere. Thus, the SLP algorithm is computa-
tionally very efficient in generating the maximally dense
packings, even in high space dimensions. By appropriately
choosing initial conditions, one can achieve strictly jammed
disordered sphere packings with anomalously low densities,
e.g., ��0.6 in three dimensions �41,42�. Indeed, a novel
feature of the algorithm is that it can produce a broad range
of inherent structures �locally maximally dense and me-
chanically stable packings�, such as the maximally random
jammed states as well as the globally maximally dense in-
herent structures, with very small computational cost.

The rest of the paper is organized as follows. In Sec. II,
we provide basic definitions for packing problems. In Sec. III
we present the mathematical formulation and algorithmic de-
tails of our sequential-linear-programming procedure to
solve the adaptive-shrinking-cell optimization problem to
generate jammed sphere packings. In Sec. IV, we discuss the
energy landscape �negative of the packing density� for
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jammed sphere packings �inherent structures� and show that
our SLP solution procedure is able to lead to both the me-
chanically stable local minima �i.e., local density maxima�
and the global minima �maximal-density packings�. In Sec.
V, we employ the SLP algorithm to produce a diverse class
of disordered jammed packings, including MRJ states, as
well as maximal-density packings of hard spheres in Rd for
d=2, 3, 4, 5, and 6. The characteristics of these packings are
compared to those generated using the LS algorithm. In Sec.
VI, we employ the SLP algorithm to produce jammed pack-
ings in R3 with varying degrees of disorder and packing
densities anywhere in the wide range �0.6, 0.7408…�. In Sec.
VII, we discuss the ramification of our results and make
concluding remarks.

II. DEFINITIONS

A lattice � in Rd is a subgroup consisting of integer linear
combinations of vectors �i that constitute a basis for Rd. In a
lattice, the space Rd can be geometrically divided into iden-
tical regions F called fundamental cells, each of which con-
tains one lattice site specified by the lattice vector

p = n1�1 + n2�2 + ¯ + nd−1�d−1 + nd�d, �1�

where �i �i=1,2 , . . . ,d� are the basis vectors and ni spans all
the integers for i=1,2 , ¯d. The generator matrix M�

= ��1 ,�2 , . . . ,�d� of a lattice � is a matrix with the basis
vectors �i as columns and, thus, contains d2 elements. In the
physical sciences and engineering, a lattice � is referred to
as a Bravais lattice. Unless otherwise stated, the term “lat-
tice” will refer here to a Bravais lattice only. A lattice pack-
ing of congruent spheres PL is one in which the centers of
the nonoverlapping identical spheres are located at the points
of � and hence each fundamental cell contains within it ex-
actly one sphere. Thus, the density of a lattice packing of
spheres of radius R is given by

� =
v1�R�

vF
, �2�

where vF is the volume of the fundamental cell and

v1�R� =
�d/2Rd

��1 + d/2�
, �3�

is the volume of a d-dimensional spherical particle of radius
R and ��x� is the Euler gamma function.

A more general notion than a lattice packing is a periodic
packing of spheres �not necessarily identical in size�, which
is obtained by placing a fixed configuration of N spheres
�where N�1� of radii R1 ,R2 , . . . ,RN in one fundamental cell
of a lattice �, which is then periodically replicated without
overlaps. Thus, the packing is still periodic under translations
by �, but the N spheres can occur anywhere in the chosen
fundamental cell subject to the overall nonoverlap condition.
The packing density of a periodic packing of spheres is given
by

� =

	
i=1

N

v1�Ri�

vF
= �
v1�R�� , �4�

where �=N /vF is the number density, i.e., the number of
particles per unit volume, and


v1�R�� =
1

N
	
i=1

N

v1�Ri� �5�

expected volume of a sphere. Figure 1 illustrates in R2 a
lattice packing of spheres �which by definition requires that
they be identical is size� and a periodic packing of spheres in
which the spheres have a size distribution.

III. MATHEMATICAL AND ALGORITHMIC DETAILS

We have formulated the problem of generating dense
packings of nonoverlapping, nonspherical particles within a
fundamental cell in R3 subject to periodic boundary condi-
tions as an optimization problem called the adaptive-
shrinking cell scheme �43�. The objective function is taken to
be the negative of the packing density �. Starting from an
initial unsaturated packing configuration of particles of fixed
size in the fundamental cell, the positions and orientations of
the particles are design variables for the optimization. We
also allow the boundary of the fundamental cell to deform
macroscopically as well as compress or expand �while keep-
ing the particles fixed in size� such that there is a net com-
pression �increase of the density of the packing� in the final
state. Therefore, the deformation and compression/expansion
of the cell boundary, called the adaptive fundamental cell,
are also design variables.

The ASC optimization problem can be solved using vari-
ous techniques, depending on the shapes of the particles. For
example, for polyhedron particles the nonoverlap condition
is highly nonlinear, which makes it inefficient to solve even
using nonlinear-programming methods, and hence Monte
Carlo techniques provide an efficient means of solving the
problem �43�. However, for spheres, one can exactly linear-
ize the objective function, design variables and constraints,
enabling one to exploit efficient linear-programming tech-
niques.

We first explicitly formulate the ASC scheme for noncon-
gruent sphere packings, i.e., spheres with a size distribution
in Rd. �Obviously, for sphere packings, particle rotations are
irrelevant.� Then we describe the solution of the ASC opti-
mization problem using sequential-linear-programming tech-
niques.

FIG. 1. �Color online� Illustrations of two basic sphere packings
in R2: �a� lattice packing of circular hard disks in R2, which neces-
sarily can only involve congruent circles, and �b� periodic packing
of circles of different sizes.
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A. Adaptive shrinking cell scheme for spheres

Consider a periodic packing of N spheres with diameters
D1 ,D2 , . . . ,DN in a fundamental cell F of a lattice � in Rd.
As noted in Sec. II, the fundamental cell is specified by the
generator matrix M�= ��1 ,�2 , . . . ,�d�, where �i are the lat-
tice basis vectors. The design variables of the ASC scheme
includes both particle displacements, and deformation and
volume changes of the fundamental cell F. Let the global
position of the center of sphere n �referred to some arbitrary
set of nonorthogonal basis vectors� be denoted by xn

g. For
simplicity, it is useful to choose orthogonal bases vectors or
a Cartesian system. Denote by 	xn

g a translational displace-
ment of this particle center. Thus, the new position of the
center of particle n is given by

x̃n
g = xn

g + 	xn
g. �6�

However, since the fundamental cell is adaptive, we also
need to consider the positions of the particle centers in terms
of the lattice basis vectors �i �i=1,2 , . . . ,d�. For the center
of particle n, this relative position xn


 is related to the global
position xn

g by the transformation �44�

xn

 = M�

−1 · xn
g. �7�

The adaptive fundamental cell allows for a small change
in the fundamental cell

	M� = � · M�, �8�

including both volume and shape changes, where � is a sym-
metric strain tensor, i.e.,

