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The boundary element method is applied to determine the effective elastic moduli of continuum 
models of composite materials. In this paper, we specialize to the idealized model of hexagonal 
arrays of hmnitely long, aligned cylinders in a matrix (a model of a fiber-reinforced material) or 
a thin-plate composite consisting of hexagonal arrays of disks in a matrix. Thus, one need only 
consider two-dimensional elasticity, i.e., either plane-strain or plane-stress elasticity. This paper 
examines a variety of cases in which the inclusions are either stiffer or weaker than the matrix 
for a wide range of inclusion volume fractions &. Our comprehensive set of simulation data for 
the elastic moduli are tabulated. Using the boundary element method, a key microstructural 
parameter 7,72 that arises in rigorous three-point bounds on the effective shear modulus is also 
computed. Our numerical simulations of the elastic moduli for the hexagonal array are 
compared to rigorous two-point and three-point bounds on the respective effective properties. In 
the extreme instances of either superrigid particles or voids, we compare analytical relations for 
the elastic moduli near dilute and close packing limits to our simulation results. 

I. INTRODUCTION 

The problem of determining the effective transport and 
mechanical properties of disordered composite materials is 
a classical subject of research in science and engineering, 
dating back to the work of Maxwell,’ Rayleigh,’ and Ein- 
stein3 The complexity of the microstructure of random 
composite media makes an exact theoretical determination 
of the effective properties generally not possible. This nat- 
urally leads one to attempt to estimate the properties from 
partial statistical information on the sample in the form of 
correlation functions, and in particular, to establish the 
range of possible values the effective properties can take 
given such limited morphological information, i.e., to de- 
termine rigorous upper and lower bounds on the proper- 
ties. In the last decade, considerable theoretical progress 
has been made on the derivation of rigorous bounds,4-6 
identification of the microstructures that correspond to the 
extreme values (i.e., optimal bounds),‘-” and the system- 
atic characterization and determination of the statistical 
correlation functions that arise in bounds. * ’ There has been 
relatively much less research directed toward obtaining ef- 
fective properties “exactly” from computer simulations, es- 
pecially for off--lattice or continuum models (e.g., distribu- 
tion of particles in a matrix). Such “computer 
experiments” could provide unambiguous tests on theories 
for well-defined model microstructures. 

In the case of static composite media, most numerical 
studies have focused on obtaining effective diffusion pa- 
rameters such as the effective conductivity, effective diffu- 
sion coefficient, and effective time scales associated with 
diffusion and reaction among traps. An efficient means of 
computing effective diffusion properties is by employing 

first-passage-time algorithms.” Comparatively speaking, 
there is a dearth of numerical simulations of the effective 
elastic moduli of continuum models of composites. 

Approximately 20 years ago, numerical data for the 
effective elastic moduli were obtained for square’3*‘4 and 
hexagonal arrays ’ 5 arrays of cylinders in a matrix for a 
limited selection of material properties. Most of these stud- 
ies made use of finite difference procedures. Very recently, 
Day et al. I6 have devised a discretized-spring scheme that 
is realized on digital-image-based model of a two- 
dimensional, two-phase material in which one of the 
phases has zero elastic moduli (i.e., holes) to compute the 
effective elastic moduli. This method has recently been ex- 
tended to treat cases in which both phases have nonzero 
moduli. ” 

The purpose of this paper is to begin a program to 
provide accurate and comprehensive numerical data for 
the effective elastic moduli of continuum models of com- 
posite materials by employing the boundary element 
method.” In the first paper of this series, we specialize to 
the idealized model of hexagonal arrays of infinitely long, 
aligned cylinders in a matrix (a model of a fiber-reinforced 
material) or a thin-plate composite consisting of hexagonal 
arrays of disks in a matrix. l3 (In the sequel to this paper, 
random arrays will be studied.“) In all cases we seek to 
determine the effective elastic properties in a plane perpen- 
dicular to the generators and thus need only consider two- 
dimensional elasticity (i.e., either plane-strain or plane- 
stress elasticity). We examine a number of instances in 
which the inclusions are either stiffer or weaker than the 
matrix for a wide range of inclusion volume fractions +2. 
Because the method is accurate, we tabulate all of the sim- 
ulation data for the elastic moduli. Using the boundary 
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element method, we also compute a key microstructural 
parameter q2 that arises in rigorous three-point bounds on 
the effective shear modulus. Our numerical simulations of 
the elastic moduli for the hexagonal array are compared to 
rigorous two-point and three-point bounds on the respec- 
tive effective properties. Finally, in the extreme instances of 
superrigid particles or voids, we compare analytical rela- 
tions for the elastic moduli near close packing to our sim- 
ulation results. 

The remainder of the paper is organized as follows. In 
Sec. II we review some pertinent theoretical results and 
obtain an asymptotic relation near close packing for the 
elfective shear modulus in the case of superrigid inclusions 
in an incompressible matrix. In Sec. III the boundary ele- 
ment method is described for the problem at hand, i.e., for 
two-dimensional arrays of inclusions. In Sec. IV we present 
our simulation results for the in-plane elastic moduli of 
hexagonal arrays. Here we also present numerical data for 
the aforementioned three-point microstructural parameter 
r/z arising in bounds for the shear modulus. Our data are 
compared to rigorous bounds and analytical asymptotic 
relations. Finally, in Sec. V we make concluding remarks. 

