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We formulate a procedure to reconstruct the structure of general random heterogeneous media from limited
morphological information by extending the methodology of Rintoul and Torguht€olloid Interface Sci.
186, 467 (1997)] developed for dispersions. The procedure has the advantages that it is simple to implement
and generally applicable to multidimensional, multiphase, and anisotropic structures. Furthermore, an ex-
tremely useful feature is that it can incorporate any type and number of correlation functions in order to
provide as much morphological information as is necessary for accurate reconstruction. We consider a variety
of one- and two-dimensional reconstructions, including periodic and random arrays of rods, various distribu-
tion of disks, Debye random media, and a Fontainebleau sandstone sample. We also use our algorithm to
construct heterogeneous media from specified hypothetical correlation functions, including an exponentially
damped, oscillating function as well as physically unrealizable dis63-651X%98)01701-2

PACS numbes): 44.30+v

I. INTRODUCTION representing the phases of the structure. One approach was
originated by JosHi2] and extended by Quibli¢B] from 2D
The reconstruction of random heterogeneous media, sudo 3D reconstructions. Adlegt al. [4] refined the technique
as porous and composite media, from a knowledge of limitedo accommodate periodic boundary conditions. The linear
morphological informationcorrelation functionsis an in-  filter in this method convolutes linearly the independent
triguing inverse problem. An effective reconstruction proce-Gaussian field, giving another field that is still Gaussian dis-
dure enables one to generate accurate structures at will, amgbuted but correlated. The nonlinear filter then performs a
subsequent analysis can be performed on the image to obtainreshold cut to the field to generate the final reconstructed
desired macroscopic properti¢s.g. transport, electromag- structure. Through this nonlinear filter, the statistical proper-
netic, and mechanical propertjexf the media. This provides ties of the transformed field are related to that of the refer-
a nondestructive means of estimating the macroscopic prognce structure, and the problem leads to solving a nonlinear
erties: a problem of important technological relevance. Howsystem of equation&.g., by optimization methogi$o deter-
ever, it is clear that even if the correlation functions of themine the coefficients of the linear filters. This procedure has
reference and reconstructed systems are in good agreemebéen further modifiedl5—-7] as well.
this does not ensure that the structures of the two systems Another approach, which is based also on filtering, was
will match very well. This interesting question of nonunique- originally devised by Cahh8] and was analyzed in detail
ness can also be probed using reconstruction methodologiesnd applied by a number of investigatd®-14|. This ap-
Another useful application is the reconstruction of a threeproach differs from the aforementioned one in that the linear
dimensional(3D) structure using information obtained from filter has a different functional form, and it includes double-
a two-dimensional2D) micrograph or image. Such recon- level (apart from single-levelthresholding the correspond-
structions are of great value in a wide variety of fields, in-ing correlated Gaussian random fields. The method is found
cluding petroleum engineering, biology, and medicine, beto reconstruct well many classes of nonparticulate composite
cause in many cases only 2D images are available fomaterials, such as Vycor glass and membrane systems. How-
analysis. A further intriguing inverse problem that has beerever, the class of random media for which it works well is
suggested 1] is the construction of heterogeneous medialimited by virtue of the use of Gaussian random field. For
based on the specification of a model or hypothetical statisexample, as reported by Levifi4], the process does not
tical correlation function. This question involves understand+econstruct particulate systernf®uch as soilssatisfactorily.
ing the general mathematical properties of realizable correHe noted that more morphological information beyond that
lation functions. Finally, we note that reconstruction contained in the standard two-point probability functicie-
procedures can shed light on the nature of the informatioscribed in Sec. Il B is required to reconstruct these struc-
contained in the statistical correlation functions that aretures.
implemented. This potentially can aid one in identifying the The aforementioned filtering methods have been formu-
appropriate correlation functions that can effectively characlated for the reconstruction of two-phase isotropic media us-
terize a class of structures. ing standardone-point(volume fraction and the two-point
There are a number of approaches that have been taken ¢orrelation function information. These approaches are lim-
reconstruct random medj2-15]. An extensively examined ited in that they are difficult to extend to and incorporate
reconstruction method is based on successively passing aher correlation functions for two-phase isotropic media and
normalized uncorrelated random Gaussian field through are practically impossible to extend to general multiphase
linear and then a nonlinear filter to yield the discrete valuesand anisotropic media.
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The method we propose to reconstruct random media is a
variation of the simulated annealing method introduced by E=2 [fu(r)—fo(r)]2 1)
Rintoul and Torquatd15] who originally used the method to '
reconstruct dispersions of particles. In the present work, w

extend the method to reconstruct random media of arbitral el'o evolve the digitized system towards(r) (or in other

