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We used the topology optimization technique to obtain two-dimensional, isotropic
cellular solids with optimal effective elastic moduli and effective conductivity. The
overall aim was to obtain the best (simplest) manufacturable structures for these
effective properties, i.e., single-length-scale structures. Three different but simple
periodic structures arose due to the imposed geometric mirror symmetries: lattices with
triangular-like cells, hexagonal-like cells, or Kagomé-like cells. As a general rule, the
structures with the Kagomé-like cells provided the best performance over a wide range
of densities, i.e., for 0 ø f <0.6, where f is the solid volume fraction (density). At
high densities (f > 0.6), Kagome-like structures were no longer possible, and lattices
with hexagonal-like or triangular-like cells provide virtually the same optimal
performance. The Kagomé-like structures were found to be a new class of cellular
solids with many useful features, including desirable transport and elastic properties,
heat-dissipation characteristics, improved mechanical strength, and ease of fabrication.

I. INTRODUCTION

Hashin and Shtrikman found the best possible bounds
on the effective elastic moduli1 and conductivity2 of iso-
tropic two-phase composites for a given phase volume
fraction. Thus, isotropic two-phase composite structures
that achieve the bounds are optimal for these properties
given volume-fraction information only. Knowledge of
such optimal structures is of fundamental and practical
value. All of the known optimal structures are multiscale
structures1–7 and therefore not manufacturable. The only
exceptions are the single-length-scale structures that
achieve the bulk-modulus and conductivity bounds for
all volume fractions found by Vigdergauz.7 The compan-
ion shear-modulus bounds are not known to be achiev-
able by simple single-length-scale structures over the
entire range of volume fractions.

In a previous study,8 we determined the elastic moduli
of periodic, two-dimensional cellular solids consisting
either of triangular or hexagonal cells over the entire
range of volume fractions. The triangular honeycombs
are actually optimal for the bulk modulus, shear modulus
and conductivity in the limit of vanishing solid volume
fraction and are close to being optimal for non-zero vol-
ume fractions. This work motivates us to ask What are
the simplest (i.e., single-length-scale) structures that
yield optimal elastic performance?

The purpose of this paper is to identify simple (manu-
facturable), two-dimensional, isotropic structures that are
optimal for the effective bulk and shear moduli over the
entire density range. We will focus on single-length-scale

periodic structures. This is accomplished with the topol-
ogy optimization technique9,10 with a unit cell in which
the required elastic isotropic symmetry is enforced by
imposing certain geometric mirror symmetries. The to-
pology optimization method has been used to determine
the optimal structures of composites for various effective
properties without imposing the underlying geometry,
i.e., the shape and size of the phase elements and the
topology of the individual phases.

In the next section, the Hashin–Shtrikman bounds on
the elastic moduli are recalled and discussed. In particu-
lar, we briefly describe some of the optimal structures
that achieve these bounds. In Sec. III, the topology op-
timization technique is used to find simple, periodic,
two-dimensional, isotropic structures that are optimal for
the effective properties. Our results are summarized in
Sec. IV. It is shown that at intermediate densities, the
optimal structures are characterized by an underlying
Kagomé lattice. In Sec. V, we discuss the improved me-
chanical and transport performance characteristics of
Kagomé cellular solids. In Sec. VI, we give concluding
remarks and discuss directions for future work.

II. HASHIN-SHTRIKMAN BOUNDS AND
OPTIMAL STRUCTURES

A. Hashin–Shtrikman bounds

Consider a two-dimensional isotropic cellular solid
that consists of a solid of volume fraction f, bulk modu-
lus k, shear modulus G, and conductivity s, and a void
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phase of volume fraction 1 −f. Let ke and Ge be the
effective planar bulk and shear moduli, respectively, and
se be the effective planar conductivity. The Hashin–
Shtrikman upper bounds on the effective moduli of any
two-dimensional isotropic cellular solid1 are given by
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The corresponding Hashin–Shtrikman upper bound on
the effective conductivity2 is given by
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For reasons of mathematical analogy, results obtained for
the effective electrical conductivity translate immedi-
ately into equivalent results for the effective dielectric
constant, thermal conductivity, and magnetic permeabil-
ity. Note that the corresponding lower bounds on the
moduli and conductivity are essentially zero.