II. THEORETICAL RESULTS 

Here we-discuss some previous theoretical results for 
the elastic moduli such as the dilute-concentration results, 
high-concentration results, and rigorous three-point 
bounds. In the case of nearly touching superrigid inclu- 
sions in an incompressible matrix, we derive an analytical 
expression for the effective shear modulus. 
A. Basic definitions for two-dimensional elasticity 

Before reviewing some theoretical results pertinent to 
this paper, it useful to define the elastic moduli for two- 
dimensional (2D) media. Fist consider a homogeneous 
2D body which is isotropic. For such a material, the rela- 
tionship between the stress tensor ail and strain tensor eij 
is given by 

Uij=(k-G)ekksif+ZGeij, i,j,k= 1,2. (1) 
This relation defines the 2D bulk modulus k and shear 
modulus G. Note that the symmetric stress and strain ten- 
sors have three independent components. Similarly, we 
write the strain-stress relation as 

Eij=~-~(l+y)rr,s,-~~~~~j], i,j,k= 1,2, 0) 

where v and E are the 2D Poisson’s ratio and Young’s 
modulus, respectively. Clearly, there are only two indepen- 
dent moduli. Comparing relations (1) and (2) yields, e.g., 
the following interrelations: 

Equation (4) reveals that the 2D Poisson’s ratio lies in the 
interval [- 1,1] as opposed to its three-dimensional (3D) 
counterpart that lies in the interval [- 1,0.5]. 

Now consider a two-phase 2D body. Denote the cor- 
responding elastic moduli for phase i by k,, Gi, vi, and Ei. 
Then relations (3)-( 5) apply to each phase, i.e., append a 
subscript i to each of the moduli in Eqs. (3)-( 5). Simi- 
larly, denote the corresponding 2D effective moduli by k,, 
G,, vc, and E,. Again, relations (3)-( 5) apply to the ef- 
fective properties. The constitutive relations ( 1) and (2) 
apply as well except that the stress and strain tensors must 
be replaced with the average stress and average strain ten- 
sors, respectively. 

Thus far we have not had to state whether we are 
dealing with plane-strain or plane-stress elasticity. Such 
specifications only arise when one desires to make contact 
with 3D elasticity. Plane-strain elasticity is physically rel- 
evant when considering a fiber-reinforced material. On the 
other hand, plane-stress elasticity is physically relevant 
when considering two-phase composites in the form of thin 
sheets. It is simple to relate 2D to 3D moduli for a single 
3D isotropic material. This is done in the Appendix where 
it is shown, among other results, that the 2D shear mod- 
ulus G (either in plane strain or plane stress) is equal to 
the 3D shear modulus. However, the bulk-moduli relations 
are not so simple. The plane-strain bulk modulus k is re- 
lated to the 3D bulk modulus K by the well-known relation 

k=K+G/3. (6) 

By contrast the plane-stress bulk modulus k obeys the re- 
lation 

9KG 
k=3K+4G’ 

Other interrelations among the 2D and 3D moduli are 
given in the Appendix. It is important to emphasize that 
the relations (6) and (7) apply only to individual phases. 
Relations (6) and (7) do not apply to the effective properties. 
In the Appendix we discuss the interrelations among the 
effective 2D moduli and the effective 3D moduli. 

5. Dilute-concentration results 

Consider any macroscopically isotropic 2D composite 
consisting of a equisized circular disks in matrix. Through 
first order in the inclusion volume fraction 42, the follow- 
ing exact asymptotic relations hold for the effective in- 
plane bulk and shear moduli, respectively,” 

(3) 
(k+G,) 

ke=kl+(kz--k,) (k2+G1) +2, (8) 

k-G 
V=FG 2 (4) (9) 
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C. Intermediate-concentration results 

Using the method of “resonances,” Kantor and Berg- 
mar?’ obtained expansions for the elastic moduli of hexag- 
onal arrays in powers of &. In the case of the effective bulk 
modulus k, the expansions go up to order 4:‘; whereas in 
the instance of the effective shear modulus G, the expan- 
sion goes up to order &. 

D. High-concentration results 

It appears that Elaherty and Keller14 were the first to 
find asymptotic relations for the elastic moduli of two- 
dimensional, two-phase composites consisting either of cir- 
cular holes (kz=Gz=O) or superrigid inclusions (G2/G1 
= CO ) near the close-packing volume fraction 45. They 
reasoned that the elastic behavior in these extreme situa- 
tions was governed by the narrow “necks” between the 
holes or inclusions. Flaherty and Keller specifically exam- 
ined square arrays and found that for holes 

G~-E,~c,(&-~~>'/",~, (10) 

where ci is a simple constant dependent upon the matrix 
elastic moduli and lattice geometry. Similarly, for nearly 
touching superrigid inclusions in a compressible matrix, 
they found 

Ge-4&~~2(&-42)-~'~, ( 1) 

where c2 is a simple constant dependent upon the matrix 
elastic moduli and lattice geometry. We note here that the 
above result for superrigid inclusions will not hold when 
the matrix is incompressible. This is easily seen by observ- 
ing that their derivation breaks down in the incompressible 
limit. 

Recently, Day et al. l6 obtained corresponding asymp- 
totic relations for holes and observed that there are gener- 
ally three breakdown modes for the necks. For the hexag- 
onal array, the microgeometry of concern in this paper, 
they found the following relations for the effective bulk and 
Young’s modulus, respectively, 

GEE? 8 
~“3m~(g>3/2 @--42)“‘2y 

where El is the in-plane Young’s modulus of the matrix 
and the critical inclusion volume fraction 

Using the equations given immediately above and re- 
lation (5), the corresponding result for the effective shear 
modulus is given by 

G G4g-&2 (#;-42)3’2* 
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(15) 

Using a similar analysis, we can obtain an asymptotic 
relation for superrigid inclusions in an incompressible ma- 
trix near the close-packing volume fraction &. Specifically, 
we find that 

G, d4;>3’2 -- 
6” fi (&--$2) -3’2. (16) 

Note that the critical exponent here is -33/2 in contrast to 
the exponent - l/2 appearing in relation ( 11) for a com- 
pressible matrix. 

