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We study the thermodynamics of a binary hard-disk mixture in which the ratio of disk diameters is
�=1.4. We use a recently developed molecular dynamics algorithm to calculate the free-volume
entropy of glassy configurations and obtain the configurational entropy �degeneracy� of the
supercompressed liquid as a function of density. We find that the configurational entropy of the
glasses near the kinetic glass transition is very close to the mixing entropy, suggesting that the
degeneracy is zero only for the phase-separated crystal. We explicitly construct an exponential
number of jammed packings with densities spanning the spectrum from the accepted “amorphous”
glassy state to the phase-separated crystal, thus showing that there is no ideal glass transition in
binary hard-disk mixtures. This construction also demonstrates that the ideal glass, defined as
having zero configurational entropy, is not amorphous, but instead is nothing more than a
phase-separated crystal. This critique of the presumed existence of an ideal glass parallels our
previous critique of the idea that there is a most-dense random �close� packing for hard spheres
�Torquato et al., Phys. Rev. Lett. 84, 2064 �2000��. We also perform free-energy calculations to
determine the equilibrium phase behavior of the system. The calculations predict a first-order
freezing transition at a density below the kinetic glass transition. However, this transition appears to
be strongly kinetically suppressed and is not observed directly. New simulation techniques are
needed in order to gain a more complete understanding of the thermodynamic and kinetic behavior
of the binary disk mixture and, in particular, of the demixing process during crystallization. © 2007
American Institute of Physics. �DOI: 10.1063/1.2775928�

I. INTRODUCTION

One of the outstanding challenges of condensed matter
physics remains to be the understanding the glass transition
in dense or supercooled liquids.1–3 Numerous efforts have
been made to identify the cause of the dramatic slowdown of
the dynamics �specifically, the decrease of the diffusion co-
efficient and the increase in relaxation times� in the vicinity
of the kinetic glass transition. A popular hypothesis has been
that a thermodynamic transition distinct from the usual
liquid-solid transition underlies the kinetic glass transition.
Adam and Gibbs first proposed4 a scenario that relates the
slow diffusion to a vanishing of the number of alternative
configurations available to the liquid. In this scenario, an
ideal thermodynamic glass transition occurs when the liquid
remains trapped in one of the few remaining glassy
configurations.5,6 These ideal glass theories make the basic

assumption that the thermodynamically favored crystalline
configurations are kinetically inaccessible and, therefore, the
liquid is restricted to exploring “amorphous” configurations,
qualitatively different from crystal ones.

In this paper, we study a specific prototypical glass
former, namely, a binary hard-disk mixture with size ratio of
1.4. For this model, we show that there is no special amor-
phous �random� state, but rather a continuum of states from
the most disordered one �“maximally random jammed” state�
to the most ordered one.7 In fact, we find that the presumed
“ideal glass” is nothing more than a phase-separated crystal!
We believe that the conclusions drawn in this paper for the
binary hard-disk system generalize to other structural glass
formers, such as mono- and bidisperse with hard-core and
soft interactions, as we will discuss in Sec. V.

Before we present our new results, we give some rel-
evant background information. In Sec. II A, we compare the
thermodynamics of hard-particle systems to the more famil-
iar thermodynamics of soft-particle systems, and describe thea�Electronic mail: torquato@electron.princeton.edu
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molecular dynamics �MD� algorithm used to obtain equili-
brated dense liquid states and to produce binary hard-disk
jammed packings and glasses. In Sec. II B, we will review
the inherent-structure formalism for dense liquids, as special-
ized for hard-particle systems, and sketch a theory proposing
that a thermodynamic ideal glass transition underlies the ex-
perimentally and computationally observed kinetic transi-
tion. In Sec. II C, we briefly review the MD algorithm used
to measure the free-volume contribution to the free energy
for hard-sphere systems. Our results for the equilibrium ther-
modynamic properties of a hard-disk mixture are presented
in Sec. III. Nonequilibrium glasses are considered in Sec. IV,
and some concluding remarks are offered in Sec. V. Some of
the results from the work presented here were previously
reported in a brief letter.8 Here, we expand on theoretical and
computational details and report additional new results.

II. BACKGROUND

Hard-particle systems are athermal, in the sense that the
derivatives of the configurational partition function are inde-
pendent of the temperature T. Therefore, apart from a trivial
scaling with temperature, the thermodynamic properties are
solely a function of the density �volume fraction� �.9 One
must consider a hard-particle system at a positive tempera-
ture �we fix kBT=1�, since the free-energy �FE� of the hard-
sphere system consists entirely of the entropic term,
F=−TS. At positive temperature, the time-averaged thermal
motion of the particles leads to a well-defined free energy
and its derivatives with respect to strain, i.e., stress and elas-
tic moduli �bulk and shear moduli for isotropic states�, exist
just as for soft-particle systems. For soft-particle systems, the
limit T→0 is thermodynamically well defined, and in that
limit the free energy becomes equal to just the potential en-
ergy F=U.

In Table I we give a comparison between hard- and soft-
particle systems for some of the main quantities used in ther-
modynamic considerations of glasses. Some of the hard-
particle quantities in this table are defined more precisely in
later sections. Temperature is the primary state control vari-
able for soft-particle systems, and decreasing the temperature
is equivalent to increasing the density or pressure in hard-
sphere systems. Upon cooling to zero temperature, soft-

particle systems go into states of minimal potential energy.
The energy minima, or inherent structures,10 for certain soft-
particle systems, in the limit of zero pressure �i.e., zero in-
ternal stress�, correspond to �collectively� jammed
packings,11,12 which are mechanically stable packings where
the particles are trapped in a static configuration despite ther-
mal or external agitation.13,14 Upon reducing the quench
�cooling or compression� rate, the final inherent structures
reach deeper basins �wells� of the energy landscape, as mea-
sured by the depth of the energy minimum UIS. The width of
the basins can be quantified via the vibrational free energy
fvib

IS �as calculated in the harmonic approximation�. At suffi-
ciently low temperatures, the transitions between nearby ba-
sins pass through saddle points of low saddle index,15 and
the frequency of transitions is determined by the barrier
height �difference in potential energy between the saddle
point and the starting inherent structure�. Since hard-particle
systems have trivial internal energy, it is not obvious how to
relate to soft-particle concepts of saddle points and energy
barriers; however, some ideas are discussed in Ref. 16.

A. Thermodynamics of nearly jammed hard-particle
systems

We produce jammed packings in d dimensions by using
the Lubachevsky-Stillinger MD algorithm.17,18 Small par-
ticles of diameter D are randomly distributed and randomly
oriented in a box with periodic boundary conditions and
without any overlap. The particles are given �linear and an-
gular� velocities and their motion followed as they collide
elastically and also expand uniformly �i.e., preserving their
shape� at a certain growth or expansion rate �=dD /dt, using
a collision-driven MD algorithm.19 Asymptotically, as the
density increases, a jammed packing with a diverging colli-
sion rate and �locally� maximal jamming density �J is
reached. Intuitively, a jammed �compactly packed, mechani-
cally stable� packing is one where the particles are locked in
their positions despite thermal agitation �shaking� and, po-
tentially, boundary deformations �external loading�. The
number of contacts �constraints� M in such packings is typi-
cally equal to the total number of degrees of freedom, M
�Nd, where N is the number of particles.20 Depending on
the boundary conditions and whether collective particle rear-

TABLE I. A comparison of analogous concepts between soft- and hard-particle systems. Decreasing a quantity
is indicated via ↓, and increasing it via ↑. Question marks indicate an open question.

Soft Hard Notes

T↓ p↑ State control variable
T↓ �↑ Alternative state control
Cooling rate ↓ Particle growth rate �↓ Quenching speed
Inherent structure Jammed packing Exacta in limit p→0
Basin depth UIS↓ Jamming density �J↑ Quench rate ↓
Vibrational FE fvib

IS Free-volume FE fg�−ln VFV Exactb in limit T→0 or �→�J

Saddle point Unstable packing �?� Saddle indexc x��M −Nd� /N
Barrier height ↑ Channel width ↓ �?� Not well understoodd

aReferences 13 and 14.
bReference 25.
cReference 15.
dReference 16.
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rangements take place, one can define different jamming cat-
egories, organized hierarchically into local, collective, and
strict jamming in Ref. 21. The algorithm never reaches the
true jammed state, and the particles have some free volume
VFV to rattle within which shrinks as the reduced pressure
p= PV /NkBT diverges.