� = �
�11 �12 . . . �1d

�21 �22 . . . �2d

] ] ] ]

�d1 �d2 . . . �dd


 , �9�

The new lattice is specified by the new matrix generator

M̃� = M� + 	M�. �10�

Substituting the above equation into Eq. �7� yields

x̃n
g = M̃� · xn


 = xn
g + 	M� · xn


. �11�

Straining the fundamental cell corresponds to nontrivial
collective motions of the particle centers. In general, the
translational motions of the particles contain contributions
from a direct part �given by Eq. �6�� and the collective mo-
tion imposed by the adaptive fundamental cell. It is this col-
lective motion that enables the algorithm to explore the con-
figuration space more efficiently and to produce highly dense
packings.

The displacement rmn

 pointing from the centroid of sphere

m to that of sphere n in terms lattice basis vectors �i is given
by

rmn

 = xn


 − xm

 , �12�

and the counterpart global displacement vector rmn
g is

rmn
g = xn

g − xm
g . �13�

The Euclidean distance rmn
g between the centroids is then

given by

rmn
g = �rmn

g � = �rmn
g · rmn

g = �rmn

 · G · rmn


 , �14�

where G=M�
T ·M� is the Gram matrix of the lattice �. Thus,

the general mathematical formulation of the our ASC opti-
mization scheme for hard sphere packings in d-dimensional
Euclidean space Rd is

minimize − ��x1

, . . . ,xN


 ;M�� ,

subject to:rmn
g � D̄mn, for all neighbor pairs �m,n�

of interest, �15�

where D̄mn= �Dm+Dn� /2.
It should be emphasized that the neighbor pairs here do

not necessarily mean nearest neighbors. Instead, they are de-
termined by a distance �mn, i.e., two spheres m and n are
neighbors of one another if their pair distance rmn

g 
�mn.
Thus, by near neighbors of a given sphere we mean all of the
spheres within some radius of that given sphere. Here, we

choose �mn=�D̄mn and � is a positive in the interval

�1,L /2D̄mn�, where L is the length of the shortest lattice
vector associated with the fundamental cell. For monodis-
perse packings, �mn is identical for all particle pairs �m ,n�.
For polydisperse packings, �mn is generally different for each
pair �m ,n�. We call �mn the radius of influence sphere asso-
ciated with each pair �m ,n�. As we will see, these radii are
crucial in determining the density and degree of disorder of
the final jammed states.

B. Solving the ASC formulation using sequential linear
programming

The formulated problem for the ASC scheme can be
solved by considering an equivalent sequential-linear-
programming problem. Suppose that we only allow the fun-
damental cell to change by a small amount from its original
size and shape, and only allow small particle displacements;
then both the impenetrability constraints and the objective
function can be linearized. Due to the linearization, one
needs now to explicitly places bounds on the strain compo-
nents and the particle displacements, which do not appear in
the original problem. Once the linearized problem is solved
via the linear-programming method, a new many-particle
configuration can be generated using the resulting particle
displacements and fundamental cell. Then this new configu-
ration is used as an initial configuration, based on which a
new LP problem is formulated and solved. This sequential-
linear-programming procedure is repeated until the increase
of the packing density is smaller than some prescribed small
tolerance value, implying the system is jammed up to high
numerical accuracy.

Consider an initial packing configuration of N spheres
within a fundamental cell of volume vF

0 . According to rela-
tion �4�, the density of the packing is given by
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�0 =

	
i=1

N

v1�Ri�

vF
0 , �16�

where v1�Ri� is the volume of sphere i with radius Ri. Now
consider a small change of the fundamental cell that leads to
a cell volume change 	v, as well as a change of the positions
of the centers of every sphere that obey the impenetrability
constraint. The density of the new configuration in the new
fundamental cell is given by

� =

	
i=1

N

v1�Ri�

vF
0 + 	v

. �17�

If 	v is sufficiently small, we can expand � as a Taylor
series in 	v, keeping only the linear terms, i.e.,

� =

	
i=1

N

v1�Ri�

vF
0 + 	v

�
	
i=1

N

v1�Ri�

vF
0 �1 −

	v

vF
0 � = �0�1 − tr���� ,

�18�

where we have used the relation 	v /vF
0 = tr���, i.e., the rela-

tive small volume change is given by the trace of the strain
tensor. We see from the above equation that maximizing the
packing density � is equivalent to minimizing the trace of
the strain tensor tr���.

The nonoverlapping conditions can be linearized in a
similar way, which leads to the following sequential-linear-
programming formulation for the ASC procedure:

minimize tr��� = �11 + �22 + ¯ + �dd

subject to

M� · rnm

 · � · M� · rnm


 + 	xm

 · G · rnm


 + 	xn

 · G · rmn




�
1
2 �D̄mn

2 − rnm

 · G · rnm


 � + R ,

�19�
for all neighbor pairs �m,n� of interest

	xn

,lower � 	xn


 � 	xn

,upper, for all n = �1, . . . ,N� ,

�lower � � � �upper.

Note that the tensor/vector inequalities in Eq. �19� apply to
the corresponding components and rnm


 =−rmn

 =xm


 −xn

 is the

displacement vector between spheres m and n in the initial
configuration. The scalar quantity R�0 is a relaxation vari-
able, which accounts for the effects of higher-order terms
that would be ignored in the purely linearized problem. The
value of R is determined by the bounds on the design vari-
ables, i.e.,

R = max�m,n��− 	M� · 	xmn

 � . �20�

Introducing R has several advantages. First, it makes the
linearized problem rigorously equivalent to the original �un-

linearized� optimization problem. Second, it enables us to set
practically large bounds on the design variables �e.g., the
strain components and the particle displacements�, which in
turn enables the algorithm to explore a larger region of the
configuration space around the initial point and makes it
more efficient to generate dense packings. In practice, how-
ever, we find that as long as the bounds on the design vari-
ables are chosen to be sufficiently small, one can safely set
R=0 and check the generated packing to ensure that no im-
penetrability constraints are violated. If some of them are
violated due to the deformable fundamental cell, i.e., leading
to a non-positive-definite quandratic term associated with the
strain tensor in these conditions, the bound widths are re-
duced to one half of their original value and the linearized
problem is re-solved.