E. Rigorous bounds 

Employing variational principles involving the “polar- 
ization fields,” Hashin and Shtrikman22 obtained the best 
possible bounds on the effective bulk and shear moduli for 
3D isotropic two-phase composites given only volume frac- 
tion information. Hill23 and Hashin” obtained analogous 
bounds on the effective transverse bulk modulus k, and 
effective transverse shear modulus G, for transversely iso- 
tropic 2D, two-phase materials. We refer to all of the afore- 
mentioned inequalities as two-point bounds since they ac- 
tually incorporate up to two-point correlation function 
information, albeit in a trivial way. They are not stated 
here explicitly since they are special cases of the three- 
point bounds described below. It is well known that the 
bounds on k, are achieved for a certain composite-cylinder 
assemblage. 22t24 The corresponding shear moduli bounds 
are, however, not realized by such assemblages. Recently, 
Milton,’ Norris,’ and Lurie and Cherkaev’ independently 
showed that the Hashin-Shtrikman (or Hill-Hashin) 
bounds on G, were attained by hierarchical laminates, thus 
demonstrating, for the first time, their optimality. In other 
independent work, Francfort and Murat” found a realiza- 
tion of these bounds using laminates ofjnite rank. 

Employing classical variational principles, Silnutzerz5 
obtained bounds on the effective 2D bulk modulus k, and 
effective shear modulus G,. Milton’ subsequently simpli- 
fied each of the above three-point bounds, showing that the 
bounds on k, can be expressed in terms of 42 and a three- 
point parameter f2 (defined below) and that the bounds on 
Ge can be expressed in terms of $2, c2, and another three- 
point parameter ~7~ (defined below). The simplified forms 
of the Silnutzer three-point bounds on the effective bulk 
and shear moduli are, respectively, given by 

kr’<k <kC3’ e u 9 

kf’= (l/k) - 
[ 

95142(Vk2- W) 2 --1 1 (l/L)+(1/G)5 ’ 

kc3j= (k) y4Mk2-W2 
u 

[ I (6+Wc ’ 
and 

GZ”<G <Gc3’ e u 9 

Gf ’ = ( l/G) - 
+,&(1/G2-- 1/G1)2 -’ 1 (l/Z>+E ’ 

J. W. Eischen and S. Torquato 
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(18) 

(19) 

(20) 

(21) 
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G(3) = (G) -w2(G2-G1)2 
u 

[ 1 (G)+@ ’ 

where 

o= PWC(G>2+ W2(G>,l Y 
(k+2Gj2 ’ 

(22) 

(23) 

E=2(l/k)g+(l/G),, 

(b) =bl4l+bh 

@) =bh+Wl, 

Wc=b&+b2L 

W,,=h+bm, 
and 

5‘*=1429 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

5+2Gw2(d - 1 $2 ’ 
(30) 

171=1--772, (31) 

SzQw,(s) - 1 42 * 
(32) 

For isotropic media, the n-point probability functions S, 
depend upon the relative distances of the n points. S2( T) is 
the probability of finding in phase 2 the endpoints of a line 
segment of length Y. S3 (r,s,t) is the probability of finding in 
phase 2 the vertices of a triangle with sides of lengths r, s, 
and t, when randomly thrown into the sample. Here fJ is 
the angle opposite the side of the triangle with length t. 
That & and vi must lie in the closed interval [O,l] implies 
that the bounds ( 17) and (20) always improve upon the 
Hill-Hashin two-point bounds. When c2 =0 and r/2 = 0, the 
bounds ( 17) and (20) .coincide and equal the wrrespond- 
ing two-point Hill-Ha&in lower bounds (for k2>kI and 
G,)G,). When 5;=1 and q2==1, the bounds (17) and 
(20) coincide and equal the corresponding Hill-Hashin 
upper bounds (for k2>k, and G2)G1). It is important to 
emphasize that the three-point bounds ( 17) and (20) are 
valid for any isotropic microgeometry. 

Note that when the phase shear moduli are equal (Gi 
==G,=G), the bounds (17) and (20) collapse, i.e., they 
yield the exact results: 

G,=G, (33) 

42 

k@=kl+ [l/(k,-kl)] + [+,/(k,+G)] . 

This result, which was first shown by Hi11,22 will be used to 
test our simulation results. Recently, Thorpe and Jasiuk26 
have noted that the exact results (33) and (34) are equiv- 

alent to stating that both the effective Poisson’s ratio and 
Young’s modulus obey the law of mixtures. 

III. BOUNDARY ELEMENT METHOD 

The boundary element method (BEM) provides a very 
efficient way to compute effective elastic properties of fiber 
reinforced composite materials. The elastic inclusion 
boundary value problems described in the following section 
must be solved to determine the relationship between cer- 
tain fundamental strain states and corresponding average 
stress measures. The BEM is ideally suited for this because 
all information regarding effective properties is accessible 
on the boundary of the elastic domain, no interior field 
data is required. 

A. Basic equations 

The boundary integral equation for linear elasticity isI 

cij(g)uj(g> + s 
rp;(g,X)Ui(X)dr(x) 

= 
s u$(g,x)pjmmx), (35) 

I- 
where l?(g) represents the bounding curve (including in- 
clusion boundaries) of the elastic problem. The displace- 
ment components on the boundary are Uj and traction 
components are pr. Summation is implied over repeated 
subindices. This integral equation must be satisfied at each 
“source” point g on the boundary. Note that g is a vector 
with two measure numbers ( g1 ,c2) referred to an arbitrary 
origin, The “field” point position vector has measure num- 
bers (xi ,x2). The quantities p$ and U$ are related to the 
Green’s function for 2D linear isotropic elasticity and are 
given by 

ufpd = *q(lf-,v)G [ (3-4v)log(S)Sytr,r,]~ 

(36) 

-(l--2V)(r,iFZj-r,j?li) 
1 

for an isotropic material and the plane strain condition. G 
is the transverse shear modulus and Y is Poisson’s ratio. In 
this context, G and Y are the 3D material properties. For 
generalized plane stress replace Y by VA +Y. Other quan- 
tities appearing in these expressions are delined by 

r= ( riri) l", 

TiSXi-ci;., 

dr ri 
r,t-z.=;, 

dr 3r 
%==a~ ~i=~ (directional derivative). 

i 

(38) 

(39) 

(40) 

(41) 
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FIG. 1. Unit cell for hexagonal array BEM computations. 