L o . %ords, minimizingE), we interchange the states of two ar-
topology by conS|der|ng dlgmzed. representatlons of t,h? Sysbitrarily selected pixels of different phases. This phase inter-
tems. The procedure involves finding a state of MiNIMUMcpange procedure has the nice property of automatically pre-
“energy” among a set of many local minima by interchang- serying the volume fraction of both phases during the
ing the phase of pixels in the digitized system. The energy igeconstruction process. After the interchange is performed,
defined in terms of a sum of the squared difference of th§ye can calculate the ener@y of the resulting state and the
reference and simulated correlation functions. The reconenergy differenceAE=E’'—E between two successive
struction procedure that we propose has a number of usefdtates of the system. This phase interchange is then accepted
features; it is(i) simple to implement(ii) generally appli-  with probability p(AE) via the Metropolis method as

cable to multidimensional, multiphase, and anisotropic struc-

tures, (ii) extendable to include any type and number of 1, AE<0
correlation functions as microstructural information, &ivd p(AE)= exg —AE/T), AE>0 2
can be used to construct heretofore unknown structures from ' '
specified correlation function@ven physically unrealizable
ones.
The outline of the rest of the paper is as follows: In Sec.
II, we formulate the reconstruction procedure for digitized
media. In particular, we will utilize the information con-
tained in the two-point probability functios,, the lineal- We adopt the suggestion that the startiigshould have a
path functionL, and the combination of these two correlation value such that the initial acceptance rate is [16]. The
functions G, and L), although other functions could also algorithm terminates when the energygiven by Eq.(1)] is
have been used. In Sec. Ill, we apply the procedure {0 fss than some small tolerance value or when the number of
variety of one-dimensional1D) models, including a case ¢onsecutive unsuccessful phase interchanges is greater than a
where we specify an unphysical correlation function. In Secjgrge number~20 000. At the ground state, the energy
IV, we employ the reconstruction technique to a number ofcan pe viewed as keast-squaresrror.
different 2D models. In Sec. V, we make concluding re-  The reconstruction procedure can be generalized to apply
marks. to an anisotropic multiphase system. This is done by using a
reference two-point correlation function b@)(r), wherer is
the position vector anflindicates the phase number of up to

whereT is the “temperature.” This method causégr) to
converge gradually tdo(r). The cooling schedule, which
governs the value and the rate of changd pfs chosen to
allow the system to evolve to the desired state as quickly as
possible, without getting trapped in any local energy minima.

Il. FORMULATION OF THE RECONSTRUCTION p for a p-phase system. One can even extend the process to
PROCEDURE employ m different n-point correlation functiong{"(r")
A. General procedure wherek=I, ... m, and each function depends upordif-
ferent positiong"=r,, ... r, (see Ref[15]). The accom-

The reconstruction methodology employed here follow
closely the one introduced by Rintoul and Torqugtb] but
is modified for use in digitized media. Thus, we are not only
able to carry out reconstructions for dispersion of particles,
but for anisotropic multiphase systems of arbitrary topology. E= E E > aj'k[fg,w(rn) —fUR(rm2, 3)
For simplicity, we will begin by outlining the reconstruction ik
procedure by considering only a single two-point correlation
function for statistically isotropic two-phase media. This iswhere the sum om is multidimensional over all configura-
followed by a description of a more general procedure incortions ofr". The quantitya;  in the expression is an arbitrary
porating a set of differenh-point correlation functions for weight that assigns the relative importance of each individual
anisotropic multiphase systems. correlation function contributing to the total energy. This pa-
Consider reconstructing a two-phase isotropic mediuntameter can even depend on the stage of reconstruction, so
where the “reference” two-point correlation functidig(r) that suitable correlation functions can be used at the initial
of phasej (equals to 1 or 2 in this casés provided. Here, stage to hasten the convergence to a crude structure, and then
the quantityr is the distance between two points in the sys-other correlation functions can be used at the end to refine
tem. Letfy(r) be the same correlation function of the recon-the reconstructed image.
structed digitized system, with periodic boundary conditions, There are a variety of correlation functions that can be
at some time step. It is this system that we shall attempt taised in the reconstruction procedure, including the two-point
evolve towardsfy(r) from an initial guess of the system probability function[17], lineal-path functiorj 18], two-point
configuration. cluster function 19], chord-length distribution functiof20],
Oncefy(r) at a particular time step is evaluated, a vari-and pore-size distribution functiof21,22, to name just a
able E that plays the role of the energy in the simulatedfew. There exist more complicated correlation functions and
annealing can be calculated as we refer the reader to Ref23] for a thorough review. To

spanyingfs’s are defined in a similar way.
The energy can now be defined as
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illustrate the reconstruction procedure, we will apply thestructure has when it is constrained 8)r) atr=0 and 1

technique to both 1D and 2D two-phase isotropic system
using thetwo-point probability function gr) and thelineal-
path function I{r). These two correlation functions contain
substantial structural information and yet are simple enoug
to be implemented.

B. Two-point probability function reconstruction

The autocorrelation function of a statistically inhomoge-
neous system is defined as

SP(ry,r)=1D(r1V(ry)), (4)

wherer; andr, are two arbitrary points in the system, an-

gular brackets denote an ensemble average, and the charac-Sz(r)=(1—f) Sy(i)+f Sy(i+1),

teristic functionl )(r) is defined as

11
01

whenr is in phasg

10(r)= )

otherwise.