Since the objective function and constraints in the new
problem are linear functions of the design variables, the new
problem �Eq. �19�� is solved using standard linear-
programming methods �e.g., simplex method, interior-point
method, etc.�. Starting from an initial packing configuration,
we solve the linearized problem and find a new packing,
which is denser and slightly different from the starting con-
figuration. Then the new packing is used as the starting con-
figuration, and a new linearized problem is solved. By re-
peating this process, one actually solves a sequence of linear
programming problems to generate a denser packing from
the previous configuration.

The choice of the bounds for the design variables is also
important in practice. For example, different bound widths
for the principle strain components and shear strain compo-
nents correspond to different compression and deformation
rates for the packing. Choosing the bound widths carefully
can dramatically improve the ability of the algorithm to gen-
erate dense packings. We also emphasize that the choice of
neighbor pairs �i.e., the value of the influence sphere radius
�mn� is also nontrivial, which we will elucidate in the ensuing
discussion.

C. Ensuring jamming

Finally, we note that our SLP solution procedure guaran-
tees �up to numerical precision� that the final locally or glo-
bally maximally dense states are indeed strictly jammed un-
der periodic boundary conditions. In general, each
impenetrability �nonoverlapping� condition defines a curved
hypersurface in the configuration space that separates acces-
sible and inaccessible regions �14,45�. Linearization of the
impenetrability conditions corresponds to replacing the
curved hypersurfaces with hyperplanes, which further re-
duces the accessible region �i.e., the linearized conditions are
even stronger than the original conditions�. However, near
the jamming point, the available configuration space for the
spheres asymptotically approaches a closed convex polytope
which is exactly determined from the linearized impenetra-
bility conditions �14,45�. In other words, toward the jamming
point, the linearized conditions become exact nonoverlap-
ping conditions asymptotically. Therefore, the SLP algorithm
guarantees jamming of the final packing configurations.

In addition, Our SLP algorithm near the final steps of the
process is intimately related to a linear-programming �LP�
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protocol to test for jamming for hard-sphere packings that we
previously developed �46�. In the LP jamming-test protocol,
the interparticle gaps are maximized subject to the nonover-
lapping conditions. If large gaps can be opened, the packing
under consideration is not jammed; otherwise it is jammed.
For our SLP algorithm, the packing density is driven to a
local or global maximum, which is not only collectively
jammed �since as mentioned earlier, the descent to maxima
necessarily involve collective configurational motions� but
strictly jammed, since the fundamental box is deforming and
shrinking �on average�. In general, if a packing is not
jammed, there exist collective particle motions and boundary
deformations that can lead to a higher density. All of the
sphere packings in R2 and R3 produced by our SLP algo-
rithm are tested using the LP jamming-test protocol �46�. The
packings with a deformable/shrinking fundamental cell were
found to be strictly jammed and those with an isotropically
shrinking fundamental cell were found to be collectively
jammed, which verifies the robustness of our algorithm in
producing jammed packings.

IV. ENERGY LANDSCAPE, INHERENT STRUCTURES
(LOCAL MINIMA) AND GLOBAL MINIMA

A. Energy landscape picture

From a statistical-mechanical point of view, the solution
of the ASC formulation using a SLP amounts to searching
nearby local minima of the energy landscape. The energy
landscape, defined by the energy �objective function�, equal
to the negative of the trace of the strain tensor associated
with the fundamental cell F of the packing or, equivalently,
the negative of the density �, is a surface embedded in a
�dN+1�-dimensional space, where d is the number of de-
grees of freedom of a single particle and N is the number of
particles in F. A given initial configuration has an energy that
corresponds to a point on the landscape. Starting from this
point in this multidimensional space, our SLP algorithm finds
a nearby point, which can be reached from the initial point
by a single linear multidimensional displacement with a
lower energy �higher density� subjected to the limits on the
size and directions of the displacement as well as the impen-
etrability conditions. This procedure is repeated until a
jammed state with a high density is reached, which can either
be a local energy minimum �local density maximum� or a
global energy minimum �global density maximum� depend-
ing on the bound widths on the design variables, as well as
the influence sphere radii �mn for near-neighbor determina-
tion.

As indicated in Sec. III A, for monodisperse sphere pack-
ings, the radius �mn of the influence sphere for pair �m .n� is
identical for each pair of particles. We call this the influence
sphere for each particle �see Fig. 2� because only the par-
ticles whose centers are within the influence sphere will af-
fect the central particle as far as the nonoverlapping condi-
tions are concerned. For polydisperse packings, �mn is
generally different for each particle pair. However, loosely
speaking, one can still imagine an effective influence sphere
around each particle, which determines the neighbors that
affect the central particle. If the influence sphere �i.e., �mn� is

sufficiently small such that only pairs with minimal separa-
tion distance are considered, particle motions are controlled
by the local environment �see Fig. 2�a��, i.e., they move in
opposite directions along the line connecting their centroids.
If only particle pairs �or triplets, etc.� with the minimal sepa-
ration distance are considered at each stage of the SLP pro-
cedure, the system rigorously follows the steepest-descent
trajectory and evolves to the associated inherent structure. As
the influence sphere ��mn� becomes larger, successively
larger numbers of spheres must respect the nonoverlap con-
dition, all of which affect the motion of the central particle
�see Fig. 2�b��.