In the low-density limit (f → 0), the Hashin–
Shtrikman bounds become
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We see that the effective properties are linear functions
of f. Similarly, in the high-density limit (f → 1), the
same bounds become
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These asymptotic forms are linear functions of (1 − f).
All two-dimensional isotropic cellular solids must
obey bounds (4)–(6) when f → 0 and bounds (7)–(9)
when f → 1.

B. Optimal structures

The Hashin–Shtrikman bounds are the best bounds
(i.e., optimal) on ke, Ge, and se, given only volume-
fraction information, because they are known to be

attainable by several different types of structures. These
include certain multiscale structures, such as space-
filling singly coated circles that realize the bulk-
modulus1 and conductivity2 bounds as well as
hierarchical laminates5,6 that realize the bounds on ke,
Ge, and se. However, such multiscale structures cannot
be manufactured. More recently, the bounds on the ef-
fective bulk modulus ke were shown by Vigdergauz7 to
be realizable by simple single-length-scale structures.
The same Vigdergauz constructions realize the upper
bound on se.

However, simple single-length-scale structures are
known only to achieve the shear-modulus upper bound in
either the low-density limit (f → 0) or the high-density
limit (f → 1). In the limit f → 0, the triangular lattice
[Fig. 1(a)] attains the Hashin–Shtrikman upper bounds
on both the bulk and shear moduli as well as the con-
ductivity and thus satisfy the asymptotic expressions (4),
(5), and (6) as equalities.12 In this same limit, the
Kagomé lattice, a certain combination of the triangular
and hexagonal lattice shown in Fig. 1(b), also attains the
upper bounds (4), (5), and (6) on both elastic moduli and
conductivity.13 The reasons why these particular struc-
tures are optimal are because the elastic response is de-
termined by extension/contraction (not bending) of the
cell walls and the transport properties are determined by
transport along the cell walls. In the limit f → 1, it is
well known that dilute arrays of circular holes satisfy the
asymptotic expressions (7), (8), and (9). In particular,
a dilute array of circular holes arranged on the sites of a
hexagonal lattice [Fig. 1(c)] or triangular lattice [Fig. 1(d)]
achieve these high-density asymptotic expressions.

III. NUMERICAL SIMULATION USING
TOPOLOGY OPTIMIZATION

To find the simplest, periodic, two-dimensional struc-
tures (i.e., single-length-scale structures) with optimal
elastic moduli, we utilize the conventional topology op-
timization.9,10 This numerical optimization technique has
been used to determine optimal structures without im-
posing the underlying topology. This feature is very
important because the effective properties of a composite
depend sensitively on the connectivity of the phases.

To begin, the design domain is digitized into a large
number of finite elements. To simulate infinite systems,
we consider a simple unit domain (specified shortly) with
periodic boundary conditions. One could begin by mak-
ing an initial guess for the distribution of the material and
void phases among the elements, solve for the local fields
using finite elements, homogenize, and then evolve the
microstructure to the optimal configuration. However,
even for a small number of elements, this integer-type
optimization problem becomes a huge and intractable
combinatorial problem. Following the idea of standard
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topology optimization procedures, we relax the problem
by allowing the material at a given point to be a grayscale
of an intermediate phase that lies between the material
phase and void phase.10,14 In the relaxed system, we let
xi e [0, 1] be the local density of the ith element, so that
when xi 4 0, the element corresponds to the void phase
and when xi 4 1, the element corresponds to the material
phase. Let x (xi, i 4 1, . . . , n) be the vector of design
variables that satisfies the constraint for the fixed volumn
fraction f 4 〈xi〉. For any x, the local fields are com-
puted using the finite element method, and the effective
property Ke(K; x), which is a function of the material
property K and x, is obtained by the homogenization of
the local fields. The optimization problem is specified as
follows:

Maximize : F = Ke~x! , (10)

subject to :
1

n î=1

n

xi = f ,

0 ø xi ø 1, i = 1,…,n ,

and prescribed symmetries .