The quantityS(ZJ)(rl,rz) can be interpreted as the probability
of finding two points at positions; andr, both in phasg.
Thus, we will refer to it as thewvo-point probability function

For statistically isotropic medi&y’(r,r,) depends only
on the distance =|r;—r,| between two points, and there-
fore can be expressed simply &§(r). For all isotropic
media without long-range order,

S9(0)=¢; and limS)(r)=¢7, (6)

where ¢; is the volume fraction of phase For porous sol-

ids, Debyeet al. [24,25 developed a relationship between

S,(r) of the material phase and the scattering intensity ob*'*~* . .
jprofile than that by random samplinghrowing random

ppoints into the systejnbecause the former exhaustively in-

tained in a small-angle radiation scattering experiment.
should be emphasized that the two-point probability functio
cannot distinguish between phase 1 and phase 2 materials
a two-phase system sin@&"(r) — ¢3=S?)(r) — ¢2. Here-

after, unless otherwise indicated, we will drop the superscrip

of SY)(r) and simply refer taS,(r) as the two-point prob-
ability function of the phase that we are interested in recon
structing.

pixel. It is simple to show that for B-dimensional digitized
medium, one has

h

d
dr S (Nli-o=—s/(2D). ®

The discrete nature of the digitized system means that the
distancer can be conveniently measured in terms of pixels
and acquires integral values, with the end points tafcated
at the pixel centers. Also, it can be shown that when sampled
along the direction of rowsor columns of pixels,S,(r) is a
linear function between adjacent pixels:

for isr<i+1,

(©)

wherei is an integer, and=r modl. Because of this linear
property, the evaluation db,(r) at integral values of is
sufficient to characterize the structure, and determining it for
noninteger values off is not necessary. Consequently,
S(Z‘)(r) can be evaluated simply by successively translating a
line of r (=i) pixels in length at a distance of one pixel at a
time and spanning the whole image, counting the number of
successes of the two end points falling in phgsand finally
dividing the number of successes by the total number of
trials (which is also the system size for a periodic medium
In 1D cases, this sampling is of course performed along the
single row of pixels. In 2D, we assume isotropy of the evolv-
ing system(which is not unreasonable due to the random
nature of the annealing procg¢snd the sampling is there-
fore performed only along two orthogonal directions: the
rows and columns of pixels. It is observed that this sampling
procedure can be more accurate and produces a smd&ther

gorporates information from every pixel in the entire system.
course, at additional computational cost, one could

§ample82 in more directions than two orthogonal directions

only.

_ To begin the reconstruction process, a random checker-

board with volume fractiong; of the reference system is

used as the initial structure, i.e., each pixel has a probability

dium. Debye, Anderson, and Brumberd@5] showed that
the slope of the two-point probability function of either
phase at =0 is equal to—s/4 in three dimensions. For the
first three space dimensions, it is easy to show that

aforementioned sampling procedure over a range which

we will refer to as the “sampling region.” The structure is
then altered by a phase interchange of two different pixels
within the system. The resultaB profile of this intermedi-
ate system is calculated and accepted with probability given

—-s/2, D=1 : ; . )
d by Eg. (2). This annealing procedure is carried out succes-
asz(r)|r=o: —slm, D=2 (7)  sively until the evolving system’S, matches the reference
—s/4, D=3, S, within a tolerance limit.

The annealing process can be made remarkably efficient
whereD is the space dimension. by noticing that once th8, profile of the initial structure has
In a digitized medium, although the slope in the 1D casebeen determined by the sampling procedure described, there
is the same as that of a continuum medium, it is not so in 2Ds no need to fully sample the intermediate structures all over
and 3D. The derivation is straightforward when one consid-again by the same sampling method to calculate tBgiln
ers the discrete number of interfacial faces the digitizedact, a change i%, from the previous structure is only due to
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the change of the success rdtecurrence of the two end
points fall in phasg) along the row and column that cross
each altered pixel. This change$a can simply be evaluated
by invoking the sampling techniquenly along those rows

and columns crossing the altered pixels. Therefore, to evaILBo
ate theS, profile of a succeeding structurg, of the preced- _
ing structure can be stored beforehand, and that of the sub-

sequent structure can be updated efficiently  bypyrinciple applies to each of the chords such that the lineal-
correspondingly adjusting the stor&d using the calculated path function of the entire system is the sum of that due to
change. ) _ o ) the individual chords. In this respect, the sampling procedure
The algorithm is made even more efficient if the size ofi eyaluatel. reduces merely to a problem of identifying the
the sampling region can be reduced. A useful fact is 83at |engths of the chords of the corresponding phase in the sys
is an even function in a periodic medium and therefore thgem. provided the system is isotropic, this method of deter-

sampling region takes up at most half of the entire Systemyining L is considerably more efficient than by throwing
size. However, the sampling region can be even smaller. Wgyndom lines into the system.

have found that.compared to using a larger sampling regi_on, Again, as in the case d,, it is not necessary to fully

the algorithm gives comparable results when the samplingample all of the intermediate structures to determine their
region only encompasses a distance of at least one unit rgnea|path functions during the annealing procedure. One
peataple cell of t.he reference structure, or several plxelsomy needs to keep track of the length of the chords being
(<10in a 1000 pixels systenafter the long-range value of gegtroyed and created due to the phase interchange of pixels