Consequently, the influence sphere radius �mn can be con-
sidered to be an effective interaction range. For each near-
neighbor pair, a nonoverlapping condition for that pair is
included in the SLP formulation, which in general will lead
to a different jammed-packing solution from one in which
that pair of particles are not considered neighbors of one
another. Therefore, the neighbor pairs effectively interact
with each other through the nonoverlapping condition. A
larger �mn corresponds to a longer interaction range, which
enables more directions in the energy landscape to be ex-
plored beyond the one that leads to a local density increase
�i.e., a steepest descent in the energy landscape�. We will see
in the ensuing discussion that this feature of the SLP proce-
dure enables it to find both local and global energy minima
�density maxima�. We note that the number of neighbor pairs
npair is a monotonically increasing function of �mn, namely,
npair��mn

d for any jammed packings in Rd. Although a large
value of �mn is necessary to produce maximally dense pack-
ings, one generally only needs an associated small number of
particles in the fundamental cell. Therefore, the total compu-
tational cost when a large value of �mn is employed to gen-
erate maximally dense packings is usually much smaller than

FIG. 2. �Color online� Influence spheres �i.e., effective interac-
tion range for the central particle in so far as the nonoverlapping
condition is concerned� and the directions of motion of the particle.
�a� Only the nearest neighbor of the central �red or darkest gray�
particle is included in the influence sphere. The central sphere will
move away from its neighbor along a line connecting their centers,
which allows a maximal shrinkage of the fundamental cell. Such a
shrinkage would lead to a local maximum in the packing density.
�b� More near neighbors are included in the influence sphere. The
central particle moves along a direction that maximizes its distance
from all of the neighbors within the influence sphere. In other
words, the movement of the central particle is coupled with all of
the near neighbors within the influence sphere and allows a maxi-
mal shrinkage of the fundamental cell, which after a sufficient num-
ber of iterations leads to a global maximum of the packing density.
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that associated with a small value of �mn to produce disor-
dered packings with a large number of particles per funda-

mental cell. Empirically, we find that when �mn�4D̄mn, the
SLP algorithm generally leads to the maximally dense pack-

ings, where D̄mn= �Dm+Dn� /2 is the average diameter of two
spheres.

Moreover, one can view this SLP compression process
physically as a compression of a hard-sphere system in a
superviscous liquid subjected to periodic boundary condi-
tions in the absence of a gravitational field. Although the
immersion of the hard spheres in the superviscous liquid
precludes any collisions between the particles, there is a dy-
namical interaction with the system boundary. Thus, the only
“dynamical” parameters of this physical compression are the
deformation parameters of the fundamental cell. For this SLP
“compression” process, the system moves efficiently by col-
lective particle motions to nearby denser configurations.

B. Inherent structures—mechanically stable
local minima

When the influence sphere radius �mn is sufficiently small

�e.g., �mn�1.5D̄mn� and the bound widths are taken to be

sufficiently large �e.g., ��ij��0.1 and �	x
��0.5D̄, where D̄
is the averaged diameter of all the spheres in the packing�,
the SLP solution of the ASC scheme from some initial con-
figurations leads to a mechanically stable local energy mini-
mum �local density maximum�, which in principle is the in-
herent structure associated with the starting initial many-
particle configuration �47,48�; see Fig. 3. All initial
configurations that compress to the same jammed structure,
excluding distinctions between states that differ by the inter-
change of identical particles, belong to the same inherent
structure. In two and three dimensions, the number of dis-
tinct inherent structures scales with the number of particles N
in the fundamental cell, i.e., exp��N�, where � is
dimensional-dependent constant of order unity �47�.

Stillinger, DiMarzio, and Kornegay were the first to intro-
duce the idea of inherent structures for two-dimensional hard
circular disks �49�. However, at that time they did not explic-
itly use the terminology “inherent structure.” Nonetheless,
they indeed proposed a conceptual procedure to produce in-
herent structures for hard-sphere systems and applied it to
hard disks in two dimensions. They considered a dilute con-
figuration of N spheres centered at x1 , . . . ,xN, and subse-
quently expanded the spheres. During such an expansion,
there will occur a first contact between the pair of spheres
with the minimal original pair separation distance. As the
spheres are further expanded, one should move this pair apart
�each member at an equal rate along the line joining the
centers� just to maintain the contact. Other pairs in the sys-
tem similarly will come into contact, and will be rearranged
by the same prescription. As the process proceeds, triplets,
and larger sets of spheres will touch, and subsequently
should be moved by a generalization of the pair procedure.
These authors proposed that this procedure can be mapped
into a steepest-descent problem. Namely, if one has a set of n
spheres in contact at x1 , . . . ,xn, the displacements
dx1 , . . . ,dxn, which maintain contacts under the diameter in-
crease 	D, should be selected to minimize the positive defi-
nite form

	
i=1

n �	xi

	D
�2

�21�

subject to those constraints. In particular, these authors com-
mented that “for very large N, the chance of selecting �at
random� a set of initial positions that would lead to jamming
in the regular close-packed array becomes very small.” In
modern language, this statement means that random initial
configurations for the case of identical spheres would lead to
maximally random jammed states for d�3, which are isos-
tatic configurations �50�, with very high probability. How-
ever, for two-dimensional monodisperse circular disk pack-
ings, it is well known that random initial configurations lead
to highly ordered crystalline packings with very high prob-
ability �14�. If an entropic measure of disorder was em-
ployed, such two-dimensional crystalline packings would be
designated to be the most disordered packings or MRJ states,
which is clearly incorrect. This is one of the many reasons
that an entropic �i.e., occurrence frequency of the same con-
figurations� measure of disorder can be misleading �14�.

It is not difficult to see that our SLP algorithm when pro-
vided with the appropriate parameters closely follows the
aforementioned conceptual steepest-descent procedure for
obtaining inherent structures. Specifically, if the nonoverlap-
ping conditions are only specified for nearest-neighbor pairs,
triplets etc., i.e., a small influence sphere radius �mn is used
�see Fig. 2�, the SLP algorithm will only move apart those
spheres that are explicitly considered in the nonoverlapping
conditions such that the largest possible compression of the
system �consistent with the nonoverlapping conditions and
the bounds� can be performed �through applying the solved
strain tensor�. In other words, starting from an initial con-
figuration, the SLP algorithm can lead to a maximal-density
increase subject to the constraints imposed by closest neigh-

FIG. 3. �Color online� A schematic illustrating the idea of inher-
ent structures for a system composed of N hard spheres as adapted
from Ref. �49�, though the term “inherent structure” was not explic-
itly used there. The horizontal axis labeled XN stands for the entire
set of centroid positions, and the density � increases downward.
The jagged curve is the boundary between accessible �upper� con-
figurations �shown in yellow or light gray in the print version� and
inaccessible �lower� configurations �shown in blue or dark gray in
the print version�. The deepest point of the accessible configurations
corresponds to the maximal-density packings of hard spheres.
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bors, following the trajectory of steepest descent in the en-
ergy landscape. This is an equivalent reformulation of the
Stillinger-DiMarzio-Kornegay steepest-descent procedure.
Importantly, the SLP algorithm is not limited to steepest-
descent mappings. We will see in the next section that by
using relatively large influence spheres, one can access un-
usual inherent structures from random initial configurations.