Note that ni are the measure numbers of the unit outward 
normal vector to the bounding curve I?. The tensor 
z&&x) represents the displacement in direction j at field 
point x due to a unit force applied in direction i at the 
source point g, while tensorp$(g,x) represents the traction 
in direction j at field point x due to a unit force applied in 
direction i at the source point g. The tensor cjj is deter- 
mined by requiring that rigid body displacements yield 
zero tractions. The values are computed numerically dur- 
ing formation of the discrete boundary element equation. 

For the composite problem, the boundary element 
equation is enforced along the matrix external boundary, 
the fiber external boundary, and matrix/fiber interfaces 
(see discussion of unit cell in Sec. IV). Continuity of dis- 
placement and traction are enforced along all matrix-fiber 
interfaces. Several notes regarding the numerical methods 
used to solve the boundary element equation are in order. 

(1) Becker18 provides a comprehensive treatment of 
the numerical solution of the boundary element equation, 
including treatment of inclusions. 

(2) Corner points have been treated by allowing two 
independent displacement components and four indepen- 
dent traction components. No “rounding of corners” or 
“double-noding with small separation distance” has been 
used. 

(3) The logarithmic singularity in u$ was integrated 
analytically to avoid numerical error. 

(4) Three node quadratic elements were employed 
along with eight-point Gaussian integration. 

B. Unit cell and loading for hexagonal array 

Figure 1 shows the unit cell employed for the hexago- 
nal array configuration. Numerous choices exist for the 
unit cell geometry. The one we selected is extremely con- 
venient for specification of boundary stresses and displace- 
ments. The unit cell is rectangular in shape with dimension 
2L,x2L,, with L,=ViTL,. Two quarter circular elastic 
inclusions (fibers) of radius R are shown. Cartesian coor- 
dinates fixed at the center of the cell parameterize position. 
The fiber volume fraction & is related to the cell geometry 
according to 
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(42) 

where L”= ( .Lr )‘+ ( L2)2 is the half-length of the unit cell 
diagonal. Note that R/L= 1 corresponds to the critical 
inclusion volume fraction. 

The two dimensional effective bulk and shear moduli 
were calculated by solving -two fundamental boundary 
value problems with imposed average stress and strain. The 
strains for the first problem were Z1t =0, Z2:22= 1 with 
(Tt2=0. Area average strain and stress quantities are de- 
fined according to 

1 Lz -% 

Eij=4LIL, -.Q s s -L1 
Eij(XlJ2)dX1 dxz, 

Qij(Xl,+)dXl dX2- (43) 

It is straightforward to show using the strain displacement 
equations and divergence theorem that the appropriate dis- 
placement and stress boundary conditions on the unit cell 
are 

~z(x1,~2v~2= - ~2(%,--2v~2=1, 

~1(-~I,~z)=u1(L*,x2)=0, (44) 

@*2h,L2) =q2h,- J52) 

=~12(-Ll,~z)=~12(Ll,x2)=0. (45) 
Using the stress equilibrium equations and the diver- 

gence theorem, it can be shown that the average stress 522 
can be expressed as 

1 
s 

4 
a22=2L, -L1 (T22bl ,Wdxl. (46) 

Since the boundary element method naturally provides 
data (i.e., (T& on the boundary of the unit cell, this defi- 
nition of Z22 was employed rather than Eq. (43). Then, Eq. 
( 1) provides the relationship for the difference between the 
effective bulk and shear moduli 

ke-Ge=cT22. (47) 

The second fundamental problem was an imposed av- 
erage shear strain Zi2= l/2 with i?11==i7Z2=0. The dis- 
placement and stress boundary conditions in 

ul(x*,L2)/Lz=--ul(xl,--*)/L2=1, 

~~(--~,x2)=u~(L*,x2)=0, 

~22(xl,~z)=oi2(xl,--2) 

this case are 

(48) 

=~ll(-L*,x2)=LT~1(L1,x2)=0. (49) 

Again, the average shear stress can be expressed in 
terms of a boundary integral 

1 
s 

4 

F12=2L, -L1 
Mxl ,Lddxl. (50) 

Equation ( 1) then yields 
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Ge=c12. (51) 
It is then a simple matter to calculate k, using Eq. (47). 

IV. RESULTS AND DISCUSSION 

A. Microstructural parameter q2 

The microstructural parameter r12 was calculated ap- 
proximately using the boundary element method and the 
three-point bound formulas for the effective shear modulus 
in the incompressible limit k, = k,= CO, i.e., 

cj1cj2( 1/G2- l/G,)’ 

(1&+(1/G), 

GL~,=(G)_91d2(Gz--G,)2 
u 

(g)+(G), * 

Each of these equations can be solved for q, as 

q2= hMl/Gr l/W2 - 1 
(l/G) - l/G’,3’ -(l’G)-c 

(lower bound), 

q2- 616dGrW2 
-4 

(G)-GE’ -@--1 

(G2-Cl) (upper bound). 

(52) 

(53) 

(54) 

(55) 
Simulations were performed for the hexagonal array geom- 
etry at various volume fractions and with shear modulus 
ratios G2/GI slightly greater than 1. The effective shear 
modulus G, was determined precisely as described in Sec. 
III B. Lower and upper bound estimates for v2 (r/f and 
r]:) were calculated using Eqs. (55) and (54), respec- 
tively, by setting Gg) = G, and Gf’ = G,. Curves were then 
constructed of 77: vs G,/Gi and r& vs G2/G1. These curves 
were then extrapolated back to G2/G1= 1 to provide an 
estimate of 712. In all cases the lower bound and upper 
bound curves yielded the same extrapolated value for 71~. 
This was expected as the bounds collapse as G2/G1 -t 1. The 
solid circles in Fig. 2 show the result of this calculation. 
Note that q2~0 until $2 exceeeds 0.25, reminiscent of the 
behavior of c2. In order to check our method, we calcu- 
lated the microstructural paramemter c2 in a similiar way 
using the lower and upper bound formulas for the effective 
bulk modulus [see Eqs. (18) and (19)]. Figure 2 shows the 
comparison between our numerical results and results re- 
ported by McPhedran and Milton.” The agreement is ex- 
tremely good, thus providing confidence in the new results 
for q2. Although both 712 and & are monotonically increas- 
ing functions of & the curvature of 7,r2 (unlike that of c2), 
changes with increasing 42. Moreover, we see that Q is 
always greater or equal to c2, which is consistent with the 
observation of Torquato6 that there are a large class of 
composites for which q2>c2. We have used the q2 results 
to compute three-point bounds for comparison with all our 
simulations reported on in the Sec. IV B. 
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FIG. 2. Microstructural parameters & and Q for hexagonal array of 
cylinders vs cylinder volume fraction 42; --- McPhedran and Milton (Ref. 
27) for &. The black circles are the BEM results for qz. The black 
triangles are BEM results for &. 