Next, we briefly illustrate how the behavior of the LS
algorithm is related to the thermodynamic properties of the
system, for the familiar hard-sphere system in three dimen-
sions. In Fig. 1, we show the equation of state �EOS� of a
hard-sphere system as the density is increased slowly,
through the growth of particles at an expansion rate �, start-
ing from a liquid. The pressure of the system is measured in
the MD algorithm by averaging over a time period that is as
small as possible but sufficiently large to average over many
collisions. Instead of plotting the reduced pressure p directly,
we use the well-known fact that near jamming the reduced
pressure is asymptotically given by the free-volume equation
of state,22

p =
PV

NkBT
�

d

1 − �/�J
, �1�

which can be inverted to give an estimate �̃J of the jamming
density,

�̃J =
�

1 − d/p
. �2�

Since the pressure increases very rapidly near jamming, it is
more convenient to plot the estimated jamming density
�̃J��� instead of the pressure p���, and we do this in Fig. 1
for several different expansion rates. The particles can also
shrink ���0� starting from a dense configuration such as the
FCC crystal, in which case the EOS along the crystal branch

can be obtained for densities ranging from the crystal jam-
ming density to the freezing density ��0.50. We note that
the results in Fig. 1 are new and presented here for the first
time.

In the limit �→0 �and N→��, we obtain the thermody-
namic equilibrium behavior of the hard-sphere system, and
for small enough �, the system is in quasiequilibrium, in the
sense that the rate of density change is slow enough to allow
for full relaxation of the system. For finite �, the system is
not in true equilibrium, and, in fact, as the relaxation time of
the liquid grows due to the increase in density and increased
proximity to jamming, the system may become trapped in a
glassy state. This is exactly what is observed in Fig. 1. For
small �, there is a first-order transition from the liquid to the
crystal branch around the melting point ��0.55. However,
for larger �, there is a kinetic glass transition around �
�0.6 leading to nonequilibrium glassy states that eventually
produce random jammed packings with jamming density
�J�0.64. If the expansion rate is intermediate, partial crys-
tallization occurs leading to the formation of small nucleated
crystallites inside a random packing matrix, or the formed
polycrystal can be distorted and have multiple grain bound-
aries between crystallites with different orientations.

In light of the observations presented in Fig. 1, we see
that it is not possible to extend the thermodynamic liquid
branch beyond the melting point in a well-defined manner in
the absence of constraints. Fast compressions suppress crys-
tallization; however, these configurations are also clearly not
in any kind of �local or metastable� equilibrium, since the
observed EOS depends strongly on the exact value of �
above the melting point. Slowing the compression suffi-
ciently to obtain a reproducible EOS leads to partial crystal-
lization at densities above the melting point �crystallization
does not occur at the freezing point as expected based on
thermodynamic consideration because of finite-size effects�.
This is the reason why we have used binary hard disks in this
study instead of using monodisperse hard spheres. As we
will see in Sec. IV A, for a certain binary disk mixture, we
are able to obtain an apparently well-defined liquid EOS up
to the kinetic glass transition density.

It should be noted that one can create metastable states
above the freezing point by imposing constraints. For ex-
ample, Rintoul and Torquato23,24 generated constrained meta-
stable monodispersed hard-sphere systems above the freez-
ing point by excluding those configurations in which the
value of the bond-orientational order parameter was above a
certain threshold value. Importantly, it was shown that such
amorphous systems crystallized after sufficiently long times,
i.e., there was no evidence of a glass transition of thermody-
namic origin.

B. Inherent-structure thermodynamic formalism

Stillinger and Weber proposed an inherent-structure for-
malism that has since been used extensively in the analysis
of the thermodynamics of supercooled liquids.5,6,10 For sys-
tems of soft particles a central quantity in this thermody-
namic formalism is the number of distinct energy minima
�basins� with a given energy per particle. For hard-particle

FIG. 1. �Color online� The estimated jamming packing fraction �̃J as a
function of packing fraction � for d=3, as produced by our �modified
Lubachevsky-Stillinger� MD algorithm. Shown are systems of 4096 spheres
with various expansion rates, showing the crystallization that occurs for
sufficiently slow particle expansion and the kinetic glass transition for fast
particle expansion, leading to disordered packings. Also shown are results
for systems of 10 976 spheres placed in an fcc lattice with negative expan-
sion rates �last three curves�. For comparison, we plot approximations to the
equilibrium EOS for the fluid phase, the coexistence region, and the crystal
phase �Refs. 65 and 66�, as well as the Percus-Yevick �PY� EOS �Ref. 67�
for the fluid phase.
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systems, this quantity translates to the number of distinct
jammed packings Ng��J�=exp�Nsc��J�� with jamming pack-
ing fraction �density� �J, where sc��J� is the configurational
entropy, or degeneracy, per particle. �The dimensionless
quantity sc is actually the conventional entropy divided by
Boltzmann’s constant. However, we will refer to it simply as
“entropy” for convenience.� The formalism assumes that the
liquid performs infrequent jumps from one basin to another
as it explores the available configuration space, remaining in
the vicinity of these jamming basins for long periods of time.
Free-volume terms in the free energy favor denser packings,
and, therefore, the basin belonging to the densest crystal,
with density �max, is most favored. However, it is reasonable
to assume that the degeneracy contribution to the free energy
sc��J� decreases with increasing �J, favoring less dense but
more numerous configurations. The liquid trades off degen-
eracy for free volume and, at a given density �, it predomi-
nantly samples glasses with jamming density �̂J���, which
have the lowest total free energy. The theory of cooperatively
rearranging regions developed by Adam and Gibbs4 proposes
that the structural relaxation time in the metastable liquid is
on the order of

���� � exp� C

Tsc��̂J����
	 ,

and, therefore, diverges at the ideal glass transition, where sc

vanishes.
We can approximate the free-volume contribution to the

free energy �per particle� of a glass fg close to the jamming
point by integrating Eq. �1� to obtain

fg��,�J� = − d ln
1 −
�

�J
� − fJ��J� ,

where the term fJ depends on the structure of the jammed
packing.25 The �total� volume of configuration space corre-
sponding to jamming density �J is a sum over all of the
sc��J� basins, and therefore the contribution to the free en-
ergy from the glasses with jamming density �J is approxi-
mately

f��,�J� = fg��,�J� + sc��J� .

At a given density �, the jamming density that maximizes f
is the one that dominates the thermodynamic integrals, and it
is found from the solution �̂J��� of the equation

� �f

��J
�

�J=�̂J���
= 
−

d

��1 − �/�J�
−

�fJ��J�
��J

+
�sc��J�

��J
�

�J=�̂J���
= 0. �3�

As expected, the pressure of the metastable glass is equal to
the pressure of just one of the jamming basins and is not
affected by the fact that the packing explores multiple �sta-
tistically identical� basins,

p = �
df

d�
= �

�f

��J

��J

��
+ �

�f

��
= �

�f

��
=

d

�1 − �/�J�
.

The configurational entropy sc��J� must vanish above
some density �J

max, if nothing else than because �J
max

��max=� /�18. The conjectured ideal glass state corre-
sponds to the point where the number of available basins
becomes subexponential, that is, sc��J

IG�=0. The usual as-
sumption in the literature is that sc��J� is an inverted pa-
rabola and that fJ is constant, and this assumption gives a
monotonically increasing �̂J���.6,26,27 The liquid becomes
permanently trapped in the ideal glass state at densities
above an ideal glass transition density �IG, defined via
�̂J��IG�=�J

IG. A crucial unquestioned assumption has been
that there is a gap in the density of jammed states between
the amorphous and crystal ones, so that �J

IG��max. In Sec.
IV we will explicitly show that this assumption is flawed for
the binary hard-disk mixture we study, and suggest that this
is the case in other similar models, contrary to numerous
estimates for �J

IG in the literature.27–32

C. BCMD free-energy algorithm

In Ref. 25, we present in detail our bounding cell mo-
lecular dynamics �BCMD� algorithm for computing the free
energy �equivalently, entropy� of nearly jammed hard-
particle packings, i.e., hard-particle systems where diffusion
can be ignored and particles remain localized in the vicinity
of their initial configuration for long times. Note that �nearly�
jammed packings are not in thermodynamic equilibrium and,
therefore, the free energy we calculate is not the equilibrium
free energy at the given packing fraction �density�, but rather,
it is the free-volume contribution fg to the thermodynamic
free energy. Formally, the algorithm measures the true ther-
modynamic entropy of a single-occupancy cell �SOC�
system;33 however, with cells that are not complex polyhedra
and which do not necessarily cover space. Namely, each par-
ticle is surrounded by a hard-wall bounding cell which has
exactly the same shape as the particle itself, but is scaled
uniformly by a scaling factor 	=1+
	. A slight modifica-
tion of the algorithm in Ref. 19 keeps each particle within its
bounding cell by predicting and processing collisions be-
tween the particles and the cell walls.