We note that Zinchenko �51� proposed and implemented a
numerical algorithm conceptually equivalent to the
Stillinger-DiMarzio-Kornegay steepest-descent procedure to
produce disordered jammed spheres packings in three dimen-
sions. However, the Zinchenko algorithm involves the nu-
merical solution of many different differential equations �dN
of them� as well as the solutions to dN algebraic equations
that prescribe the densification process that allows the par-
ticles to swell while retaining sphere contacts to the extent
possible. This makes the algorithm both computationally ex-
pensive and incapable of generating ordered packings. Fur-
thermore, O’Hern et al. employed a conjugate-gradient �CG�
method to produce jammed packings of soft spheres interact-
ing with short-ranged repulsive power-law pair potentials
�52�. Starting from a dilute initial configuration, the spheres
are allowed to grow, which causes an increase of the total
energy of the system. Then CG method is used to relax the
system to zero energy. The procedure is repeated until the
total energy cannot be relaxed to zero, and the system is
considered jammed. Although not explicitly indicated, this
algorithm in general produces inherent structures of such
soft-sphere systems.

C. Energy minima—density maxima

Though our SLP algorithm can produce inherent struc-
tures, it is crucial to emphasize that our algorithm is much
more general than the aforementioned conceptual steepest-
descent procedure �49�, the Zinchenko protocol �51� and the
conjugate-gradient method �52�. In particular, including
more neighbors associated with any given sphere in the set
of nonoverlapping conditions, i.e., increasing the radius of
the influence sphere �mn, effectively introduces “long-range

interactions” �i.e., �mn�3.5D̄mn�. Together with smaller

bound widths �e.g., ��ij��0.01 and �	x
��0.05D̄, where D̄ is
the effective diameter of all of the spheres in the packing�,

the SLP solution of the ASC scheme from random initial
configurations can lead to unusual inherent structures, such
as a mechanically stable global energy minimum �global
density maximum�.

Recall that when the radium influence sphere ��mn� be-
comes larger, successively larger numbers of particles must
respect the nonoverlap condition, all of which affect the mo-
tion of the central particle. A sufficiently large �mn implies
that the particles experience effectively long-range “interac-
tions” via the influence spheres, which enable more direc-
tions in the energy landscape to be explored besides the
steepest-descent direction. In other words, multiple minima
can now be explored; and instead of moving to a local en-
ergy minimum �local density maximum� by a steepest-
descent trajectory, the system is able to evolve toward the
deepest minimum available until it is in the basin of the
global minimum.

D. Unusual inherent structures—low-density jammed packings

From its definition, it is clear that an inherent structure is
highly dependent on its associated initial configuration.
Therefore, an innovative procedure to generate unusual ini-
tial configurations in principle enables one to obtain unusual
inherent structures. Moreover, there is no reason to limit one-
self to random initial configurations alone. For example, in
Ref. �41� diluted MRJ packings are employed as initial con-
figurations to produce low-density jammed packings in R3.

V. JAMMED DISORDERED AND ORDERED
PACKINGS

In this section, we employ our SLP algorithm to produce
maximally random jammed �MRJ� packings as well as maxi-
mally dense packings of hard spheres in d-dimensional Eu-
clidean space Rd for d=2, 3, 4, 5, and 6. In R1, there is only
a single jammed state, namely, the integer-lattice packing
with unit density. Therefore, we will not consider this trivial
case here. The characteristics of the packings produced by
the SLP algorithm are compared to those obtained using the
LS algorithm, which verifies the robustness and low-
computational cost of our SLP algorithm. Moreover, we
show that the SLP algorithm is superior to the LS algorithm
in several aspects, especially in producing maximal dense
packings.

A. Maximally random jammed packings

Random dilute packings with a density �=0.05 are used
as initial configurations to produce MRJ packings for d=2,
3, 4, 5, and 6 using the SLP algorithm. In two dimensions,
polydisperse disks with diameters uniformly distributed
within �D ,2D� are used to generate MRJ packings because
monodisperse circular disks have an inevitable propensity to
form highly ordered packings in the jamming limit, as dis-
cussed in Sec. IV B. In higher dimensions, monodisperse
spheres are used. As indicated in the previous section, to
produce MRJ packings �which are the maximally disordered
inherent structures�, a small influence sphere radius �mn is
used such that evolution of the packing in the energy land-

FIG. 4. �Color online� Maximally random jammed packings in
low dimensions via SLP algorithm. �a� A MRJ packing of 1000
monodisperse spheres in three dimensions. �b� A MRJ packing of
500 polydisperse circular disks in two dimensions.
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scape follows a path of steepest descent �e.g., �mn�1.5D̄mn,

��ij��0.1, and �	x
��0.5D̄�. The number of particles in the
fundamental cell are N=500,2000,4000,8000,12 000, re-
spectively, for d=2,3 ,4 ,5 ,6. The packing is considered
jammed and the simulation is terminated if the increase of
the packing density is less than 10−8. Figure 4 shows typical
packing configurations in two and three dimensions.

The characteristics of the monodisperse packings are
compared to those obtained using the LS algorithm �25�,
which has been verified to be a robust protocol to produce
MRJ packings. A two-step procedure is used for the LS al-
gorithm to generate jammed disordered packings: a large ini-
tial expansion rate of �0.01 and a small fine-tuning expan-
sion rate of 10−�3+d� �where d is the spatial dimension�. A
comparison of the packing density and fraction of rattlers
�i.e., movable particles caged by their jamming neighbors� is
given in Table I. Each density � and the fraction of rattlers fr
are obtained by averaging over five configurations. We note
that the MRJ densities obtained via the LS and SLP algo-
rithms are very close to each other. We expect that in the
infinite-system limit, the MRJ densities generated via the two
algorithms should be essentially identical to one another.
Figure 5 shows the pair correlation functions g2 of the pack-
ings obtained using both the SLP and LS algorithm �55�. It
can be seen clearly that the MRJ packings produced by our
SLP algorithm are consistent with those produced by the LS
protocol across dimensions. Specifically, in high dimensions,
the split-second peak in g2, present for d=3, gets dramati-
cally diminished and oscillations in g2 get significantly
dampened. These findings are consistent with a recently pro-
posed “decorrelation principle” �27� that states that uncon-
strained spatial correlations in disordered packings should
vanish asymptotically in the high-dimensional limit. The
two-dimensional polydisperse packing possesses a density
�=0.846 and approximately 3% of rattlers.