FIG. 1. Initial configuration: one-dimensional random checker-
ard. System is 1000 pixels in length and volume fractipn

S, has been reached, whichever is smaller. so thatL can be efficiently updated according to these
changes.
C. Lineal-path function reconstruction The sampling region should be chosen to encompass the

Another important morphological descriptor of the struc-ange before the lineal-path function becomes negligibly
small. Unfortunately, unlikes,, L is not an even function.

ture of random media is the lineal-path functiof(r,r5), h i ; d therefore be | d
which is defined as the probability of finding a line segment € sampling region cou eretore be farge, and may ex-

spanning fronT, to r, that lies entirely in phasg[18]. This tend beyond half of the system size, depending on the char-

function contains some connectedness information, at Iea?tcterIStIC cluster size in the medium.
along a lineal path, and hence contains certain long-range

information about the system. In an isotropic medium, the D. Hybrid reconstruction
lineal-path function depends only on the distandeetween Different correlation functions contain distinctive mor-
the two points and can be expressed simplyl&3(r).  phological information; generally, a single lower-order func-
Clearly, for all media having a volume fraction ¢ , tion cannot fully characterize a structure. The lineal-path
D — e function_L contail_ﬂs lineal “plustering” orf‘connectgginess”
L1(0)=5(0)=¢;. (10 information that is absent in the two-point probability func-

tion S,. However, it does not contain morphological infor-

Unlike S,, a lineal-path function can distinguish between mation for length scales larger than the maximum cluster
different phases of a medium, in the sense that the lineal-patjze in the system. As an example does not differentiate
function for a particular phase is not uniquely determined byhetween a structure of identical hard disks in a thermal equi-
simply knowing that of the complementary pheseThere-  |iprium arrangement and that of random sequential addition
fore, for efficient reconstruction using lineal-path functions,(RSA) arrangement, i.el(r) for the particle-phase is the
it is important to identify which phase in the medium is the same for both structures, sintér) only contains correlation
target phase to be reconstructed. Hereafter, unless otherwiggqormation within a cluster. On the other har®, provides
indicated, we will drop the superscript bf/’(r) and simply  short-range information about different clusters. To over-
refer toL(r) as the lineal-path function of the phase of in- come the weaknesses of individual correlation functions and
terest. to exploit the useful information contained in each correla-

To evaluatel (r) in a digitized system, it is again suffi- tjon function, one can accommodate an arbitrary number of
cient to letr take integer values; sampling is again per-different correlation functions in the reconstruction process.
formed only along orthogonal directioris)(i) is defined to  The practical limitation on the number of different functions
be the probability of finding a line segment of lengthi (  that can be used will be the computational expense that one
+1] that falls in phasej. To illustrate how to evaluate can afford. In this paper, we will illustrate the use of multiple
LU)(i) efficiently, we first consider a simple case where onlycorrelation functions by incorporating bo andL in the
a single phasg chord of length/” is present in a one- reconstruction process. We put equal weight on the impor-

dimensional system. Clearly, tance of the functions such that'"¥'=1 for all k in Eq. (3).
Gy | (Z=DIN,when O<si</ lll. APPLICATION TO ONE-DIMENSIONAL MEDIA
LYW()= : (11
0, otherwise,

To begin with, we provide a few examples of 1D recon-
whereN is the system size in pixels. For a system that hastructions to gain some insight about the process. In each
more chords or for a system of a higher dimension, the samease, the initial structure is a 1D random checkerboard with a
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FIG. 2. (a) Reference system: unit cell of periodic rods. System 05

size =1000 pixels, rod length=500 pixels, and volume fraction

$,=0.5.(b) S, reconstruction of periodic rods system.
04

system size of 1000 pixels, and has the same volume fractic o 5,(1). S, reconstruction
as the reference system. An example of a structure at 50¢ 0a L 8,(1), reference
volume fraction is shown in Fig. 1. In the following, unless § " vee R
otherwise stated, phase 2 is the target phase of the reco ;}% ] Rk i
struction, and the correlation functions of phase 2 are use( 0zt o
In all of the images shown, this phase is represented by blac °
1 o .
pixels. 01 : DDDDD 0 II:E:; rS(_:‘zf;er:zzztrucnon
DDD
A. Periodic rods o . ?‘:‘C DDDDDDQDDDDDDDHW
0 10 20 30 40 50

Consider a digitized system of periodic rogsase 2d
pixels in length whose centers are separated pixels. The
two-point probability function is a periodic triangular func- ©
tion with a period of 2I:

r (pixels)

(1—r/d)/2, when G=r<d FIG. 3. (a) Reference system: a realization of equilibrium hard
Sz(r)Z[ rods. System size=1000 pixels, rod length=10 pixels, and vol-
—(1-r/d)/2,  when dsr<2d, ume fraction¢,=0.5. (b) S, reconstruction of equilibrium hard
rods system(c) S, for the reference and reconstructed systems.
S,(r+2d)=Sy(r), (12 Also shown is the lineal-path functidn for both systems.