We focus on solidlike systems, meaning that there is no
or very little free diffusion, so that over long periods of time
the particles do not move far away from their initial positions
�i.e., the centers of the cells�. When the cells are very large,
that is, 	=	max�1, the SOC system is virtually indistin-
guishable in its thermodynamic properties from the uncon-
strained system. In the limit 	→1, the cells will become
disjoint and the system becomes a collection of N indepen-
dent particles, which can be treated analytically. We will as-
sume that there exists a 	min�1 for which the cells are fully
disjoint. This can always be assured by preparing the initial
state more carefully or by shrinking the particles slightly.
During the course of the MD, we can measure the average
reduced pressure on the walls of a cell pc= PcVc /kBT and
then obtain the change in free energy as the work done in
shrinking the cells by integrating pc. This gives the free en-
ergy of the SOC system with cells of size 	max, which is a
good approximation to fg for sufficiently dense configura-
tions. If the particles can diffuse freely given sufficient time
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�as in the liquid state�, the bounding cells are chosen to be
sufficiently large to allow the system to explore the neigh-
borhood of the metastable configuration freely, but are also
sufficiently small to stabilize the structure of the metastable
system and to prevent particle rearrangements. The free en-
ergy of this cell-constrained liquid is larger than that of the
unconstrained liquid, which has more free volume available
to explore, and it is hoped that the difference between the
two is a good approximation to the configurational entropy
for sufficiently high densities.

III. EQUILIBRIUM PHASE DIAGRAM

In this section, we use MD to determine the equation of
state for monodisperse and bidisperse hard-disk systems and,
also, to calculate the excess free energy per particle relative
to the ideal gas at different densities. We use the MD data to
estimate the location of the freezing transition in a binary
hard-disk mixture. We predict that at a freezing density �F

�0.775, a crystal of density ��0.8415 composed of pre-
dominantly large particles should start precipitating from the
liquid mixture. Our study here is similar to that carried out in
significant detail for soft disks �interacting via an inverse
12th power potential�.34

A. Monodisperse hard-disk systems

Whether the liquid-solid transition for the monodisperse
hard-disk system is a continuous �second-order� transition or
a discontinuous first-order transition is still disputed.35 We
will not try to resolve this question here. However, we must
briefly examine the thermodynamics of monodisperse disks
as this will be necessary in order to study mixtures. In Fig. 2,
we show the EOS for monodisperse hard disks, obtained

through molecular dynamics at different particle growth rates
�. A more detailed description of the procedure is in Sec.
II A and an analogous plot for three dimensions is given in
Fig. 1.

Unlike in three dimensions, there is no clear discontinu-
ity between the EOS of the isotropic liquid and the triangular
crystal. Slowing the rate of density increase allows us to find
the true equilibrium EOS, as demonstrated by the fact that
the observed EOS in Fig. 1 barely changes even though � is
decreased by more than an order of magnitude. The transi-
tion between the liquid and solid phases occurs in the density
range ��0.69–0.72, which would also be the best estimate
for the coexistence region assuming that the transition is first
order �the freezing density, in particular, can only be roughly
estimated from the EOS curves alone�. Even if the transition
is first order, however, the change in entropy between the
liquid and solid is very small and, therefore, for the purposes
of free-energy calculations, we can assume that there is a
continuous transition, i.e., that the free energy per particle
fmono��� is a unique and smooth function of density. We will
therefore not explicitly distinguish between the liquid and
solid �and possible hexatic phase� of the monodisperse hard-
disk system, but rather consider them as a single phase. This
assumption will reduce the number of different phases to
consider for mixtures and greatly simplify our calculations.

The numerical EOS pmono��� is well fitted by the semi-
empirical joint liquid-solid EOS proposed in Ref. 36. In Fig.
3, we show the free energy obtained by using the BCMD
algorithm from Sec. II C with bounding cells of diameter
twice larger than the diameter of the disks, i.e., 
	=1. For
the crystal, the configurational entropy is identically zero
and, therefore, the free-volume term is the only contribution
to the thermodynamic free energy. Figure 3 shows that
fmono��� is indeed �nearly� continuous when going from the
liquid to the solid state. We note that one can avoid analytical

FIG. 2. �Color online� The equation of state for the monodisperse system of
N=4096 hard disks, as is shown in Fig. 1 for hard spheres. Molecular
dynamics runs are started with from isotropic liquid and the density in-
creased slowly at different particle growth rates �, as shown in units of 10−6

in the legend. The g4 equation of state for the liquid �cf. Eq. �2� in Ref. 36�
and the joint liquid-crystal EOS from Ref. 36 are also shown for compari-
son. It is seen that, for ��10−5, the system has sufficient time to equilibrate
for all densities shown and the pressure closely follows the true equilibrium
EOS �corresponding to the limit �→0 and N→��. We do not show the
equivalent curves for runs starting with a perfect triangular crystal and de-
creasing the density �i.e., ��0�, since there is virtually no hysteresis ob-
served from the EOS obtained by increasing the density.

FIG. 3. �Color online� The excess free energy per particle 
f for a mono-
disperse system of hard disks, obtained through integration of the joint �glo-
bal� liquid/solid EOS �Ref. 36�, through the BCMD algorithm for SOC
systems, and from the most accurate EOS from liquid-state theory �Ref. 36�.
It is seen that in the solid phase, ��0.72, the free energy of the SOC model
closely matches that obtained by assuming a continuous EOS, demonstrat-
ing that the entropy jump between the liquid and solid phases at the transi-
tion is too small to be measured, if it exists at all �see also Fig. 13�.
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approximations completely and obtain fmono��� numerically
with high accuracy by simply integrating the numerical EOS
from the low densities �where a low-order virial expansion is
accurate�, using the pressure from an MD simulation with
sufficiently small �.

B. Binary mixtures of hard disks

We study a binary mixture of disks with a one-third
�composition xB=1/3� of the disks having a diameter �size
dispersity� �=1.4 times larger than the remaining two-thirds
�xA=2/3�.8 Bidisperse disk packings with this aspect ratio
and xA=xB=1/2 have been studied70 as prototypical glass
formers.34 For this �, it is believed that the high-density
phase is a phase-separated crystal.37 It can be proved that the
highest density achievable with two disks of size ratio �
�1.348 is the same as for monodisperse disks, �max

=� /�12,38 although we are not aware of any proof that this
highest density is only achievable in phase-separated con-
figurations. For large size dispersity, denser packings exist
where the small and large disks are mixed.37,39 For small size
dispersity, a substitutional triangular crystal, in which the
large and small disks are randomly mixed, will be thermo-
dynamically favored over the phase-separated crystal at in-
termediate densities because of its higher degeneracy
entropy.40,41 We will assume here that, for �=1.4, the crystal
phase is a phase-separated mixture of monodisperse triangu-
lar crystals and neglect any solubility of one type of disks
into the crystal of the other type, since such solubility is
expected to be negligible due to the large difference in size
between the small and large disks.41

We also expect that the full �over all compositions� equi-
librium phase diagram for this size dispersity will be of the
eutectic type,41 as schematically illustrated in Fig. 4. At low
pressures, the equilibrium phase is a mixed isotropic liquid
AB. Upon increasing the pressure, a freezing point is
reached, and phase separation begins by precipitation of a
monodispersed phase B composed of large particles, in me-
chanical equilibrium with the surrounding liquid AB �de-
pleted in large particles�. When the pressure exceeds the

melting point, complete phase separation between the large
and small disks occurs and the mixed liquid phase ceases to
exist. It is important to note that the equilibrium phase dia-
gram is typically presented at constant pressure and compo-
sition, whereas our simulations are carried out at constant
volume and composition. For sufficiently large systems, the
two ensembles must agree; however, for finite systems �we
typically use N=4096=642 disks, 1365 large ones and 2731
small ones�, coexistence is difficult to observe directly due to
the surface tension between the coexisting phases.