We note that in producing MRJ packings using the LS
algorithm, a large expansion rate is necessary in the begin-
ning of the simulation to drive the system out of equilibrium
but it is undesirable toward the end, which may lead to un-
jammed configurations. Therefore, a variable expansion rate
is needed and must be very small at the end of the simulation
to ensure jamming, as we have done here. In our SLP algo-
rithm, the control parameters are single-valued. Moreover,

the SLP algorithm naturally leads to jammed packings, as we
discussed in Sec. III B, which makes it superior to the LS
algorithm in producing jammed packings.

B. Maximal-density packings

In order to further test the SLP algorithm, we apply to see
whether it can recover the densest packings of congruent
spheres in two and three dimensions and densest known con-
gruent sphere packings in R4, R5, and R6. Recall that we do
not consider the case in R1, because that corresponds to the
trivial solution of the integer-lattice packing. In R2 and R3,
the densest packings of congruent spheres have been proved
to be the triangular lattice �53� and fcc lattice �32�, respec-
tively. One of the generalizations of the three-dimensional
fcc lattice to higher dimensions is the d-dimensional check-
erboard lattice Dd, defined by taking a hypercubic lattice and
placing spheres on every site at which the sum of the lattice
indices is even, i.e., every other site �22�. The four- and
five-dimensional checkerboard lattices D4 and D5 with den-
sities �=� /16=0.6168. . . and �=�2�2 /30=0.4652. . ., re-
spectively, are believed to be the densest sphere packings in
those dimensions. For d=6, the densest sphere packing is
conjectured to be the “root” lattice E6 with density �
=�3�3 /144=0.3729. . . �22�.

It is important to note that in order to generate perfect
crystalline jammed packings using a finite simulation cell
with periodic boundary conditions, the number of particles in
the fundamental cell must be consistent with its shape. For
example, if a fixed cubic fundamental cell or rhombohedral
fundamental cell �associated with the fcc lattice� in three
dimensions is used, this “magic” number of spheres should
be N=4m3 and N=m3 �m=1,2 ,3. . .�, respectively. In most
cases, the fundamental cell associated with the densest pack-
ing is not known a priori and hence one needs to explore a
variety of different particle numbers �by carrying out many
simulations� to obtain the maximal-density packing with
typical protocols that use a fixed cell. Therefore, it is highly
desirable to explore systematically the shape of the appropri-
ate fundamental cell by employing a single simulation with
variable particle numbers, which our SLP algorithm enables
one to do. In particular, because our SLP algorithm does not
simulate the real many-particle dynamics, a very small value
of N can be used, which can significantly reduce the simula-

TABLE I. Characteristics of MRJ packings produced using the SLP and LS algorithms. � is the density of final jammed packing and fr

is the fraction of the rattlers. ts is the total simulation time. For LS algorithm, ts includes the time of simulations with both the initial large
expansion rate and the fine-tuning expansion rate.

LS algorithm SLP algorithm

d=3 �=0.642�0.005 fr=0.030�0.003 �=0.640�0.004 fr=0.028�0.003

ts=1.5 h ts=10 min

d=4 �=0.460�0.006 fr=0.012�0.002 �=0.465�0.005 fr=0.014�0.002

ts=4.8 h ts=46 min

d=5 �=0.315�0.005 fr=0.008�0.002 �=0.310�0.005 fr=0.006�0.002

ts=14 h ts=3.2 h

d=6 �=0.201�0.005 fr=0.005�0.001 �=0.199�0.005 fr=0.005�0.001

ts=193.5 h ts=8.3 h
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tion time. For example, one can choose N to be as small as
one, which reduces the SLP algorithm to a lattice-
optimization algorithm. For the LS protocol, using a very
small value of N will introduce systematic errors due to lack
of collisions between the particles within the fundamental
cell or because collisions are not properly treated.

To produce maximal-density packings in Rd, initial pack-
ing configurations with N=3d spheres in �hyper�cubic funda-
mental cells possessing a density lower than the “equilib-
rium” hard-sphere freezing density �Ref. �26�� for each
dimension �i.e., �=0.45,0.4,0.3,0.15,0.06 for d
=2,3 ,4 ,5 ,6, respectively� are used for both the LS and SLP
algorithm. We note that for the current implementation of the
LS algorithm, a deformable fundamental cell program is
available for d=2 and 3 �36�; for d�4, only a fixed cubic
fundamental cell is available �26�. The sphere expansion rate
used to generate a maximally dense packing in Rd is 10−�3+d�.
For the SLP algorithm, a deformable fundamental cell is
used in all dimensions. The influence sphere radius is chosen
to be �mn�3.5D�, and ��ij��0.01 and �	x
��0.05D are
used. The final densities produced by the two algorithms and
the corresponding computational times to produce the
jammed states are compared in Table II. It can be seen that
the SLP algorithm successfully reproduces the densest
known packings in all dimensions; while our implementation
of the LS algorithm only was able to reproduce the maximal-
density packings in R2 and R3. Although the LS algorithm
does not generate perfect crystals for d=4, 5, and 6, the high
densities, it produces suggest that these packings contain
very large crystallized regions. We have also used N=128 in
R4 and N=512 in R5 for the LS algorithm, which are the
magic numbers for cubic fundamental cells in four and five

dimensions, respectively, as well as an expansion rate of
10−10. In R4, the packing converges to the D4-lattice packing
with �=0.6168. . .; while in R5, the final packing is partially
crystallized with �=0.4392. . ..

These results clearly demonstrate the advantage of our
SLP algorithm in producing maximally dense sphere pack-
ings, i.e., the SLP algorithm is both much more computation-
ally efficient and more robust in finding the densest known
sphere packings than the LS algorithm. In particular, the
adaptive fundamental cell is crucial for obtaining perfect
maximal-density packing structures. In addition, we have
tried a variety of particle numbers in the fundamental cell
�e.g., 1�N�2d for Rd� in four, five, and six dimensions and
have not obtained any packings possessing a larger density
than the densest known packings. This provides numerical
support that the densest known packing in these dimensions
may indeed be the conjectured maximal-density packings.