and the lineal-path function is given by
can produce more accurate reconstructions than any single
. {(1—r/d)/2, when Osr<d function alone. This idea will be implemented as described
r =

0, otherwise. (13 below. | | |
One of the random systems we investigate consists of an

To show the capability of the reconstruction procedure, wetduilibrium arrangement of hard rods having a uniform
will illustrate the most difficult situation where a single rod |ength ofd pixels. The two-point probability functio8, can
spans half of the system sizé£ 500 pixel$. To reconstruct P€ expressed analytical[p6]. In a simplified form, the ex-
this reference systerfshown in Fig. 2a)], the procedure Pression is given ag27]

needs to cluster 500 phase 2 pixels into a single connected i exp(—[r/d—k]/a)/ d—K\ K

row, which is very different from the initial structuresee N=(1—
Fig. ). S2(1)=( MEO k! | a
The reconstructed system obtained by usg@s the cor-
relation function is shown in Fig.(B). The reconstructed +1-2¢,, (14

system appears to be dislocated; however, due to periodic : . Ca . i
boundary conditions, a shift of the system matches exactl%ﬂi{%girtjv(igﬁylé?v’;ngi_(l ¢$2)/ ¢ The lineal-path

the reference system. The reconstruction indeed clusters the

phase-2 pixels together in the necessary fashion. The recon- bo(1—r/d) when oO<r<d
struction procedure using as the correlation functiofnot L(r)= ’ _ (15
shown also yielded a perfect result in this case. 0, otherwise.

The reference structure we adopt has a particle-phase vol-
ume fraction¢, equal to 0.5, and the length of the rods is

The previous example deals with the special case of 1[@hosen to be 10 pixels, giving a rod density of 50 per 1000
deterministic structures that are uniquely determined byixels. A realization of the reference structure and &e
those lower-order correlation functions. For random strucfeconstruction result are shown in Fig. 3. Note that while the
tures, lower-order correlation functions generally do not con-S, profile of the reconstructed system agrees strikingly well
tain complete information and therefore cannot be expectedith that of the reference system, the visual imafeigs.
to yield perfect reconstructions. Of course, the judicious uti-3(a) and 3b)] do not appear to be similar. The rods in the
lization of combinations of lower-order correlation functions reconstructed image clearly have a wide distribution of

B. Equilibrium hard rods



500 C. L. Y. YEONG AND S. TORQUATO 57

OO AR 1

(a) (a)
05 T 05 T
04| i 1 0.4 1
o 8,(n), L reconstruction \ i .
8,(r), reference \ ® S,(r), Hybrid reconstruction
_ 03 m — 03 Ll S,(), reference 1
= o o
I . Q'OO»,;OO 000 I \ PPy
< ° ; SOC “Peggsossss®” O'%0'0‘0 QOOFO‘ ) |
@02t 0 i . @ 0.2 b .
o] © \‘
° t
01 B 01+ \l q
= L(r), L reconstruction \ m L(r), Hybrid reconstruction
L(r), reference i‘ —-— L{(r), reference
\
0.0 . L 0.0 ] . .
o 10 20 30 40 50 0 10 20 30 40 50
r {pixels) t (pixels)
(b) (b)
FIG. 4. (a) L reconstruction of equilibrium hard rods syste(). FIG. 5. (a) Hybrid reconstruction of equilibrium hard rods sys-

L for the reference and reconstructed systems. Also shown is them. (b) S, andL for the reference and reconstructed systems.
two-point probability functionS, for both systems.

be negative for all physically realizable structures. One can
length, lacking the uniformity characteristics displayed in thetherefore easily construct an unphysical refereSgerofile
reference system. A quantitative means of probing this noncorresponding to a system witmagative interfacial aredy
uniqueness is to measuredifferent correlation function of ~assigning a positive slope at=0. Such a reference function
the reconstructed system and compare it to the correspondirig and the corresponding reconstruction results are shown in
function of the reference system. Indeed, the lineal-pattig. 6. The referenc8, here has a positive sloperat 0 and
functions of the reference and reconstructed systemn  goes to its long-range value after 10 pixels.
cluded in the figuresare seen to be significantly different for It can be observed that the reconstruction procedure
intermediate to large values of This example clearly shows makes an effort to raise the slope 8f atr=0 as far as
that S, does not generally contain sufficient information to Possible so as to approach the negative reference value.
uniquely determine a structure.

As stated earlierl. contains more clustering information
thanS,, and it is therefore expected thiatcan capture the ﬂ]]]:l.]]:l]]]]]]l[
uniform nature of the rod length better. Indeed, this is the
case, as shown in Fig. 4. Moreover, tBg profile of the (®)
reconstructed imagémeasureda posterior) is encourag-
ingly close to that of the corresponding reference quantity.
However, it is clear that the lineal-path function again does
not ascertain a unique structure, i.e., any distribution of eg-
uisized rods(equilibrium of noj} will give the same lineal-
path function profile.
The hybrid &, + L)-reconstruction result is shown in Fig.