The chemical potential in a monodisperse system is 	
= f + p, where f is the free energy per particle and p is the
reduced pressure,42 while the pressure is P= p� /Vp, where
Vp is the volume of a particle and we have assumed that
kBT=1. The freezing point is the equilibrium point for phase
B and phase AB at a given composition xA=1−xB. It can be
determined by equating the �relative� chemical potential of
particle type B inside the mixture AB, 	AB

�B�, with the chemical
potential of the pure B phase, 	B

�B�, at equal pressures of the
the two phases,

	AB
�B� = 	B

�B�,

�4�
PAB = PB.

Carrying out several tedious calculations gives the following
expressions for the required chemical potentials:

	B
�B���B� = 
fB + pB + ln �B − d ln �

	AB
�B���AB� = 
fAB + pAB

�d

xA + xB�d − xA	̃B + ln �AB

− xA
�d − 1

xA + xB�d + ln
xB

xA + xB�d .

Calculating the relative chemical potential 	AB
�B� requires cal-

culating the sensitivity of the excess free energy of the mix-
ture with respect to the composition �at constant density�

	̃B = 
 �
fAB

�xA
�

�

,

in addition to the excess free energies and pressure at a fixed
composition. This can be done numerically by calculating
the excess free energy for mixtures with slightly differing
compositions via thermodynamic integration starting at low
densities �where a liquid theory approximate EOS works
well enough�. The condition of equal pressures gives

� =
�ABpAB��AB�

xA + xB�d =
�BpB��B�

�d ,

which can be used to express both �AB and �B as functions
of � and then solve the equation 	AB

�B����=	B
�B���� �cf. Eq.

�4��.
We do not give the full details of this calculation here,

and merely state the result for our binary mixture with xA

=2/3 and �=1.4. Our free-energy calculations predict that,
at densities higher than the freezing density �F�0.775, a
crystal of density ��0.8415 composed of predominantly
large particles should start precipitating from the liquid mix-

FIG. 4. �Color online� A schematic illustration of the eutectic phase diagram
assumed to apply to binary mixtures of hard disks with dispersity �=1.4.
The monodisperse phases are denoted by A and B, and the liquid mixture by
AB. The horizontal axes is the composition xA, and the vertical axes is the
pressure P. The location of the particular composition we study here is
marked by a vertical line, along with the freezing point F, the melting point
M, and the eutectic point E.
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ture �which remains at the freezing density�. As we will see
shortly, nucleation is kinetically strongly suppressed due to
the need for large-scale diffusion of large disks toward the
nucleus,43 and, in fact, we have not observed spontaneous
crystallization even in simulations lasting tens of millions of
collisions per particle well above the estimated freezing den-
sity.

We note in passing that had we used the best theoretical
liquid-state predictions for the EOS of the liquid mixture, as
discussed in Ref. 36, instead of the numerical EOS, we
would not predict a freezing transition at �F�0.775. Instead,
at all pressures, the mixture would be predicted to be more
stable, 	AB

�B��	B
�B�. As we will show in Sec. IV A, the liquid-

state theoretical prediction for the EOS is not sufficiently
accurate at the densities above ��0.75. We are not aware of
any better analytical form of the EOS for mixtures and,
therefore, prefer to use an explicit numerical EOS for the
liquid state. Also, note that predicting the melting point and
eutectic points requires knowing the EOS for the liquid mix-
ture at all compositions, and we have not tried to calculate
them in this work as our focus is on the freezing transition
and, in particular, the kinetic glass transition, at a fixed com-
position. In Ref. 34, an approximate EOS based on an effec-
tive single-component system was constructed, and the eu-
tectic point was estimated to occur at a composition of xA

=0.75. It is believed that mixtures closer to the eutectic com-
position are better glass formers, and this was one of our
reasons for choosing a composition xA=2/3 instead of the
commonly used xA=1/2.

The pair interaction potential used in Ref. 34 is of the
inverse power form,

Vij�r� = 

Ri + Rj

r
�n

,

where R is the disk diameter and the exponent n=12 is cho-
sen. For such an interaction potential, all thermodynamic
variables depend only on the scaled density

�̃ = 
 


kBT
�2/n

� ,

where � is the density �volume fraction� that a hard-disk
system would have if the particle diameters are the same. In
the limit n→�, the interaction potential becomes that of the
hard-disk system and �̃=�. For sufficiently large n, one ex-
pects that the behavior of the system, including melting and
freezing points, will be close to the hard-disk limit. For a
monodisperse disk system, the freezing point is known to be
�F�0.69 for n→�,44 while for n=12 it is �F�0.763.34 The
agreement is not perfect, but it encourages a comparison be-
tween our result for the freezing density of our mixture �F

�0.775 �at xA=0.67� with that predicted to be the eutectic
point in Ref. 34 �for xA=0.75�. From the data given in that
paper �T*=0.54, �*=0.725�, we obtain �̃F�0.761, which is
in reasonable agreement with our hard-disk result, when we
take into account the different molar composition and the
different interaction potential.

We briefly examine the phase-separated crystal A+B,
which we call the crystal phase even though one of the

monodisperse phases could, in fact, be liquid �i.e., not pos-
sess long-range translational order�. If phase separation is
complete, at a given overall density �, the density of each of
the phases �A��� and �B��� can be determined from the
condition of mechanical equilibrium between the phases,

P =
pmono��A��A

Vp
A =

pmono��B��B

Vp
B =

pmono��B��B

�dVp
A ,

along with the condition that the overall density be �,

1

�
=

1

xA + xB�d
 xA

�A
+

xB�d

�B
� .

The solution to these equations is shown in Fig. 5. It is seen
that, at a given density, the phase B, composed of large par-
ticles, is at a higher density and, thus, higher reduced pres-
sure. At a density of ��0.75, the small-particle phase A
melts to a liquid, i.e., loses its translational order.

Below a certain density, the large particles should start
diffusing into the phase of small particles, forming a mixture
AB. We used molecular dynamics to observe this melting of
the phase-separated crystal, starting from a high-density
phase-separated mixture and reducing the density slowly.
However, as Fig. 6 illustrates, even the slowest MD runs did
not achieve true equilibrium, as seen by the strong depen-
dence of the observed EOS on �. It is seen that below a
density of ��0.8, the phase-separated crystal is no longer
stable and large particles start diffusing in the small-particle
phase. This diffusion is very slow and even tens of millions
of collisions per particle cannot equilibrate the phase-
separated systems properly. A similar observation was made
for a binary mixture of soft disks in Ref. 34, and it was
concluded that “heterogeneous simulations can no longer
�below the glass transition temperature� help us to identify
the thermodynamically stable phase.” In our simulations,
long MD runs at a fixed density observed complete melting
at a density �=0.765 and, therefore, it is clear that, at this
density, the stable phase is the mixed liquid. However, at

FIG. 5. �Color online� The densities �A��� and �B��� of the large- and
small-particle phases in a fully phase-separated mixture at overall density �.
It is seen that the large-particle solid melts into a liquid at around
��0.75, and at ��0.65 the small-particle solid also melts. Note that this
calculation assumes that there is no mixing between the small and large
particles, which is only true at very high densities.
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�=0.775, only partial melting occurred and a crystallite of
large particles remained stable for very long periods of time.

IV. IS THERE AN IDEAL BINARY DISK GLASS?

Theories and simulations have already cast doubt on the
existence of ideal glass transitions in hard-particle
systems.8,23,45 For example, the slope of sc��J� at �J

IG dra-
matically affects the location of the presumed transition, and,
in fact, an infinite slope shifts the transition to zero
temperature.46 Additionally, the validity of extrapolations
into temperature/density regions that are inaccessible to ac-
curate computer simulations,47 as well as the importance of
finite-size effects48 have been questioned. We present a dis-
tinctly different evidence that the concept of an ideal glass
transition is flawed. For our binary hard-disk system, we
explicitly construct an exponential number of packings with
jamming densities �J in the interval from the “amorphous”
state, �J

g�0.84, to that of the phase-separated crystal, �max

=� /�12�0.91. This demonstrates that the configurational
entropy is only zero for the crystal, rather than a hypothetical
most-dense amorphous �ideal� glass.8 A parallel critique of
the concept of random close packing �RCP� was raised by
one of us.7 Specifically, there is a continuous trade-off be-
tween disorder �closely linked to degeneracy� and density, so
that the concept of a most-dense random packing is ill de-
fined. Instead, Ref. 7 replaces RCP with the maximally ran-
dom jammed �MRJ� state, i.e., the most disordered of all
jammed states.