The objective function Ke(x) is generally nonlinear. To
solve this problem, we linearize it, enabling us to take
advantage of powerful sequential linear programming
techniques. Specifically, the objective function is ex-
panded in Taylor series for a given microstructure x0:

F . Ke (x0) + ,Ke ? Dx , (11)

where Dx 4 x − x0 is the vector of density changes. In
each iteration, the microstructure evolves to the optimal
state by determining the small change Dx. Following
Hyun and Torquato,15 we use the interior-point method16

to optimize the linearized objective function in Eq. (11).
In each iteration, the homogenization step to obtain the
effective property Ke(K; x0) is carried out numerically
via the finite-element method on the given configuration
x0. Derivatives of the objective function (,Ke) are cal-
culated by a sensitivity analysis that requires one finite
element calculation for each iteration. Refer to Sigmund
and Torquato for additional details regarding the topol-
ogy optimization method.10

The objective function F is taken to be the effective
shear modulus. We use a rectangular unit cell with an
aspect ratio of √3 (see Fig. 2) for two reasons. First, the
required elastic isotropic symmetry can be easily

FIG. 1. Examples of optimal two-dimensional, isotropic cellular-solid structures for the effective bulk modulus, shear modulus and conductivity.
In the limit f → 0, we show (a) the triangular lattice and (b) the Kagomé lattice. In the limit f → 1, we show dilute arrays of circular holes
centered on the sites of (c) a hexagonal lattice and (d) a triangular lattice.
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enforced by imposing geometric mirror symmetries
about the three lines indicated in Fig. 2. This unit cell in
combination with the imposed mirror symmetries result
in Bravais lattices having bases with either 3 m (three-
fold rotational symmetry axis and one line of mirror sym-
metry) or 6 mm (six-fold rotational symmetry axis and
two lines of mirror symmetry) point group symmetries.11

For either point group, the elastic symmetry is always
isotropic. Second, in our previous work,8 we found that
single-length-scale triangular-cell structures consistent
with this unit cell are close to being optimal. The planar
bulk modulus k and shear modulus G of the material
phase are taken to be 4/3 and 1, respectively. The initial
guess for the distribution of phase elements is taken to be
random (i.e., the gray scale is assigned randomly) and the
structure is evolved to achieve the optimal effective
properties under the prescribed constraints. Various fil-
tering parameters10 were used so that structures with dif-
ferent types of cells could arise. The unit domain was
digitized by 82 × 142 square finite elements during the
topology optimization process. After the optimization
process was completed, the optimized shape was refined
by the enhanced resolution of 200 × 346 for the accurate
finite element calculation of the effective elastic moduli.

IV. RESULTS

Using the topology optimization technique described
in Sec. III, we found periodic, single-length-scale, two-
dimensional, isotropic cellular solids with optimal
effective shear moduli. Three different but simple
periodic structures arise due to the imposed geometric
mirror symmetries: structures with triangular-like cells,
hexagonal-like cells, or Kagomé-like cells. Whereas
the triangular-like and hexagonal-like structures are char-
acterized by cells of the same shape and size, the

Kagomé-like structures are characterized by cells of two
different shapes and sizes (large hexagonal-like cells and
smaller triangular-like cells). The cell sizes were con-
trolled by changing the filtering parameter in the topol-
ogy optimization technique. We obtained results for a
wide range of volume fractions: f 4 0.1, 0.2. 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, and 0.9. Our optimization results for the
effective shear modulus are summarized in Fig. 3. The
corresponding effective bulk moduli amid conductivities
for these optimal structures were directly computed and
are summarized in Figs. 4 and 5. We note that the opti-
mal structures for the shear modulus tend to be optimal
for the bulk modulus and conductivity as well. As a
general rule, the structures with the Kagomé-like cells
yield the best performance over a wide range of densities,
i.e., for 0 ø f < 0.6, where f is the solid volume fraction
(density). At high densities (f > 0.6), Kagomé-like

FIG. 2. The unit domain is a rectangle with an aspect ratio of √3. This
results in structures with hexagonal symmetry, which ensures the
structure will be elastically isotropic.

FIG. 3. The dimemisionless effective shear modulus Ge/G versus
solid volume fraction f for the optimal single- and double-length-scale
structures that we found by the topology optimization method. The
Hashin–Shtrikman upper bound (2) is included.
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structures are no longer possible and lattices with hex-
agonal-like or triangular-like cells provide virtually the
same optimal performance.

We have already noted that as the density goes to zero
(f → 0), both the triangular and Kagomé lattices (see
Fig. 1) are optimal for the shear modulus (as well as bulk
modulus and conductivity) among all structures; i.e., they
achieve the Hashin–Shtrikman upper bounds (4)–(6).
Thus, it comes as no surprise that at finite but low den-
sities (f 4 0.1), both the triangular-like cell structures
and Kagomé-like cell structures are virtually the same as
the Hashin–Shtrikman upper bounds. (Note that the cen-
ters of the triangular-like cells are situated on the sites of
a hexagonal lattice.) Figure 6 shows both of these opti-
mal structures at f 4 0.1.