5. The reconstructed structure is annealed to the extent th:
both correlation functions have little discrepancy from the
reference ones. Visually, the structure seems to not diffel
substantially from that obtained by thereconstruction, sim-
ply because thé reconstruction has already performed well
in reconstructing the structure. 02 [ .

0.7 T T

® S, construction
Reference

C. Unphysical correlation functions " (pixets)

To push the reconstruction process ever further, we will
investigate how the technique responds when a physically
unrealizable reference correlation function is used. We notice FIG. 6. (a) S, construction of “negative interfacial area” sys-
from Eq.(7) or Eq.(8) that the slope 08,(r) atr=0 should tem.(b) S, for the reference and constructed systems.

(®)
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clusters of pixels such thatis the minimum under the con-
straint of the referencs,.

IV. APPLICATION TO TWO-DIMENSIONAL MEDIA

In the 2D reconstruction, the initial system is taken to be
a 2D random checkerboard of size 40000 pixels(unless
otherwise stated with the same volume fraction as the ref-
erence system. An example of a structure at 50% volume
fraction is shown in Fig. 7. Again, phase 2 material will be
the target of the reconstruction, which is represented by
black pixels in the images.

A. Equilibrium hard disks

We begin by considering an equilibrium distribution of
-~ _ _ i _ equisized hard disks of diametdrpixels. For disks with a
FIG. 7. Inltlgl conflguratl_on: two-dimensional r{indom checker- jiameterd greater than 15 pixels, the area of a digitized disk
board. System is 400400 pixels and volume fractiog,=0.5. differs from that of the continuum disk by less than 128].
We will take d>15 pixels to closely mimic the continuum
result although the reconstruction procedure is not affected
However, the slope cannot increase too much since the rdsy the level of resolution.
sultantS, profile is also constrained by the reference values The two-point probability functiors, of this system has
at longer range to give minimurg in Eq. (1). Therefore, been evaluatef26]. S,(i) (i = integer in terms of pixesis
instead of annealing to a structure having a minimem obtained from a cubic-spline interpolation of the numerical
(which should contain only a single rod in the sysjethe  data provided in Ref.26]. The lineal-path functioh for the
reconstruction procedure gives a final structure consisting gbarticles can easily be derived analytically as

d d
0, otherwise.

(16)

cos‘l(i) - Lsir{cos‘l<i) } when Osr<d
L(r)= d/|]’

Clearly, L(r) is insensitive to the particular arrangementson proces$29,23. This is an interesting model in 3D be-
(e.g., equilibrium or RSHof particles, provided that they are cause the system is bicontinuo(i®., both phases are con-
nonoverlapping equisized disks. The reference system isected when the particle volume fractiok, lies in the
taken to have a particle-phase volume fractippequal to  interval[0.29,0.97 [30,31]. In 2D, the system will never be
0.2. A realization of the reference system and the correéhicontinuous, but it still captures nontrivial clustering infor-
sponding reconstruction results are shown in Fig. 8. Notgnation, and the particle-phase percolates at a volume frac-
that theS, reconstruction again does not provide a satisfaction of about 68%432]. The two-point probability function
tory structure even though i, profile is in excellent agree- g, of the system is given bj29]
ment with the corresponding, of the reference system. The
nonuniqueness issue arises again showing that the recon- Sy(r)=exd —pVy(r)]+1-2¢,, (17
structed system can match the original correlation function
very well but yet has a significantly different structure. Simi- \ynhere
lar to the 1D equilibrium rods case, thereconstruction here

gives a better result tha®, reconstruction in that the former _ 2\/9_ 42 ~1
better captures the size uniformity of the particles. That the Va(r)=(md)/2=d*/2{cos (r/d)
particles are squarelike in shape is an artifact due to the —(r/d)~/1—(r/d)Z}H(d—r). (18

evaluation ofL in only two orthogonal directions. This de-
fect could be eliminated by sampling in_ other directions, bU_tHerep is the number density of disks ahtlis the Heaviside
of course, at the expense of computational cost. The hybridiep function. The lineal-path function is known analytically
(S;+L) reconstruction, again similar to 1D case, gives onlyfor the space exterior to the particlgks]. For the particle-
a slight improvement over the reconstruction and hence phase L is also known analytically but involves numerical
this result is not shown here. evaluation[33]. We evaluateL instead by sampling over
1000 realizations of computer-generated digitized overlap-
ping disks system.

The random overlapping disk model consists of spatially It is of interest to examine the ability of the reconstruction
uncorrelated disks whose centers are determined by a Poialgorithm to correctly reconstruct large clusters that may be

B. Random overlapping disks
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(@) FIG. 9. (a) Reference system: a realization of random overlap-
ping disks. System size 400X 400 pixels, disk diameter 31 pix-

els, and volume fractio,=0.5. (b) S, reconstruction of random
overlapping disks systenfc) L reconstruction of random overlap-
ping disks system(d) Hybrid reconstruction of random overlapping
disks system.