A. Kinetic glass transition

The calculation of the true equilibrium liquid EOS is not
possible inside the glassy region with conventional simula-

tion methods, especially for large system sizes.47–51 We pro-
duce glasses by starting with a low-density liquid and grow-
ing the particle diameters at a growth rate ��1,11 for a very
wide range of compression rates �, as shown in Fig. 7. As
seen in the figure, at densities below ��0.775, the runs at
different expansion rates are all in quasiequilibrium and fol-
low approximately the same EOS, namely, the EOS of the
isotropic mixed liquid. After this density, fast compressions
fall out of equilibrium and follow a glassy EOS, leading to a
disordered jammed packing. Up to a density of about �g

�0.8, the slowest runs follow the same EOS, which suggests
that this is the EOS of the supercompressed liquid, i.e., the
metastable extension of the liquid branch.

This kind of liquid-branch extension cannot be obtained
using MD for monodisperse spheres in three dimensions
since slow compressions crystallize after the melting density
is surpassed �cf. Fig. 1�, and, therefore, theoretical predic-
tions about the existence or analytical form of such a hypo-
thetical branch26,32 cannot be verified computationally. For
the binary disk system, where crystallization does not occur,
the results in Fig. 7 suggest that one can numerically study
the liquid branch with high accuracy at least up to a density
of �g�0.8. In order to analytically extend the liquid EOS
beyond this density, we have fitted a cubic function to �̃J���
for the slowest runs up to the density where slowing down
the compression by an order of magnitude does not change
the observed pressure �within statistical variability�. The fit

�̃J��� = 3.136 − 8.4826� + 10.277�2 − 4.0356�3 �5�

is shown in Fig. 7. It should be emphasized that it is just a fit
and there is no reason to believe that it is quantitatively
accurate much beyond ��0.8. It is important to point out

FIG. 6. �Color online� Equation of state as observed at different negative
rates �, starting from a phase-separated crystal. We also show the EOS
obtained by compressing a dilute liquid with �=10−6, forming a glass at
high densities. It is seen that the phase-separated samples fall out of equi-
librium at densities below ��0.8, when sluggish diffusion of large particles
into the small-particle solid begins. At sufficiently low densities, complete
melting into a mixed isotropic liquid occurs and the EOS matches the one
measured by compressing a liquid. For comparison, we also show the EOS
for the monodisperse hard-disk system from Fig. 2. Note that the EOS of the
phase-separated crystal does not perfectly match that of the monodisperse
crystal because of the finite-size effects coming from the interface between
the large- and small-particle solids.

FIG. 7. �Color online� The equation of state �̃J��� for N=4096 disks as
observed by compressing a liquid with different expansion rates �. At den-
sities below ��0.775, the runs at different expansion rates follow the EOS
of the mixed liquid. However, after a kinetic glass transition density
�g�0.8, the systems become trapped in glassy configurations even for the
slowest runs. Note that we have run many more expansion rates over dif-
ferent density ranges and here we only show a representative sample. For
comparison, we also show the theoretical liquid mixture EOS �Ref. 68�,
using either the Henderson �g2� or improved �g4� EOS for the monodisperse
liquid, as given by Eq. �2� in Ref. 36. It is seen that the theoretical liquid
theory prediction is not sufficiently accurate at these densities. The EOS for
the SOC-constrained �estimated� MRJ glass is also shown.
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that in order to prepare a system in an �metastable� equilib-
rium liquid configuration at such high densities, one must
compress the �stable� liquid from lower density �at least �
�0.75� very slowly. Quenching the liquid fast to a high den-
sity produces states that are clearly not in any kind of ther-
modynamic equilibrium, even though they will appear meta-
stable due to very large relaxation times.

As seen in Fig. 7, above the kinetic glass transition den-
sity �g�0.8, the systems become trapped in glassy configu-
rations even for the slowest runs and jam in disordered pack-
ings with jamming densities �J�0.85. Note that different
definitions can be used for what the glass transition density
is. Here, we take it to be the maximal density at which our
simulations can equilibrate �not necessarily in the true equi-
librium state, but at least in a metastable liquid state� the
binary mixtures. We also see in Fig. 7 that the nonequilib-
rium glassy EOS is very well described by an empirical lin-
ear relation,

�̃J = �1 + ���J − �� , �6�

where ��0.133, over a wide range of ���g. We do not yet
have a theoretical understanding of this relation.

It is clear from the figure that even the slowest compres-
sions fall out of equilibrium at a density around �g, so that
equilibrating the liquid in reasonable time is not possible
beyond this kinetic glass transition density. Very long MD
runs, with as many as 50�106 collisions per particle, have
failed to equilibrate our samples at a fixed �=0.8, and, in
fact, very different microstructures all remained stationary
for very long periods of time. This is shown in Fig. 8, where
we show the evolution of the pressure during long molecular
dynamics runs at �=0.8 for several of the states in Fig. 7, at
fixed density. For the glasses produced with faster expansion
rates, the initial pressure is higher and then decays more
rapidly. However, a very slow residual decay of the pressure
is seen in all of the samples, indicating the occurrence of
very slow structural relaxation.

The final jamming densities of the glasses compressed at
different rates are shown in Fig. 9. Note that slower compres-

sions consistently yield denser packings with no hints of the
existence of a densest glass. Fast compressions produce
packings that are not truly jammed11 and subsequent relax-
ation of these systems increases the density to around �J

�0.847. This behavior of our hard-disk systems is closely
related to the observation that supercooled liquids sample
saddle points with the saddle index vanishing only below the
temperature where even the slowest cooling schedules fall
out of equilibrium,15,52 i.e., the kinetic glass transition tem-
perature. Observations similar to those in in Fig. 9 have al-
ready been made for systems of soft particles, e.g., the lowest
energy of the sampled inherent structures has been shown to
continuously decrease for slower cooling.5

In Fig. 10, we show the EOS for the SOC-constrained
solids obtained by taking a snapshot of a liquid configuration
at densities ranging from 0.7 �well within the equilibrated

FIG. 8. �Color online� The relaxation of the pressure during long molecular
runs at a fixed density �=0.8, for several of the glasses produced during the
compressions shown in Fig. 7. For comparison, we show the pressure pre-
dicted by the liquid branch extension in Eq. �5�.

FIG. 9. �Color online� Final jamming density �J for different numbers of
particles N, with and without additional relaxation �and subsequent slow
compression� to ensure that a truly jammed packing has been reached.

FIG. 10. �Color online� The EOS for SOC solids obtained by bounding each
disk within a cell of twice its size, starting with liquid or glass configura-
tions generated by saving snapshot configurations during one of the slowest
compression shown in Fig. 7 ��=10−7, replicated from Fig. 7 for compari-
son� and then compressing the SOC solid at �=10−6 to near jamming. The
initial densities �0 go from 0.7 to 0.825 and in the legend we only mark the
first and last curves since �0 can be read from the starting point of the each
curve. Also shown is the relaxation of the pressure �i.e., increase in �J� after
the cell constraints are removed.
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liquid density range� to 0.825 �well within the out-of-
equilibrium glassy density range�, and enclosing it with a
bounding cell with 
	=1. The liquid/glass configurations
were generated by saving snapshot configurations during the
slowest compression shown in Fig. 7 ��=10−7�. In the SOC
models, we measure the reduced pressure p through the mo-
mentum exchange during interparticle collisions only, and do
not include the pressure on the walls of the cells pc. The SOC
solid has a lower pressure than the unconstrained liquid be-
cause of the presence of cells, and the difference between the
two diminishes as the density increases, becoming virtually
negligible beyond the kinetic glass transition density. It is
interesting to observe that the EOS of the SOC solids also
follows Eq. �6� closely. The compressions of the SOC solids
generated from liquid snapshots seem to produce jammed
packings at densities as low as �J�0.83. However, these
packings are unstable once the bounding cells are removed
and molecular dynamics is run at a constant density, as
shown in Fig. 7. In particular, this subsequent relaxation
leads to glasses with �J�0.85, which is our best estimate for
the MRJ density, as discussed in more detail shortly.