The boundary element mesh that was used to generate 
the results discussed above consisted of 926 nodal points, 
with 181 nodes distributed along each of the sides x1 = 
i L,, 161 nodes distributed along each of the sides x2= 
I L2, and 121 nodes distributed along each of the inclu- 
sion boundaries. This mesh yielded what were regarded as 
converged results based on results from two coarser 
meshes. 

B. Effective elastic properties 

As stated in Sec. I, the primary purpose of this paper is 
to document accurate effective elastic properties for a com- 
posite material consisting of hexagonal arrays of circular 
fibers embedded in a matrix. In Tables I-IX we present 
results for nine different matrix/fiber material property 
combinations at volume fractions in the range O<$2(0.85. 
Reported at the top of each table are the 3D elastic moduli 
for the constituents and the corresponding 2D moduli. Ta- 
bles I-VII correspond to elastic inclusions either stiffer or 
weaker than the matrix for plane strain conditions. In par- 
ticular, Tables I and V are for cases in which the fibers are 
superrigid relative to the matrix (G,/Gi= 00 >. Tables 
II-IV represent material properties for boron-epoxy, glass- 
epoxy, and boron-aluminum composites, respectively. Ta- 
ble VI represents a test case for the simulation. Table VII 
represents the case of an incompressible disk with zero 
shear modulus, i.e. a model of an imbedded inviscid fluid. 
Tables VIII-IX are for circular holes in a matrix for plane 
stress conditions. Boundary element numerical results for 
k$k,, GJG,, ve and EJE, are listed along with three- 
point bounds for the effective bulk modulus and effective 
shear modulus. Note that the three point bounds on the 
effective shear modulus have not been reported before in 
the literature for the hexagonal array because the micro- 
structural parameter r/2 was unavailable. The results in the 
tables are accurate to the number of digits presented, based 
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TABLE I. Material case I, plane strain. 

GJG,= a, G,/K, =0.46, G,/K,=O.46, v,=O.30, v,=O.30 (3D Moduli) 
G,/G,= 00, G,/,‘q=O.4, G2/kz=0.4, v,=O.43, v,=O.43 (2D Moduli) 
42 k$f’/k, Wk, k$j’/k, Gp/G 1 WG, Gg’/G, VC JWEI 

0.1 1.16 1.16 1.16 1.17 1.17 2.88 0.42 1.17 
0.2 1.35 1.35 1.41 1.39 1.39 155 0.42 1.38 
0.3 1.60 1.60 2.95 1.67 1.68 586 0.41 1.65 
0.4 1.93 1.93 15.6 2.06 2.08 2426 0.40 2.04 
0.5 2.40 2.40 96.5 2.64 2.69 6498 0.38 2.60 
0.6 3.11 3.11 526 3.57 3.69 14073 0.36 3.50 
0.7 4.30 4.33 2660 5.08 5.54 22610 0.32 5.13 
0.8 6.78 7.15 13213 8.20 10.0 36698 0.28 8.99 
0.85 9.46 11.0 28558 11.5 16.3 48044 0.26 14.3 

TABLE II. Material case 2, plane strain. 

GJG,=135, G,/K,=O.33, G,/K,=O.75, v, =0.35, v,=O.20 (3D Moduli) 
G,/G,= 135, G,/k,=O.3, G,/k2=0.6, vl =0.54, ~2~0.25 (2D Moduli) 
42 @j/k, k&6 k’:‘/k I G@‘/G I G@‘I G”‘/G 0 1 Ve -K&I 

0.1 1.14 1.14 1.14 1.18 1.18 1.19 0.53 1.17 
0.2 1.32 1.32 1.32 1.40 1.40 1.56 0.52 1.38 
0.3 1.54 1.54 1.54 1.69 1.70 2.23 0.50 1.66 
0.4 1.84 1.84 1.85 2.10 2.11 4.27 0.49 2.04 
0.5 2.25 2.25 2.34 2.69 2.15 8.52 0.46 2.62 
0.6 2.86 2.87 3.34 3.65 3.81 16.5 0.43 3.54 
0.7 3.87 3.90 6.16 5.18 5.74 26.3 0.39 5.18 
0.8 5.85 6.12 16.1 8.20 10.2 44.1 0.33 8.82 
0.85 7.82 8.87 27.7 11.3 15.6 59.5 0.31 13.3 

TABLE III. Material case 3, plane strain. 

I&/G, -22.5, G,/K,=o.33, G,/K,=O.75, v, =0.35, v,=O.20 (3D Moduli) 
~~1~~~22.5, G,/k,=o.3, G2/k2=o.6, v,=O.54, v,=O.25 (2D Moduli) 
42 kf’/k, kc& kv)/k, GF’/G, GA-4 Gf$‘/G, VC Ec-4 

0.1 1.13 1.13 1.13 1.17 1.17 1.17 0.53 1.16 
0.2 1.28 1.28 1.28 1.37 1.37 1.40 0.51 1.35 
0.3 1.47 1.47 1.47 1.63 1.64 1.72 0.50 1.60 
0.4 1.71 1.71 1.72 1.99 2.00 2.29 0.48 1.93 
0.5 2.04 2.04 2.05 2.49 2.33 3.23 0.46 2.40 
0.6 2.48 2.49 2.53 3.25 3.34 4.75 0.42 3.10 
0.7 3.14 3.16 3.34 4.37 4.66 6.62 0.39 4.20 
0.8 4.23 4.32 4.98 6.29 7.02 9.61 0.35 6.13 
0.85 5.10 5.36 6.41 7.92 9.06 11.9 0.33 7.81 

TABLE IV. Material case 4, plane strain. 