We note that very recently Kallus, Elser, and Gravel �54�
applied a periodic “divide” and “concur” �PDC� algorithm to
generate maximally dense packings of hard particles. In this
variant of the PDC algorithm, they follow Ref. �43� by al-
lowing the fundamental cell to deform and change shape
during the simulation. Interparticle impenetrability con-
straints are relaxed in the beginning of the simulation such
that overlapping intermediate configurations are allowed. To-
ward the end of the simulation, all overlaps are systemati-
cally removed. Among other applications, these authors ap-
plied the PDC algorithm to successfully reproduce the
densest known lattice sphere packings �not necessarily the
densest packings� and the best known lattice kissing arrange-
ments in up to 14 and 11 dimensions, respectively, since they
were limited to using only a small number of particles per
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FIG. 5. �Color online� Pair
correlation function g2 of maxi-
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selected dimensions via the SLP
and LS algorithm.

S. TORQUATO AND Y. JIAO PHYSICAL REVIEW E 82, 061302 �2010�

061302-10



fundamental cell. Although the PDC algorithm is efficient in
producing dense lattice sphere packings, it does not appear to
be capable of generating jammed sphere packings with a di-
versity of disorder and density that can be produced via ei-
ther the SLP or LS algorithm.

VI. ORDER MAP

Besides the capability of generating MRJ packings and
maximally dense jammed packings efficiently and robustly,
the SLP algorithm has the capacity to produce jammed
sphere packings of with a wide range of densities and de-
grees of disorder/order, i.e., a diverse set of inherent struc-
tures. Here we illustrate this capability by focusing on iden-
tical spheres in three dimensions. By tuning the bound
widths and the influence sphere radius �mn, the density at
which the packing is jammed and its degree of disorder can
be controlled to a great degree. In particular, the ranges of
the parameter values used are as follows: �mn
� �1.5Dmn ,3.5Dmn�, ��ij�� �0.01,0.1�, and �	x
�
� �0.05D ,0.5D� �where D is the diameter of the spheres in
the packing�. In general, a larger value of �mn and smaller
bound widths allow for a larger number of particles to be
effectively coupled to one another, which in turn leads to a
higher jammed-packing density. By continuously varying the
values of the control parameters, a spectrum of packing den-
sity �� �0.64,0.740 48. . .� can be obtained when random di-
lute packings are used as initial configurations. This density
range is also achievable by the LS algorithm, but we shall
see that disordered jammed packings with densities signifi-
cantly lower than 0.64 can be generated using the SLP algo-
rithm.

Typical configurations of such packings with �
� �0.64,0.74048. . .� and N�1000 are mapped onto a
density-order-metric diagram �black circles�. The diagram or
order map emphasizes a “geometric-structure” approach to
analyze packings by characterizing individual configurations,
regardless of their occurrence probability �14�. Here the
translational order metric T �4� is used to quantify the order

of the packings �other order metrics yield equivalent results
�4,31��. The translational order metric T �4� is defined as

T = �	
i

Ns

�ni − ni
ideal�/	

i

Ns

�ni
FCC − ni

ideal�� , �22�

where ni is the average occupation number for the shell i
centered at a distance from a reference sphere that equals the
ith nearest-neighbor separation for the open FCC lattice at
that density and Ns is the total number of shells for the sum-
mation; ni

ideal and ni
FCC are the corresponding shell occupa-

tion numbers for an ideal gas �spatially uncorrelated spheres�
and the open FCC lattice. For a completely disordered sys-
tem �e.g., a Poisson distribution of points� T=0, whereas T

=1 for the FCC lattice.
Moreover, we have produced jammed disordered pack-

ings with densities as low as 0.595, which is an anomalously
low value, using the SLP algorithm from special initial con-
figurations. Specifically, a small fraction �fs=0.1–2.5 %� of
particles are removed from MRJ packings which are ob-
tained using the SLP algorithm to produce unjammed initial
configurations. The remaining unjammed spheres are then
compressed to a jammed state using the SLP algorithm. Such
a procedure is repeated nr=5–10 times before a lower limit
on the final jammed-packing density � is reached. Low-
density jammed packing with densities in the range �
� �0.6,0.64� have been produced �removing the rattlers in
the packing results in a slightly lower density, ��0.595�.
These packings are mapped onto the �-T diagram �red
squares�. We note that a similar procedure was employed in
Ref. �41� to produce low-density jammed packings. How-
ever, there the LS algorithm instead of the SLP algorithm
was used to generate the initial configurations. Moreover, we
would like to emphasize that the low-density jammed pack-
ings produced by the SLP algorithm are completely unrelated
to the so-called ill-defined “random loose packings” of hard
spheres, which have been shown to be not even collectively
jammed �46�.

“Tunneled” crystal packings �green triangles� �8� and
maximal-density packings �fcc, hexagonal close-packed, and
their stacking variants called the Barlow packings� are also
shown on the order map. The blue dashed curves show the
spectrum of packings generated by randomly filling the va-
cancies in the tunneled crystal packings, which leads to the
corresponding maximal-density packings. These dashed
curves were first reported in Ref. �41�. The tunneled crystals
have density �=�2� /9=0.49365. . . are currently the best
candidates for the lowest density strictly jammed packings in
three dimensions. Each sphere in any of the tunneled crystals
contacts exactly seven others and therefore such packings are
hyperstatic.

We note that for comparison to existing literature, the data
presented in Fig. 6 for the order map include the rattlers,
which constitute a small percent of spheres near the MRJ
state �e.g., 2�3%�. The fraction of rattlers decreases as the
packing density increases or decreases from MRJ state along
the lower boundary of jammed states. In addition, consistent
with the results reported in Ref. �41�, we find that the aver-
age contact number Z per particle increases from the isostatic

TABLE II. Characteristics of densest jammed packings pro-
duced using the SLP and LS algorithms. Here � is the density of
final jammed packing, N is the number of particles in the funda-
mental cell, and ts is the total simulation time.