B. Configurational entropy of glasses

In this section, we focus on calculating the free-volume
and configurational contributions to the entropy of the dense
liquid and glassy states obtained by compressing a liquid at
different rates �.

The number of jammed packings with jamming density
�J, Ng��J�=exp�Nsc��J��, was recently estimated for binary
mixtures of relatively small numbers of hard disks via ex-
plicit enumeration.53 An approximately Gaussian Ng��J� was
observed that is peaked at a density �MRJ�0.842, interpreted
to correspond to the MRJ state for this system. A Gaussian
Ng��J�, corresponding to an inverted parabola for sc��J�, is
usually assumed as a first guess.27 For large systems, explicit
enumeration of all of the jammed packings is not yet pos-
sible. Instead, thermodynamics has been used to estimate
sc��J� as the difference between the entropy �per particle� of
the liquid sL��� and the entropy of the “glass” sg���,

sc��̂J���� = sL��� − sg��� . �7�

The liquid entropy sL is obtained via thermodynamic integra-
tion of the equilibrium liquid EOS from the ideal-gas limit.
Here, we use the numerical EOS as obtained from various
small compressions �i.e., the smallest � we have been able to
use� as an estimate for sL. The glass entropy sg is defined as
the entropy of the system constrained to vibrate around a
single basin with jamming density �J, without the possibility
of particle rearrangements. In the truly glassy region, the
system is typically spontaneously constrained �jammed� by
virtue of a very slow rearrangement dynamics, so that sg can
be defined reasonably precisely. For dense liquids, however,
there is significant ambiguity in defining the constraints
bounding a single jamming basin.

Formally, one can always partition configuration space
into disjoint basins, each basin centered around a jammed
configuration. For soft spheres such a partitioning can be
defined by associating with each energy minimum �inherent

structure� the basin of states for which gradient descent leads
to the energy minimum under consideration. Such a partition
is only useful, however, if the configurational volume �free
energy� of a given basin sg�� ,�J� can be estimated easily, so
that the number of basins can be calculated from Eq. �7�.
Note that the number of basins can only be estimated using
thermodynamics up to exponential factors in N. We define
the glass free-volume entropy fg=−sg as the free energy of
the SOC-constrained glass, where the cell is sufficiently
large so that the pressure on the cell walls pc is negligible,
and small enough to prevent particle rearrangements.71 The
measured fg obviously depends on the chosen bounding cell
scaling �relative to the particles� 1+
	max, unless the pres-
sure on the cell walls pc�
	� decays sufficiently rapidly so
that truncating its integral at a given 
	max does not substan-
tially increase the free energy.

In Fig. 11, we show pc�
	� for SOC-constrained glasses
at several different densities �as in Fig. 10, but this time
shrinking the bounding cells rather than growing the par-
ticles�. We see that at densities above the kinetic glass tran-
sition, within numerical accuracy, pc�
	� goes to zero as 
	
increases. However, for densities below the kinetic glass
transition pc�
	� clearly remains positive and, therefore, the
fg measured for the SOC glass will show significant depen-
dence on the choice of cell cutoff. Here, we choose the cutoff
to correspond to the �shallow� minimum in pc�
	�, if there
is a minimum, or the point at which pc�
	� becomes nu-
merically indistinguishable from zero �pc�
	��0.01 in Fig.
11� otherwise. Closely related methods have previously been
used to calculate sc.

28,31,54 For soft-particle glasses, an alter-
native method is to use the harmonic approximation to the
vibrational entropy at an energy minimum as an estimate of
sg.29,30 All methods are rigorous only in the jamming or
T→0 limit and are approximate for truly equilibrated
liquids, so our quantitative results at low � should be inter-
preted with caution.

FIG. 11. �Color online� The averaged pressure on the bounding cell walls
pc�
	� as a function of the size of the cells for SOC glasses at several
different densities. Qualitatively similar results are shown in Ref. 69. For
comparison, the cell pressure that would be measured if the bounding cells
are disjoint is shown. Note that when pc becomes very small the simulation
is not able to measure it accurately within the time interval over which
particle-cell collisional momentum transfer is averaged.
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The excess free energy of the SOC glassy mixtures is
shown in Fig. 12, along with the free energy of the most-
equilibrated liquid/glass fL��� obtained by integrating the
numerical EOS from the ideal-gas limit. We see that the free
energy of the SOC glasses is substantially higher than that of
the unconstrained liquid at all densities. However, the differ-
ence becomes approximately constant at high densities and
seems to approach the entropy of mixing smix=xA ln xA

+xB ln xB�0.6365. With this observation in mind, we show
the measured sc���=sL���−sg��� for the different glass
compressions in Fig. 13. For comparison, the results for a
slow compression of a monodisperse system are also shown,
and the entropy of mixing has been subtracted from sc. It is
seen that, for the monodisperse case, sc−smix �smix=0 in this
case� becomes very nearly zero after the liquid freezes

�around ��0.7�, indicating a continuous or a very mildly
discontinuous liquid-solid phase transition �see also Fig. 3�.

More interesting is the fact that sc−smix also becomes
nearly zero for the binary glasses around the kinetic phase
transition �around ��0.8�. This important observation has
not been made before. It means that the estimated number of
packings that the liquid samples near the glass transition is
very close to smix, which is also the entropy of the uncorre-
lated ensemble of discrete states in which a fraction xA of the
particles is chosen to be large and the remaining particles are
chosen to be small. It is interesting to observe that the para-
bolic fit to sc��J� from the work in Ref. 53, if constrained to
equal the mixing entropy at the maximum, passes through
zero at ��0.9, much higher than the extrapolation in Ref.
27 and close to the crystal jamming density. We note that all
measurements of sc in the literature that we are aware of are
above or close to sc near the kinetic glass transition, and all
estimates of the zero crossing of sc are based on extrapola-
tions beyond this point without numerical support.27–32

C. Microsegregated glasses

The observations made in Fig. 13 strongly suggest that
extrapolations of sc above the kinetic transition, predicting an
ideal glass transition at density below the maximal possible
density, are flawed. The only way to get zero configurational
entropy is to get rid of the entropy of mixing, i.e., to fully
demix the two types of disks. In fact, an exponential number
of amorphous jammed packings exist over the whole density
range from that accepted as the MRJ density �MRJ�0.84 to
that of the phase-separated crystal �max�0.91. Lower-
density jammed packings also exist;53 however, they do not
have thermodynamic significance and, thus, our simulations
do not generate them. In our simulations, we observe that
higher �J implies microsegregation in the form of increased
clustering of the large particles. This has been most vividly
demonstrated in Ref. 34. This observation suggests that one
can generate denser packings by artificially encouraging
clustering, i.e., increasing the amount of �spatial� ordering in
the packings.

We employ the following procedure in order to encour-
age clustering of disks of the same size: We perform molecu-
lar dynamics starting from a monodisperse ��=1� triangular
crystal at pressure p=100 in which a third of the particles has
been selected as being “large.” These selected particles then
slowly grow in diameter while the pressure tensor is main-
tained isotropic and constant using a Parinello-Rahman-type
variation of the MD algorithm.19 The growth of the large
particles changes the size ratio �, and, when �=1.4, we stop
the process and then slowly compress the system to a very
high pressure �jamming�. We can achieve a desired level of
clustering and higher jamming densities for the final pack-
ings by spatially biasing the initial partitioning into large and
small disks. Figure 14 illustrates two different jammed pack-
ings, one with an uncorrelated random choice of large disks
and another with correlations encouraging microsegregation.
The packing produced by an uncorrelated random assign-

FIG. 12. �Color online� The excess free energy of the compressed liquid/
glass phase �with and without smix�, and of phase-separated SOC-constrained
crystals �note that the cell constraints prevent mixing at any density�. The
quantitative results for glasses at low densities ���0.8� should be inter-
preted with caution. Also shown are the predictions for an ideal phase-
separated mixture, which does not perfectly match with that of the SOC
solids even at high densities because of the entropic cost of the interface
between the large- and small-particle solids.

FIG. 13. �Color online� Estimated sc���−smix for monodisperse and bidis-
perse systems of N=4096 disks, as obtained from �sufficiently slow� com-
pressions with a range of �’s. The quantiative results for glasses at low
densities ���0.8� should be interpreted with caution.
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ment of small versus large particles is the most disordered
packing, i.e., it is representative of the MRJ state for this
binary hard-disk mixtures.