However, at intermediate densities (0.3 ø f < 0.6),
the Kagomé-like cell structures are superior to the

triangular-like cell structures. Figures 7 and 8 show the
resulting optimal structures at f 4 0.3 and 0.5. At
f 4 0.5, for example, the effective shear modulus of the
triangular-like and Kagomé-like cell structures are 93%
and 96% of the Hashin–Shtrikman upper bound (see
Fig. 3). Both of these optimal shear-modulus structures
are up to 98–99% of the Hashin–Shtrikman upper bounds
on the bulk modulus and conductivity (see Figs. 4 and 5).
Thus, although Kagomé-like cell structures are sub-
optimal in that they have effective properties that
lie below (but close to) the Hashin–Shtrikman upper
bounds, they are the optimal, single-length-scale
structure.

At high densities (0.7 ø f < 1), the structures with the
triangular-like or hexagonal-like cells offer the best per-
formance. Specifically, at f 4 0.7, triangular-like cells
(with smoothed corners), with centers on the sites of
a hexagonal lattice, and circular-like cells on the sites

FIG. 4. The dimensionless effective bulk modulus ke/k versus solid
volume fraction f corresponding to the optimal shear-modulus struc-
tures of Fig. 3. The Hashin–Shtrikman upper bound (1) is included.

FIG. 5. The dimensionless effective conductivity se/s versus solid
volume fraction f corresponding to the optimal shear-modulus struc-
tures of Fig. 3. The Hashin–Shtrikman upper bound (3) is included.
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of a triangular lattice are the optimal structures for the
elastic moduli and conductivity (see Fig. 9). At f 4 0.9,
the cell shapes approach a circle on either a hexagonal or
triangular lattice (see Fig. 10) and possess properties that
approach the Hashin–Shtrikman upper bounds. This is
consistent with the earlier observation (given in Sec. II)
that dilute arrangements of circles are optimal among all
structures, i.e., they achieve the Hashin–Shtrikman upper
bounds (7)–(9). Note that at the high densities (f > 0.6),
the Kagomé-like structures are not attainable.

Vigdergauz7 used a genetic algorithm to find the op-
timal shapes of single-size cells centered on the sites of
a triangular lattice for the effective shear modulus. At the

solid volume fraction f 4 0.4, he found that the optimal
cell shape was hexagonal-like. This structure is com-
pared to the optimal Kagomé-like cell structure that we
found in the present study in Fig. 11. The effective
moduli of the Kagomé-like cell structure are about 95%
of the Hashin–Shtrikman upper bounds and therefore
are significantly higher than the effective moduli of
the structure found by Vigdergauz (about 65%
of the Hashin–Shtrikman upper bounds); see Fig. 3 at
f 4 0.4. Of course, in the high density range, the opti-
mal cell shapes that Vigdergauz found become circular-
like, and in the limit f → 1, become circles, which we
have seen are optimal among all shapes.

FIG. 6. Optimal structures that we found for the effective shear modu-
lus at f 4 0.1. Shown are two-by-two arrays of the optimal unit cells.

FIG. 7. As in Fig. 6, except that f 4 0.3.

FIG. 8. As in Fig. 6, except that f 4 0.5.

FIG. 9. As in Fig. 6, except that f 4 0.7.
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V. KAGOMÉ CELLULAR SOLID AS A
MULTIFUNCTIONAL MATERIAL

Since Syozi18 introduced the Kagomé lattice for the
study of phase transitions in magnetic materials, this lat-
tice has been investigated to understand its interesting
magnetic properties,19–21 superconducting properties,22

as well as its percolation characteristics.23 However,
there have been only a few studies of its macroscopic
properties when used as a cellular solid, although, as
we will see, the Kagomé lattice possesses interesting

features and may find useful applications. Chen et al.24

examined the percolation behavior of the elastic con-
stants for the Kagomé lattice. Except for the observation
that the Kagomé lattice has optimal elastic moduli in the
zero-density limit,13 its desirability as a material with
useful multifunctional characteristics has heretofore not
been pointed out.