LS algorithm SLP algorithm

d=2 N=9 �=0.9068. . . N=9 �=0.9068. . .

ts=0.1 min ts=0.1 min

d=3 N=27 �=0.7408. . . N=27 �=0.7408. . .

ts=6.5 min ts=1.5 min

d=4 N=81 �=0.5608. . . N=81 �=0.6168. . .

ts=1.6 h ts=4.5 min

d=5 N=243 �=0.4154. . . N=243 �=0.4652. . .

ts=47.5 h ts=11 min

d=6 N=729 �=0.3287. . . N=729 �=0.3729. . .

ts=283.5 h ts=27 min
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value of 6 at the MRJ state as the density increases or de-
creases from the MRJ-state value along the lower boundary
of jammed states. In particular, at ��0.6 the average contact
number Z�6.3. It is expected that Z will increase to a con-
tact value per particle of 7 as � is decreased to the tunneled-
crystal value �=0.493 65. . .. On the other hand, as � is in-
creased from the MRJ value, the average contact number Z
continuously increases from 6 all the way up to 12 for the
hyperstatic Barlow packings with a density of 0.740 48. . ..
Thus, moving off the MRJ state along the lower boundary of
jammed states �in either direction in density� is associated
with an increase in the average contact number Z and the
degree of order.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have proposed and implemented a
sequential-linear-programming procedure to solve the
adaptive-shrinking-cell optimization problem to generate
jammed sphere packings. The SLP procedure is particularly
suitable and natural for sphere packings with a size distribu-
tion because the objective function and impenetrability con-
straints can be exactly linearized and the final state is ensured
to be jammed in principle. We have shown that the SLP
algorithm can produce robustly a wide spectrum of jammed
sphere packings in Rd for d=2, 3, 4, 5, and 6 with varying
degrees of disordered and densities. In particular, we applied
the algorithm to generate various disordered packings as well
as the maximally dense packings for d=2, 4, 5, and 6. More-

over, we showed that our SLP algorithm can produce with
high probability a variety of strictly jammed packings with a
packing density anywhere in the wide range �0.6, 0.7408…�
in three dimensions, which supports the view that there is no
universal jamming point that is distinguishable based on the
packing density alone �14,31,41�. Our jammed sphere pack-
ings are characterized and compared to the corresponding
packings generated by the well-known and versatile
Lubachevsky-Stillinger molecular-dynamics packing algo-
rithm. Compared to the LS procedure, our SLP protocol is
able to ensure that the final packings are truly jammed, pro-
duces disordered jammed packings with anomalously low
densities, and is appreciably more robust and computation-
ally faster at generating maximally dense packings, espe-
cially as the space dimension increases. Therefore, the SLP
algorithm for producing jammed sphere packings retains the
versatility and advantages of the LS algorithm while improv-
ing upon its imperfections.

An important feature of the SLP algorithm is that it can
produce a broad range of inherent structures �locally maxi-
mally dense and mechanically stable packings�, besides the
usual disordered ones �such as the maximally random
jammed state� with very small computational cost compared
to those of the best known packing algorithms by tuning the
radius of the influence sphere. This is to be contrasted with
other packing protocols, such as the conjugate-gradient
method for soft three-dimensional spheres �52� and the
Zinchenko algorithm for three-dimensional hard spheres
�51�, which can only lead with high probability to the MRJ-
like inherent structures from random initial configurations.
These protocols are limited in the sense that the trajectory
from one point to another on the energy landscape is strongly
limited, i.e., only those directions corresponding to local
steepest descents can be chosen. This makes the final pack-
ings strongly dependent on the random initial configurations.
As we have shown, exploring other directions in the energy
landscape can lead to a variety of jammed-packing structures
with variable disorder and density even if the same random
initial configuration is used. In addition, it is not clear that
these other packing protocols would lead to inherent struc-
tures with the same level of order/disorder, since no order
metrics have been explicitly measured for the resulting
jammed packings. This emphasizes a major point made in
Refs. �14,31,41�, namely, although the diversity of packing
protocols have yet to be fully explored, there is already sub-
stantial evidence that available algorithms, including the one
reported in this paper, can produce jammed packings at the
same density but with a wide range of order/disorder.

A straightforward generalization of the current SLP pro-
cedure for hard-sphere packings in Euclidean space Rd is to
devise a linear-programming protocol for packing spheres in
curved spaces, such as the surface of a sphere. In such cases,
additional constraints on the sphere displacements are neces-
sary to keep them on the spherical surface, but these con-
straints are simple to incorporate.

One advantage that the LS packing protocol has over any
SLP algorithm is in producing jammed packings of smoothly
shaped nonspherical particles �e.g., ellipsoids and superballs�
because the nonoverlap functions are nonlinear �36–39� and
linearization of the constraints is no longer rigorous and
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FIG. 6. �Color online� Order map for strictly jammed packings
of congruent spheres in three dimensions with N�1000 generated
using the SLP algorithm: translational order metric T versus pack-
ing density �. The black circles are data produced via the SLP
algorithm using random initial conditions. While the density in this
data set ranges essentially continuously from ��0.64, which coin-
cides with that of the MRJ state, up to the maximal density of �
=� /�18=0.7408. . ., the degree of order at fixed density is variable.
The red squares are data corresponding to disordered jammed pack-
ings with anomalously low densities, down to density as low as �
�0.595, which were generated via the SLP protocol using special
initial conditions involving diluted MRJ packings, as described in
the text. The dashed blue curves represent the spectrum of packings
generated by randomly filling the vacancies in three of the tunneled
crystal packings �8� with density �=�2� /9=0.493 65. . . �green tri-
angles�, each of which leads to the corresponding maximal-density
Barlow packing �with �=� /�18=0.7408. . .�.
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hence jamming cannot be guaranteed. However, in such in-
stances, the ASC scheme can be solved using Monte Carlo
methods, as was done for hard-polyhedron packings �43�, or
by using nonlinear-programming methods �56�. When the
particle shape deviates only slightly from a perfect sphere, a
LP solution could still be possible. Moreover, if one is inter-
ested in the true dynamics that leads to jamming, the LS
algorithm is clearly preferred over the SLP protocol, which is
a deterministic algorithm that is incapable of capturing the
real dynamics. However, if one is simply interested in gen-
erating jammed packings without regard to history, which the
geometric-structure point of view advocates �4,14,41�, then
the SLP protocol is preferable.

Finally, we note that it is highly desirable to devise pack-
ing protocols that targets the density or other packing char-
acteristics while ensuring jamming. It is natural to formulate
such an inverse problem as an optimization problem �57� and

to solve it for sphere packings using a LP solution procedure.
In future work, we will generalize the current SLP algorithm
to create even lower density jammed states of hard spheres
than have been able to produced thus far. In three dimen-
sions, this could enable the large gap without any jammed
states between densities �0.49 and �0.6 with relatively low
order metric values �see Fig. 6� to be filled in.
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