For the purpose of creating clustered initial assignments
of small or large �i.e., A or B� labels, we use a level-cut of a
Gaussian random field �GRF�.55 Specifically, we construct a
discretized GRF on a square lattice of 4096=642,56 and as-
sign label A to all sites where the field has value larger than
a certain cutoff �chosen so that two-thirds of the disks are
labeled A�, and label B otherwise. By using suitably chosen
parameters for a flexible family of pair correlation functions
originally proposed by Matern,57 we were able to generate
different levels of clustering, as illustrated in the inset in Fig.
16. Specifically, the two parameters for the Matern correla-
tion are the correlation length R and the interface smoothness
parameter 0���1. Increasing R or � increases the cluster-
ing, and we used five values of R going from 1 to 5, along
with five values of � going from 0.1 to 0.5, for a total of 25
different types of microsegregated initial configurations.
Higher values of R and � produce denser packings as the B
disks are grown in size at constant pressure, as illustrated in
Fig. 15.

FIG. 14. The microstructure of a packing without significant clustering �top left, �J��MRJ�0.846, R=1, and �=0.1�, with moderate clustering �top right,
�J�0.850, R=1, and �=1.0�, and with strong clustering �bottom left, �J�0.865, R=2, and �=2.0�. For better visualization, we only show portions of the
simulated system. For comparison, we show the full-size packing �N=4096� with moderate clustering in the bottom right inset. The lattice vectors of the
periodic unit cell are also shown. The unit cell started as a square, however, it deformed to a rectangular shape during the MD algorithm �even more so for
stronger initial clustering�.

FIG. 15. �Color online� Converting an initially monodisperse disk packing
of N=4096 disks into a jammed binary disk packing by slowly growing a
chosen third of the disks at a growth rate �=10−5 while keeping the pressure
at p�100. Here, we used a leveled GRF with the Matern correlation in
order to generate clustered initial configuration. It is seen that the estimated
jamming density �̃J��� decreases from �̃J�0.91 as the size dispersity �
grows to the final value of �=1.4. The larger the final jamming density, the
more clustered the initial configuration is.
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To determine the configurational entropy �degeneracy�
for a given choice of the GRF parameters, we use a recently
developed algorithm for obtaining numerical approximations
of the entropy �per site� of lattice systems.58 In principle, the
true degeneracy can be calculated by measuring the probabil-
ity p�C� of observing a particular configuration C of a rect-
angular window of n�m sites, and then calculating the en-
tropy per site

sn,m = lim
n,m→�

Sn,m

nm
= lim

n,m→�
�−

1

nm
�
C

�p�C�ln p�C��	 ,

where the sum is over all of the possible 2nm configurations.
The above limit is approximated accurately and efficiently
with small windows by exploiting a Markov
approximation,58 to obtain

sn,m � Sn,m − Sn−1,m − Sn,m−1 + Sn−1,m−1.

This approximation is seen to converge relatively fast, as
demonstrated in Fig. 16 for the 25 different choices of pa-
rameters R and � for the Matern correlation function. We
have used windows of 4�4 sites, since calculating Sn,m re-
quires generating many GRFs for the same correlation func-
tion and counting the probabilities of observing different
configurations of a window of size n�m sites. This process
becomes prohibitively expensive for n=m=5.

We will assume that a different assignment of A and B
labels will produce a distinct jammed packing, i.e., that the
set of packings produced by the use of our procedure with a
particular GRF forms a subset of all of the distinct jammed
packings. Furthermore, we assume that the configurational
entropy sc for the jammed packings generated with a particu-
lar choice of GRF is well approximated by sn,n for suffi-
ciently large n �we use s4,4 from Fig. 16�. In light of these
approximations, the sc we have calculated is a lower bound
on the true configurational entropy of the binary hard-disk
system. Figure 17 shows our results for sc versus the jam-

ming density �J, for the 25 different choices of the GRF
parameters. The results clearly show that, in order to increase
�J, one must sacrifice degeneracy �i.e., decrease sc�. The
figure also shows the first measured, rather than extrapolated,
estimate of sc��J�. This observed sc��J� only goes to zero for
the phase-separated crystal state, rather than the hypothetical
amorphous ideal glass state postulated by extrapolations.

It is not a priori obvious that sc�R ,�� is strongly corre-
lated with �J�R ,��, since they both depend on both R and �.
Such a strong correlation is demonstrated to be the case in
Fig. 18, where we show color plots of sc�R ,�� and �J�R ,��
over the grid of 25 values for �R ,��. This strong correlation
may be due to the particular choice of the correlation func-
tion in the GRF; however, it seems that such a trade-off
between density and disorder is inevitable. Ideally, what we
are interested in thermodynamically is the highest sc at a
given �J, i.e., the type of microclustering that decreases the
degeneracy the least in order to increase the jamming density
by a given amount from �MRJ. We do not know how to
calculate the true sc��J� or how to construct samples repre-
sentative of the most disordered samples at densities other
than �MRJ. The results obtained for the particular way we
generated microsegregated samples, shown in Fig. 17, show
a rapid drop in sc away from the MRJ point. That is, one
must cluster significantly before seeing an appreciable in-
crease in the jamming density.

A calculation of fJ for the different microsegregated
glasses, using the BCMD algorithm, shows that fJ is essen-
tially constant independent of �R ,��, at least to within statis-
tical fluctuations. Substituting this in Eq. �3� together with
the exponential fit sc��J� from Fig. 17 predicts that, for den-
sities lower than ��0.8, the equilibrated liquid samples the
MRJ basin, �̂J���=�MRJ, and for higher densities, the liquid
samples the phase-separated crystal basin, �̂J���=�max. On
the other hand, the smoothly increasing �J��� in Fig. 9, the
spontaneous clustering seen for supercooled soft disks in
Ref. 34, and the widely observed lowering of the energies of
the sampled inherent structures for soft-sphere glasses upon

FIG. 16. �Color online� The Markov approximation sn,n to the entropy per
site for n=2–4 �Ref. 58�, for different choices of the parameters R and � for
the Matern correlation function in the GRF. It is seen that s3,3 is close to s4,4,
suggesting that s4,4 is a good approximation to the true entropy per site,
especially for less clustered configurations �i.e., higher s4,4�. �Inset� Sample
realizations of the partitioning into large and small sites on a 642 grid, for
several values of R and �.

FIG. 17. �Color online� The measured degeneracy of packings of N=4096
disks obtained by using different parameters of a random Gaussian field
with Matern correlations �Ref. 55�, as a function of the jamming density. For
comparison, we have shown sc��=0.825� for the three glass compressions
shown in Fig. 13, and an exponential fit to the data.
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supercooling5 all suggest that �̂J��� should be continuously
increasing for very dense liquids. Such behavior of �̂J���, at
least within the inherent-structure formalism we consider
here, requires that sc��J� decay very slowly around �MRJ, so
that the liquid prefers to lose degeneracy by ordering �clus-
tering� in order to gain free volume. We expect that there
exists an exponential number of ordered jammed states with
densities lower than �MRJ, and, therefore, that sc��J� is a
smooth function, rather than having a cusplike maximum or
sharp discontinuity at �MRJ. In fact, the expected behavior in
sc��J� is that it would be quadratic around �MRJ, i.e., close to
an inverted parabola with a maximum at �MRJ.

V. CONCLUSIONS

In this paper, we studied a binary hard-disk system as a
prototypical glass former. We explicitly demonstrated that
the concept of random close packing �RCP� as the most-
dense jammed amorphous packing is flawed, continuing on
work in Ref. 7. We constructed an exponential number of
amorphous jammed packings with densities spanning the
range from the most disordered to most ordered jammed
states. This simple yet powerful construction continually
trades off degeneracy for density. We explicitly calculated,
rather than extrapolated, the degeneracy entropy for densities
well above that of the postulated ideal glass transition. We
found that the degeneracy is positive for all “amorphous”
states and is very close to the mixing entropy for the maxi-
mally random jammed state. Furthermore, the configura-
tional entropy vanishes only for the phase-separated crystal.
Free-energy calculations predicted a thermodynamic crystal-
lization well below the kinetic glass transition. This points to
the fact that the glass is metastable even for binary mixtures
and casts additional doubt on the search for a thermodynamic
origin of the glass transition.