GJG,=6.75, G,/K,=O.33, G2/Kz=0.75, v,=O.35, v,=O.20 (3D Moduli) 
G2/Gl=6.75, G,/k,=O.3, Gz/k2=0.6, q=O.54, v,=O.25 (2D Moduli) 
42 kt))/k, kdk, k:‘/k, G-p/G, 

0.1 1.09 1.09 1.09 1.14 
0.2 1.19 1.19 1.19 1.30 
0.3 1.31 1.31 1.31 1.50 
0.4 1.45 1.45 1.45 1.75 
0.5 1.62 1.62 1.62 2.08 
0.6 1.82 1.82 1.83 2.51 
0.7 2.08 2.08 2.09 3.07 
0.8 2.40 2.41 2.44 3.84 
0.85 2.60 2.62 2.66 4.36 

1.14 
1.30 
1.50 
1.76 
2.09 
2.54 
3.14 
3.94 
4.47 

Gf$‘/G I 

1.14 
1.31 
1.52 
1.80 
2.18 
2.69 
3.29 
4.10 
4.63 

0.52 1.13 
0.51 1.27 
0.49 1.45 
0.47 1.67 
0.44 1.96 
0.41 2.33 
0.38 2.81 
0.34 3.44 
0.32 3.84 
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TABLE V. Material case 5, plane strain. 

G,/G, = 00, G,/K,=O, G2/K2=0, v,=O.50, v,=O.50 (3D Moduli) 
G2/G, = 00, G,/k,=O, G2/k2=0, v,=l.O, v,=l.O (2D Moduli) 
42 ky’/k 1 k-fk, k!$‘/k, Gy’/G, WG, G’:‘/G, Ve -&.‘~I 
0.1 . . . . . . . . . 1.22 1.22 6.17 1.00 1.22 
0.2 . . . . . . . . . 1.51 1.51 489 1.00 1.51 
0.3 *.. . . . . . . 1.88 1.90 1814 1.00 1.90 
0.4 . . . . . . . . . 2.43 2.52 6898 1.00 2.52 
0.5 . . . . . . . . . 3.32 3.66 16218 1.00 3.66 
0.6 . . . . . . . . . 4.96 6.10 29622 1.00 6.10 
0.7 . . . . . . . . . 7.50 12.7 41622 1.00 12.7 
0.8 . . . . . . . . . 12.5 41.7 56120 1.00 41.7 
0.85 . . . . . . . . . 17.6 120 64763 1.00 120 

TABLE VI. Material case 6, plane strain. 

G2/Gl = I, G,/K,= 1, G,/K,=O, v,=O.l25, v,=O.50 (3D Moduli) 
G/G,=& G,/k,=O.75, G,/k,=O, v,=O.l4; v2= 1.0 (2D Moduli) 
$2 kf ‘/k, k/k,- kt’/k, Gy ‘/G, 

0.1 1.19 1.19 1.19 1.00 
0.2 1.44 1.44 1.44 1.00 
0.3 1.75 1.75 1.75 1.00 
0.4 2.17 2.17 2.17 1.00 
0.5 2.75 2.75 2.75 1.00 
0.6 3.62 3.62 3.62 1.00 
0.7 5.08 5.08 5.08 1.00 
0.8 8.00 8.00 8.00 1.00 
0.85 10.9 10.9 10.9 1.00 

WG, G$‘/G, Ve J&4 

1.00 1.00 0.23 1.07 
1.00 1.00 0.31 1.15 
1.00 1.00 0.40 1.22 
1.00 1.00 0.49 1.30 
1.00 1.00 0.57 1.37 
1.00 1.00 0.66 1.45 
1.00 1.00 0.74 1.52 
1.00 1.00 0.83 1.60 
1.00 1.00 0.87 1.64 

TABLE VII. Material case 7, plane stress. 

G,/G,=O, G,/K,=O, G2/K,=0, v,=O.50, v,=O.50 (3D Moduli) 
G,/G,=O, G,/k,=O, G,/k,=O, v,=O.5, v,=O.5 (2D Moduli) 
92 kjt)/k, ke& #j/k, Gp’/G, 

0.1 . . . . . . . . . 0.018 
0.2 . . . . . . . . . O.OCHl 
0.3 . . . . . . *.. O.ooO 
0.4 . . . . . . . . . 0.000 
0.5 . . . . . . . . . 0.000 
0.6 . . . . . . . . . O.OCHl 
0.7 . . . . . . .., 0.000 
0.8 . . . . . . . . . OXGil 
0.85 . . . . . . . . . O.OCHl 

WGt Gp/G, “t? WEI 

0.818 0.818 1.00 0.818 
0.664 0.664 1.M) 0.664 
0.526 0.533 1.00 0.526 
0.396 0.412 1.00 0.396 
0.273 0.302 1.00 0.273 
0.164 0.202 1.00 0.164 
0.079 0.133 1.00 0.079 
0.024 0.080 1.00 0.024 
0.008 0.057 1.00 0.008 

TABLE VIII. Material case 8, plane stress. 

G~/G,=o, G,/K,=o, G2iK2= 1.5, ~,=0.50, v,=O.O (3D Moduli) 
G2/G,=0, G,/k,=0.33, G,/k,= 1.0, ~,=0.50, v,=O.O (2D Moduli) 
42 kf’/k, k’h kf’/k, G$?/G, 

0.1 0.684 0.692 0.692 0.026 
0.2 0.199 0.500 0.500 O.COO 
0.3 0.014 0.368 0.368 0.000 
0.4 0.002 0.273 0.273 0.000 
0.5 0.000 0.200 0.200 0.000 
0.6 0.000 0.141 0.142 0.000 
0.7 O.CQO 0.094 0.095 0.000 
0.8 0.000 0.052 0.055 0.000 
0.85 0.000 0.033 0.036 0.000 

WG, G$j’/G, Vt- WEI 

0.771 0.771 0.46 0.750 
0.597 0.599 0.43 0.570 
0.455 0.462 0.42 0.430 
0.330 0.349 0.43 0.313 
0.220 0.253 0.46 0.214 
0.128 0.173 0.54 0.131 
0.060 0.115 0.65 0.066 
0.018 0.067 0.79 0.022 
0.006 0.047 0.88 0.008 
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TABLE IX. Material case 9, plane stress. 