Our identification of Kagomé-like cellular solids as
simple but optimal structures in their elastic moduli and
transport properties for an appreciable range of volume
fractions suggest that such materials may have other use-
ful properties. For example, Kagomé-like cellular solids
will have superior strength to the elastic buckling loads
than either triangular-like or hexagonal-like cellular sol-
ids. We performed finite element calculations to compare
the strengths of triangular-like structures and Kagomé-
like structures under the Euler buckling loads at the low
volume fraction of f 4 0.1 (see Fig. 6). The local axial
stresses (saxial) along the centroids of the cell walls (hori-
zontal cell walls) were calculated under external uniaxial
(horizontal and vertical) and shear loads. We compared
only the axial stresses because the elastic responses are
determined by extension/contraction (not bending) of the
cell walls at such a low density. As seen in the Table I,
these two cellular solids have virtually the same local
stresses in the corresponding cell walls under the same
external loading conditions.

From standard beam theory,25 when the thickness of
the walls is constant and the length of the walls is l, the
critical Euler buckling load Pcrit is given by

Pcrit4
n2p2EsI

l2 , (12)

where Es is the Young’s modulus of the solid phase, and
I is the second moment of inertia of the cell wall. The
factor n describes the rotational stiffness of the node
where the cell walls meet. It is seen that the length of a
cell wall in the Kagomé lattice is half of that in the
triangular lattice [Figs. 6(a) and 6(b)]. Thus, Kagomé-
like cellular solids can be made four times more resistant
to the same elastic buckling loads than the triangular
cellular solid.

FIG. 10. As in Fig. 6, except that f 4 0.9.

FIG. 11. Optimal hexagonal-like cellular structure (a) found by Vig-
dergauz17 and optimal Kagomé-like cellular structure (b) found by us
for the effective shear modulus at the volume fraction f 4 0.4. Struc-
tures (a) and (b) achieve about 65% and 95% of the Hashin–Shtrikman
upper bound, respectively.

TABLE I. Local axial stresses (saxial) along the centroids of the cell
walls of the triangular-like and Kagomé-like cellular solids (due to unit
external stresses) at a volume fraction f 4 0.1. Horizontally oriented
cell walls (A) as well as cell walls oriented at 60 degrees with respect
to the horizontal (B) are considered.

External loading

Triangular-like Kagomé-like

cell wall A cell wall B cell wall A cell wall B

Horizontal 2.374 0.6081 2.395 0.6049
Vertical 0.01422 1.845 0.01093 1.835
Shear −0.00024 1.066 0.00146 1.050
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Although multiscale or hierarchical structures may
have optimal properties, they are not usually manufactu-
rable, or high cost is required to fabricate them. How-
ever, Kagomé-like structures could be manufactured
easily. For example, man has made use of this particular
structure to fabricate (bamboo) baskets (which the lattice
was originally named after).18 Kagomé-like structures
can be manufactured relatively easily by weaving metal-
lic wires. This textile-based approach has been used to
fabricate square networks in multifunctional microtruss
laminates.26 Our present work suggests that the Kagomé
pattern can be used in the same sandwich panels to im-
prove the aforementioned mechanical performances. In-
deed, besides the textile-based technique, a rapid
prototyping and investment casting technique has been
utilized to fabricate more complicated structures, such as
the tetragonal27 and three-dimensional Kagomé patterns
in truss core panels.28

Besides having desirable mechanical and conduction
properties, Kagomé-like cellular solids will have desir-
able heat-dissipation properties due to the large hexago-
nal holes through which fluid may flow [see Fig. 6(b)]. It
is known that hexagonal holes provide much higher heat-
dissipation performance than triangular holes in sand-
wich panels with two-dimensional metal cores.29 Thus,
Kagomé-like cellular solids may find useful applications
as a multifunctional material at both macroscopic and
microscopic levels.

VI. CONCLUSIONS

We have identified the single-length-scale, two-
dimensional, isotropic, cellular solids that are optimal for
the elastic moduli and transport properties over the entire
range of volume fractions. Structures with Kagomé-like
cells are found to be a new class of cellular solids with
many useful features, including desirable transport and
elastic properties, heat-dissipation characteristics, im-
proved mechanical strength, and ease of fabrication. We
recall that none of the obtained structures in this study
achieves the Hashin–Shtrikman upper bounds in the
intermediate-density range. Although our numerical pro-
cedure does not rigorously prove that single-length-scale
structures cannot achieve the Hashin-Shtrikman upper
bounds on the bulk and shear moduli and conductivity, it
suggests that this may be the case. It has recently been
shown that the nonlinear mechanical behavior of Kagomé
core panels are superior to tetragonal core panels.28
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