It is important to stress that our argument has nothing to
do with mixing macroscopic liquid and crystal domains
�with sharp and identifiable interfaces that make for a negli-
gible reduction in density� in order to get mixed states of
intermediate densities. Instead, we construct an exponential
number of amorphous configurations that show no signs of
crystal nuclei. Artificially mixing large crystal domains with
large liquid domains severely underestimates the number of
available jamming configurations, since, in the vicinity of the
glass transition, the configurational entropy is close to the
entropy of the completely mixed system. For the binary
hard-disk system, there is no sharp boundary between crystal
and liquid states. The microseparated samples we con-
structed in our work are not mixtures of a liquid and a crystal
phase. They are disordered �amorphous� states that have no
qualitative difference from the liquid state. In particular, they
do not have �quasi�long-range order and do not have macro-
scopic domains that could be considered crystal. Perhaps
more significantly, these states are not artificial constructions
in which we just mixed some crystal and liquid in a trivial
manner. Rather, our choice was motivated by careful obser-
vations of the actual thermodynamic and kinetic behavior of
hard-disk mixtures. Specifically, as we decreased the com-
pression rate �cooling rate for soft disks�, we saw spontane-
ous microclustering happening �this has been observed in
other systems�. If we had many more decades of computa-
tional power, we believe we would see microsegregated
glassy states appear spontaneously.

Unfortunately, our results do not resolve the mystery of
the nature of the glass transition. In fact, the complete ther-
modynamic behavior of hard-disk mixtures remains unclear.
Free-energy calculations predicted a freezing transition, but
it could not be observed directly with classical MD due to
the dramatic kinetic slowdown near the glass transition. Such
free-energy calculations proceed in reverse order: One as-
sumes what are the equilibrium structures, and then selects
the one with the lowest free energy. At high densities, how-

FIG. 18. �Color online� A demonstration that sc�R ,�� �b� is strongly corre-
lated with �J�R ,�� �a�. The x axes of the color plots is �, and the y axes is
R. If a similarly strong correlation exists for different choices of clustering
correlations, it is important to determine whether the sc��J� we show in Fig.
17 applies to other choices of GRFs.
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ever, it is not clear what are the properties of the liquid
phase, and whether it exists at all. It is hoped that the
inherent-structure formalism, i.e., the partitioning of the
available configuration space into jamming basins, can de-
scribe the thermodynamic properties of dense or cool liquids
well. For hard-sphere systems, this requires the identification
and counting of distinct configurations in a statistical en-
semble of jammed packings. This has been done by direct
enumeration for small systems, however, enumeration is not
possible for large systems. In this work, we identified distinct
packings for hard-disk mixtures with distinct partitionings of
the disks in a monodisperse triangular crystal into small and
large disks. Such an identification converts the difficult geo-
metrical problem of packing disks into a much simpler com-
binatorial problem of generating partitionings of the triangu-
lar lattice. This identification was suggested by the fact that
the calculated configurational entropy near the glass transi-
tion is very close to the mixing entropy.

For the purposes of calculating configurational entropy,
it is not necessary that the identification is one to one. Rather,
it is only necessary that the number of jammed packings
corresponding to a given partitioning �and vice versa� is sub-
exponential in N, or exponential in N but with a multiplier
that is small compared to the multiplicity of the partitioning.
Starting with a given partitioning, we described a procedure
for generating a corresponding packing using MD. While it
is not trivial to prove mathematically that this generates a
unique and distinct packing, we expect that this would be the
case if the MD algorithm would be run for an infinitely long
time at infinite pressure. In the other direction, starting with
a given jammed isostatic bidisperse packing, one can shrink
the diameters of the large particles and maintain the existing
contacts, while also maintaining jamming. Along the way,
new contacts will be formed and old contacts broken, and the
path of the algorithm is not unique, but it is expected that the
number of different choices that can be made is sub-
exponential in N. In the end, this procedure will generate a
monodisperse jammed packing in which the otherwise iden-
tical disks are labeled either small or large. Our previous
analysis59 suggested that the majority of strictly jammed
monodisperse disk packings are the triangular packings with
vacancies. These arguments suggest that for hard-disk mix-
tures there may indeed be a strong correspondence between
jammed packings and partitionings of the triangular lattice. It
would be a useful future exercises to consider adding vacan-
cies to the initial triangular configurations before applying
the Gaussian random fields to them. This might increase
sc��� and produce the expected inverted parabolic shape and,
in particular, generate jammed packings at densities below
�MRJ.

We believe that the fundamental principles are general
enough to be applicable to a host of related systems, notably,
both mono- and bidisperse with hard-core and soft interac-
tions. Specifically, in all of these systems there will be an
exponential number of states in between the most disordered
�most amorphous� and most-ordered �crystal� one. For binary
mixtures of soft disks the partially segregated configurations
we constructed will correspond to inherent structures with
continually decreasing depths. Similar constructions to the

one used here �starting with microsegregated lattice configu-
rations to obtain denser amorphous packings� can be carried
out for three-dimensional binary mixtures as well. However,
the computational effort involved in preparing sufficiently
large samples and calculating their configurational entropy
explicitly will be significantly higher. Furthermore, simula-
tions of dense or supercooled liquids in three dimensions are
more computationally demanding and the quasiequilibrium
behavior of overcompressed or supercooled binary mixtures
has not yet been clearly determined. It is therefore difficult to
guess the structure of the dense glasses; we expect that mi-
crosegregation will occur even in three dimensions, but the
increase in dimensionality also increases the number of
available ways to arrange the particles in order to reduce the
free energy.

The existence of an ideal glass transition for monodis-
perse hard-sphere systems remains an open question. It
should be noted that monodisperse systems in both two and
three dimensions are arguably not good model systems for
the study of the glass transition. Hard-disk systems crystal-
lize very easily and do not seem to form disordered jammed
packings,59 and hard-sphere systems crystallize relatively
easily and therefore highly nonequilibrium protocols with
unknown effects are needed in order to suppress crystalliza-
tion and produce glasses.7 Nevertheless, we have not yet
identified an explicit construction of an exponential number
of monodisperse jammed packings with densities spanning
the range from 0.64 to 0.74. Such a construction is necessary
in order to convincingly demonstrate that the configurational
entropy is only zero for perfect crystals and thus refute the-
oretical models suggesting the existence of an ideal glass
transition in dimensions higher than two.60,61 These and re-
lated issues are discussed in more detail in Ref. 61, where it
is, however, assumed that one can define a most-dense RCP,
contrary to our results for both binary hard-disk mixtures and
monodisperse spheres.

Finally, one should keep in mind that the binary hard-
disk mixture is a prototypical glass former and therefore any
successful theory of the glass transition should also apply to
it. It should also be noted that we refuted only one �albeit
popular� possible thermodynamic origin of the glass transi-
tion �specifically, vanishing of the configurational entropy�
and that there may be other possibilities. Recent work has
developed detailed thermodynamic theories of glassy states
in certain systems,62 including binary hard-disk mixtures.63,64

It is found that, similarly to what we find for binary hard-
disk mixtures, there is no sharp thermodynamic glass transi-
tion �at positive temperature�. Rather, these works find a con-
tinuous decrease in the number of configurations that the
system explores as the temperature is lowered, becoming
very small, but still positive, near the observed kinetic glass
transition. This suggests an Adams-Gibbs-type formula for
the relaxation time which however does not diverge at some
ideal transition. Extrapolations or approximate theories based
on the observed behavior in the liquid region above the ki-
netic transition would have wrongly predicted an ideal glass
transition in such systems. This shows that predicting the
true thermodynamic behavior of very dense or supercooled
systems requires complex statistical mechanics calculations
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that, to our knowledge, can explicitly be carried out only for
model systems in two dimensions. Future theoretical and
computational work will hopefully be able to treat three-
dimensional systems.

An important avenue of research is the development of
algorithms to equilibrate liquids at densities higher than the
kinetic glass transition. It is clear that such algorithms must
be very different from classical MD. However, despite the
fact that several algorithms have helped significantly reduce
the simulation times necessary to equilibrate supercooled or
super-compressed liquids,47–51 true thermodynamic �meta�
equilibrium for samples of reasonable size has not yet been
achieved at sufficiently high densities to properly elucidate
the thermodynamics of disordered solids. Finally, the contin-
ued failure to identify any thermodynamic origin to the glass
transition suggests that the kinetics of supercooled and super-
compressed liquids needs to be understood better. We believe
that the hard-sphere system is an ideal model for such stud-
ies.
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