FIG. 8. (a) Reference system: a realization of equilibrium hard
disks. System size=400x 400 pixels, disk diameter17 pixels,
and volume fractionp,=0.2. (b) S, reconstruction of equilibrium
hard disks system(c) L reconstruction of equilibrium hard disks
system.(d) S, for the reference an8,-reconstructed systems, and
L for the reference ant-reconstructed system. Sa(r) — ¢’% _

516, exp(—r/a), (19
present in a system. The reference system we used consists
of disks with a diameted= 31 pixels. The size of the clus- Wherea is a correlation length, applies to structures in which
ters is restricted by considering a particle-phase volume fracone phase consists of “random shapes and si{24'25. It
tion ¢, of 0.5, which is below the percolation threshold. A is now known that certain types of space tesselations have
realization of the reference system and the reconstructiorf¥V0-point functions given by Eq(19) [34,35. We refer to
are shown in Fig. 9. this class of structures a3ebye random media

Not Surprising|y, thesz reconstruction does not give a We are also in a pOSitiOﬂ to find the Specific structures
good result: the cluster sizes are too large and the systeffiat realize the function given by E¢l9). We chose¢,
actually percolates. We emphasize that the resuliyg
matches exactly the referen8eg profile (although the figure
is not included here ThelL reconstruction is superior to the
S, reconstruction, capturing the cluster distributions better. 95 i
However, the hybrid $,+L) reconstruction apparently out-
performs the previous two methods. The resultant correlatior | —— = Hybrid reconstruction |
function profiles are compared to the corresponding refer- — Reference
ence profiles in Fig. 10. It should be mentioned that the
requirements for this reconstruction are demanding in tha
50% of the pixels in a very large system (40800 pixelg
are required to aggregate in such a way as to form large
clusters that have reasonable shape. It can be seen thatt 027
hybrid reconstruction successfully accomplishes this task
This example clearly shows that combinations of correlation
functions in the reconstruction procedure can yield a much
better result than those using single ones.

03

S, L)

0‘0 1 1 Il
0 20 40 60 80 100 120

C. Debye random media r (pixels)

Debye claimed without rigorous proof that the exponen- FIG. 10. S, andL for the reference and hybrid reconstructions
tially decay two-point probability function given by of the random overlapping disk system.
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. . FIG. 12. (a) S,-construction for a system with an exponentially
FIG. 11. (& S, construction of a “Debye random medium.” damped, oscillating correlation function specified by Ef). Sys-

System size=400x 400 pixels, volume fractiomp,=0.5, and cor-  tem size=400x400 pixels, volume fractionp,=0.5, correlation
relation lengtha= 2 pixels.(b) S, for the reference and constructed lengtha=8 pixels, w=1 (pixel) ™%, and phase anglg=0. (b) S,
system. for the reference and constructed system.

construction results are shown in Fig. 11. The resciting strucNere the parametar bounds the amplitude of 8 pro-
ture is seen to be consistent with Debye’s intuitive descrip-f'le’ @ 1S the wave number, andg is the p_hase angle. It is
immediately obvious that the corresponding medium should

tion of it. This successful example serves as a prelude to th : o
generation of hitherto unknown structures from specifiefave two dlffgrer_lt characteristic length scales. One of the
correlation functions. ength scale; is .d|ctated by thg wave numbeand the other

one bya, which is the correlation length of the bulk features
of the medium. We adopa=8, w=1, and =0 in the

) ) construction. The reference correlation function profile is
We will now illustrate one of the powerful aspects of the gpown in Fig. 12.

reconstruction procedure, namely, the abili;y to generate The generated structure corresponding to B§) [see
heretofore unknown structures from hypothetical correlatloq:ig_ 12@)] has a labyrinthine appearance. As expected from
functions. In this section, we will use a physically realizablete form of the reference correlation function, this structure
correlation function, but in the next section, we will employ js nighly correlated and the two different characteristic
physically unrealizable ones. Here we will assume that thgangth scales can clearly be identified. The shorter character-
two-point probability function is given by the exponentially istic |ength scale is the average width of the “wall” of the

D. Hypothetical medium

damped, oscillating function labyrinth (shown as black pixels in the figyrewhich is of
S,(r) — 2 the order of m/w. The value ofS, at this distance is the
Zzexq_r/a)cogwr_’_(ﬂ)’ (200  minimum of theS, profile, indicating that the correlation

b1¢2 immediately beyond this distance is negligiltfe=e also the
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FIG. 13. (a) S, construction of “negative interfacial area” sys- ()

tem. System size= 200X 200 pixels and volume fractioth,= 0.5.

(b) S, construction of “zero interfacial area” system. System size  FIG. 14. (a) Reference system: a section of Fontainebleau sand-

=100x 100 pixels and volume fractios,=0.5.(c) S, for the ref-  stone. System size 280X 280 pixels. White pixels are void phase,

erence and constructed systems. and black pixels are material phagb) Hybrid reconstruction of
Fontainebleau sandstorie) S, andL for the reference and hybrid

S, profiles of equilibrium hard rods and digk©n the other ~ réconstruction systems.

hand, the average size of the “patchegsthere the labyrinth

walls orient in the same directipiis governed by the corre- =0, which the algorithm tries to match as closely as pos-

lation lengtha. sible while yielding a realistic structure.