G,/G,=O, G,/K,=O.37, G,/K,= 1.5, v,=O.33, v,=O.O (3D Moduli) 
G,/G,=O, G,/k,=0.50, G,/k,= 1.0, v,=O.33, v,=O.O (2D Moduli) 
42 k@‘/k, W% kf$‘/k, @‘/G, 

0.1 0.743 0.750 0.750 0.026 
0.2 0.266 0.571 0.571 0.000 
0.3 0.021 0.438 0.438 0.000 
0.4 0.002 0.333 0.333 0.000 
0.5 O.OCO 0.249 0.250 0.000 
0.6 0.000 0.180 0.181 O.ooO 
0.7 O.ooO 0.121 0.123 0.000 
0.8 0.000 0.069 0.072 0.000 
0.85 0.000 0.043 0.048 0.000 

WG, G’;“/G 1 ve -f&f4 

0.750 0.750 0.33 0.750 
0.569 0.570 0.34 0.570 
0.426 0.434 0.35 0.430 
0.304 0.324 0.37 0.313 
0.200 0.234 0.43 0.214 
0.116 0.160 0.51 0.131 
0.054 0.106 0.64 0.066 
0.016 0.062 0.79 0.022 
0.006 0.042 0.88 0.008 

on a convergence study of sucessively finer boundary ele- 
ment meshes. The results correspond to the 926 node mesh 
described above. 

Figure 3 shows the effective bulk modulus as a func- 
tion of fiber volume fraction for the case of equal phase 
shear moduli and incompressible fibers (Table VI). In this 
case the bounds collapse yielding the exact result (34). 
Note the excellent agreement between the numerical re- 
sults and the exact theoretical results. 

Figure 4 shows the effective bulk modulus for the mod- 
erate case Gz/G1=6.75, 9~=0.35, ~,=0.20 (Table IV). 
Here the three-point bounds are extremely tight up to near 
close packing. The numerical results lie between the 
bounds as required. The two-point bounds are not pre- 
sented because they are close to the three-point bounds in 
this instance. 

Figure 5 shows the effective bulk modulus for the 
glass-epoxy case G2/G1=22.5, y1=0.35, ~,=0.20 (Table 
III). Here we show both two-point and three point bounds. 
It is clear that the three-point lower bound provides a very 
good estimate of k,, consistent with the observations of 
Torquato.6 We note that the Kantor-Bergman expansion” 
for the bulk modulus agrees very well with the simulation 
data of Fig. 5. Figure 6 shows the effective shear modulus 

for the same properties as in Fig. 5. Here we show both 
two-point and three-point bounds. Again the three-point 
lower bound provides a very good estimate of G,. The 
Kantor-Bergman expansion for the shear modulus gives a 
reasonably good estimate of the data, but not as good as 
the agreement found in the corresponding case for the bulk 
modulus. 

Figure 7 shows the effective shear modulus for the case 
of superrigid, incompressible fibers in an incompressible 
matrix, i.e., G2/G1= 00, ~~=~~=0.50 (Table V). The ex- 
treme shear modulus ratio and incompressibility provide a 
very stringent test of the numerical method. We only plot 
lower bounds here since the upper bounds diverge in this 
case. The three-point lower bound provides a good esti- 
mate of the data for a wide range of fiber volume fractions 
but appreciably underestimates the actual behavior at high 
volume fractions. Also shown are asymptotic results which 
hold in the dilute limit (4&l) and in the close-packing 
limit (&~0.91) [cf. Eqs. (9) and (16)]. The numerical 
results are in very close agreement with these asymptotic 
results. We note that the Kantor-Bergman expansion for 
G, deviates appreciably from the data at high cylinder vol- 
ume fractions. Figure 8 shows the effective Poisson’s ratio 
for the case of holes when the matrix Poisson’s ratio is 

FIO. 3. Normalized effective bulk modulus kJk, vs cylinder volume FIG. 4. Normalized effective bulk modulus kJk, vs cylinder volume 
fraction 42 for material case 6; -three-point bounds. The black circles are fraction gS2 for material case 4; -three-point bounds. The black circles are 
BEM results. BEM results. 

167 J. Appl. Phys., Vol. 74, No. 1, 1 July 1993 J. W. Eischen and S. Torquato 167 

Downloaded 08 Jul 2002 to 128.112.82.136. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



4% 

FIG. 5. Normalized effective bulk modulus k&t vs cylinder volume FIG. 8. Effective Poisson’s ratio ve vs cylinder volume fraction & for 
fraction qS2 for material case 3; --- two-point bounds; -three-point material case 9 (plane stress hole case). The black circles are BEM re- 
bounds. The black circles are BEM results. sults. 
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FIG. 6. Normalized effective shear modulus GJG, vs cylinder volume 
fraction q$ for material case 3; --- two-point bounds; -three-point 
bounds. The black circles are BEM results. 
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PIG. 7. Normalized effective shear modulus GJG, vs cylinder volume 
fraction #r for material case 5; --- two-point lower bound; -three-point 
lower bound; . - * asymptotic results Eqs. (9) and (16). The black circles 
are BEM results. On the scale of this figure, the dilute asymptotic result 
and the lower bounds are indistinguishable for small 4s. 
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equal to 0.33 (Table IX). It appears that ye is approaching 
1.0 in the close-packing limit, consistent with the results of 
Day et al. l6 who implicitly examined plane-strain elastic- 
ity. 