This example serves to illustrate that the reconstruction another unphysical example that we study has a constant
algorithm is capable of generating structures that match hys, at a value ofé, for anyr [see Fig. 1&)]. This implies
pothetical, physically realizable correlation functions that arghat the reference structure has to have a zero specific surface
rather complicated functionally. Moreover, by examining thearea. Unlike the previous case, the fact that the refer8ace
generated structures, we will be able to deepen our undegjways remains at the highest valug,j means that there is
standlng of the nature of the information contained in thesg,y constraint by the referen@ to restrict the largest slope
correlation functions. a physical structure can achiefiee., higher slope will favor-

ably yield lowerE in Eq. (1) at the same time The value of
E. Unphysical correlation functions ¢, that we used here is 0.5 and the system size is 100

X 100 pixels. The generated structure shown in Figbjl3

_We now tax the propedure In two dlmenS|_ons by em.ploy'indeed indicates that the nearest feasible structure such cor-
ing unphysical correlation functions, as we did in one dimen-

. X . relation function can have is a structure consisting of one

sion. The same referen® that gave physically unrealiz- | . . . s
; e . arge percolating cluster, which has the minimum specific

able 1D structures with negative is used hergsee Fig. surface area possible

13(c)], but with a system size of 200200 pixels. The re- P '
sultant structure shown in Fig. (8 consists of large clusters E. Fontainebl d

in order to minimizes as much as physically possible. Simi- - Fontainebleau sandstone

lar to the 1D case, this annealed structure is not comprised of Having obtained reasonably successful reconstruction re-
a single cluster that has the minimusn Again, this is be-  sults for theoretical model systems, we are in a position to
cause the structure is constrained by the referécafter  explore the reconstruction of real random media. We will
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reconstruct a tomographic image of a slice of Fontaineblealient features of the reference systems. However, even
sandstone as obtained from the study of Coker, Torquatdhough the reference and reconstructed correlation functions
and Dunsmuif36]. The image is shown in Fig. 1d. The  matched well, the reconstructions deviated somewhat from
size of the filtered image extracted is 28280 pixels, where the reference systems as measured by differences in other
one pixel equals 7.5um. In this case, for efficiency pur- correlation functions of the system. This nonuniqueness is
poses, the target phase to be reconstructed is the discoexpected since lower-order correlation functions generally do
nected void phase, represented as white pixels in the imageot contain complete morphological information. It will be
The reference correlation functions of the true sandstone aref interest to test the sensitivity of the macroscopic proper-
obtained by the sampling techniques described in Secs. Il Bes of the systems.
and Il C, respectively, but modified to accommodate the non- We also used our algorithm to address another intriguing
periodic boundary conditions of the image. inverse problem, namely, the construction of heterogeneous
We found that both the singlg, reconstruction and the media based on the specification of model or hypothetical
single L reconstruction did not capture the salient structuralstatistical correlation functionigl], including physically un-
features of the sandstone as satisfactorily as the hybrid reealizable correlation functions. This question involves un-
construction and hence we just report the latter result. Théerstanding the general mathematical properties of realizable
overall features of the hybrid reconstructed imégjgown in  correlation functions, which thus far has not been fully ex-
Fig. 14b)] closely resembles the original sandstone imageplored. Moreover, there are a family of structures that can
except that the void regions are typically more rounded irhave the same correlation function and there may be many
shape. Note that th8, andL profiles of the reconstructed structures within this family that possess similar effective
medium match well the corresponding profiles of the trueproperties. However, as noted by Torquatg, it is likely
sandstongsee Fig. 14c)]. Naturally, the minor differences that some structures within this family will have markedly
between the images should diminish if more correlationdifferent effective properties and it would be of interest to
functions are employed and sampling is performed in morédentify the outliers Understanding this question of nonu-

directions. nigueness as it relates to the effective properties of heteroge-
neous media will offer great insight into structure/property
V. CONCLUSIONS relations.

We are extending the procedure to reconstruct 3D isotro-

In this paper, we have presented a simple yet powerfupic structures from 2D slices of the material and to more

procedure to reconstruct digitized random media from lim-complex media, such as anisotropic structures. We will also
ited morphological information. The procedure is capable ofcompare the macroscopic properties of the reference systems
reconstructing multidimensional, multiphase, and anisotropigo the corresponding properties of the reconstructed systems.

structures. We applied the methodology to reconstruct &ych work will be reported in future publications.
number of 1D and 2D model microstructures as well as a real

sandstone image using the morphological information con-
tained in the two-point correlation functio§, alone, the
lineal-path functiorL alone, and botts, andL. For the 1D We gratefully acknowledge the support from the U.S. De-
periodic models, the reconstructions were perfect. For th@artment of Energy, Office of Basic Energy Sciences under
random cases, the reconstructions generally captured the darant No. DE-FG02-92ER14275.
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