Figure 9 shows the effective shear modulus for the case 
of holes for an incompressible matrix (Table VIII). The 
three-point upper bound is seen to be a relatively good 
predictor of the effective property, even at high volume 
fractions. The asymptotic results for the dilute and close- 
packing limit [cf. Eqs. (9) and (15)] are also shown. We 
note that the corresponding scaled effective Young’s mod- 
ulus EJE, in this case of holes is the same as EJE, for the 
previous case of holes (Table IX), i.e., EJE, is indepen- 
dent of the matrix Poisson’s ratio. This observation was 
first made by Day et al. l6 

4 yyd-, --. _ 
0.25 0.50 0.75 

FIG. 9. Normalized elfective shear modulus GJG, vs cylinder volume 
fraction qS2 for material case 8; -three-point upper bound; . -. asymp- 
totic results Eqs. (9) and (15). The black circles are BEM results. 
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Y. CONCLUDING REMARKS 

This paper demonstrates the utility of the boundary 
element method to efficiently and accurately compute the 
effective elastic moduli of composites. To illustrate the 
method we computed the elastic moduli of hexagonal ar- 
rays of cylinders or disks. We provided the most compre- 
hensive set of effective-moduli data for this model and 
along the way calculated the three-point parameter r12 for 
the iirst time. In a future study, we will apply the simula- 
tion technique to compute the effective elastic moduli of 
random arrays of cylinders (disks). 
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APPENDIX: INTERRELATIONS AMONG THE 2D AND 
3D ELASTIC MODULI 

1. Single-phase interrelations 

Consider a d-dimensional, linear, isotropic homoge- 
neous material with bulk, shear, Young’s modulus, and 
Poisson’s ratio denoted by Kcd), Gcd’, Ecd), and v(~), re- 
spectively. (Note that in the text we let k=Kc2’ and 
K=Kc3)). The d-dimensional strain-stress relations are ex- 
pressed as 

1 
E~=F [ ( l+y’d’)aii-Y’d’akksiJ], i,j,k= l,...,d. 

(AlI 
The d-dimensional stress-strain relations are given by 

Gil= (K’d’-2G’d’/3)aksij+2G’d’~i~, i,j,k= l,...,d. 
t-42) 

We connect the 3D moduli to the 2D moduli by as- 
suming either plane-strain or plane-stress elasticity. For 
plane-strain elasticity, we take e1 i = e12= e13 = 0 in the re- 
lation (Al) with d=3. If we compare this simplified 3D 
expression to relation (Al) with d=2, we find the inter- 
relations 

E(3) 

E(2)=(l-V(3))(l+V(3)) ’ 

(A4) 

Similarly, by comparing Eq. (A2) with d=3 under plane- 
strain conditions and Fq. (A2) with d=2, we find 

K(2) e--K(3) + G’3’/3 , (A5) 

($2) =93). WI 

For plane-stress elasticity, we take uI r =(~i~=or~ =O in 
the expression (Al) with d=3. Comparing this simplified 
3D relation to relation (Al) with d=2 gives 

E(2) ,E(3) , (A7) 

Finally, comparing Eq. (A2) with d= 3 under plane-stress 
conditions and Eq. (A2) with d=2, yields 

jp = 
9@3)@) 

3Kc3’ +4Gc3) ’ t-49) 

($2) = ,931 

Note that the interrelations derived above for homoge- 
neous materials do not hold for the effective properties. 

2. Effective plane-strain Interrelations 

The stress-strain relationships for a transversely isotro- 
pic composite material are 

1 4 _ 
Gl=E (41-Yt?&) -3 a33, 

e e 

1 v,” 
g22=jg- (522-V&711) -1533, e Ee 

v,” 1 
83=-s Gll+%2:22)+p33, e e 

512 513 523 
E;2=2r;, , E;3=2Gf. 9 F23=2G,L 3 

(All) 

CA121 

(A13) 

where E,, G,, and ve are the transverse effective Young’s 
modulus, shear modulus, and Poisson’s ratio, while Ef, 
Gf, and v,” are the corresponding properties for the longi- 
tudinal direction, respectively. There are five independent 
effective elastic moduli and hence there are interrelations 
among the moduli appearing in the above relations. For 
example, 

E, 
G@=2( l+v,) ’ , (A15) 

where k, the effective transverse bulk modulus (without 
axial extension). 

For any transversely isotropic two-phase fiber- 
reinforced material, Hill” has shown that there are only 
three independent effective elastic moduli since 

E,L= U-9 + (-416) 

v”=+“;“-“,‘I ((i) -2). 
e -_- . 

4 h 

(A17) 
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3. Effective plane-stress interrelations 

After some reflection, it is clear that the effective plane- 
strain moduli (denoted here by k, , G, , ,E,, 2nd 2J and the 
plane-stress moduli (denoted here by k,, G,, Ee, and T& 
are generally not the same. For example, the effective 
plane-strain bluk modulus depends upon the phase moduli 
of the individual phases, i.e., 

ke==f(h,k,,G,,Gd. W8) 

The solution of the plane-stress problem is identical to the 
plane-strain problem except the former involves depen- 
dence upon the plane-stress phase moduli, i.e., 

Ze=f(K,,&3&,. (A191 
Although the phase plane-strain and plane-stress shear 
moduli are the same [cf. Eqs. (A6) and (AlO)], the phase 
plane-strain and plane-stress bulk moduli are different [cf. 
Eqs. (A5) and (A9)] and hence Eqs. (A18) and (A19) 
are generally not equal. 

The derivation of the interrelations for the effective 
plane-strain and plane-stress moduli is too involved to 
place in the Appendix but will be the subject of a future 
investigation. Here we will only state the interrelations for 
the special case when one of the phases are voids or holes 
since we only examine plane-stress elasticity in our simu- 
lations in such instances. If phase 2 consists of voids or 
holes, then 

1 1 4(V,L)2 --- 
Izk-k,+ E,L ’ 

E, 4 ==- 
4 El’ 

t-420) 

where v,” and E,” were defined in Appendix 2. 
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