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We study fundamental morphological descriptors of disordered media (e.g., heterogeneous 
materials, liquids, and amorphous solids): the chord-length distribution function p(z) 
and the free-path distribution function p(z,a). For concreteness, we will speak in the language 
of heterogeneous materials composed of two different materials or “phases.” The 
probability density function p(z) describes the distribution of chord lengths in the sample 
and is of great interest in stereology. For example, the first moment ofp(z) is the 
“mean intercept length” or “mean chord length.” The chord-length distribution function is of 
importance in transport phenomena and problems involving “discrete free paths” of 
point particles (e.g., Knudsen diffusion and radiative transport). The free-path distribution 
function p(z,a) takes into account the finite size of a simple particle of radius a 
undergoing discrete free-path motion in the heterogeneous material and we show that it is 
actually the chord-length distribution function for the system in which the “pore 
space” is the space available to a finite-sized particle of radius a. Thus it is shown that 
p(z) =p(z,O). We demonstrate that the functions p(z) and p(z,a) are related to another 
fundamentally important morphological descriptor of disordered media, namely, the 
so-called lineal-path function L(z) studied by us in previous work [Phys. Rev. A 45, 922 
( 1992)]. The lineal path function gives the probability of finding a line segment of length z 
wholly in one of the “phases” when randomly thrown into the sample. We derive exact 
series representations of the chord-length and free-path distribution functions for systems of 
spheres with a polydispersivity in size in arbitrary dimension D. For the special case of 
spatially uncorrelated spheres (i.e., fully penetrable spheres) we evaluate exactly the 
aforementioned functions, the mean chord length, and the mean free path. We also 
obtain corresponding analytical formulas for the case of mutually impenetrable (i.e., spatially 
correlated) polydispersed spheres. 

I. INTRODUCTION 

The characterization of the microstructure of many- 
particle systems such as random heterogeneous materials 
(e.g., suspensions, composites, and porous media), liquids, 
and amorphous solids is of great fundamental as well as 
practical importance.‘-’ ’ The goal ultimately is to ascertain 
what is the essential morphological information, quantify it 
either theoretically or experimentally, and then employ the 
information to estimate the desired macroscopic properties 
of the many-particle system. To fix ideas, we shall speak in 
the language of heterogeneous materials composed of two 
different materials or “phases.” Since many of the defini- 
tions and concepts we shall employ apply to two-phase 
media of arbitary microgeometry (e.g., not necessarily par- 
ticulate media), we shall, whenever possible, consider this 
more general situation. 

In earlier work’2~13 we introduced the so-called “lineal- 
path function” L(z) which gives the probability of finding 
a line segment of length z wholly in phase 1 when ran- 
domly thrown into the sample. It is equivalent to theprob- 
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ability that a point can moue along a lineal path of length z 
in phase 1 without passing through phase 2. Interestingly, 
L(z) is equivalent to the area fraction of phase 1 measured 
from the projected image of a slice of sample of thickness z 
onto a plane. Such projected images are of great impor- 
tance in stereology. l1 The authors obtained exact series 
representations of L(z) for suspensions of monodis- 
persed12 as well as polydispersed spheres.13 The lineal-path 
function L(z), in particular, was computed for both fully 
penetrable spheres (i.e., spatially uncorrelated spheres) 
and totally impenetrable spheres (i.e., spatially correlated 
spheres). 

In this paper we shall show that L(z) is related to 
another fundamentally important morphological descrip- 
tor of many-particle systems, namely, the so-called “chord- 
length distribution” p(z) . I4 This probability density func- 
tion (defined more precisely below) describes the 
distribution of chord lengths in the sample. Such a quantity 
is of basic importance in transport problems involving 
“discrete free paths” and thus has application in Knudsen 
diffusion and radiative transport in porous media. The 
function p(z) has also been measured for sedimentary 
rocks14 for the purpose of studying fluid flow through such 
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porous media. The chord-length distribution function p(z) 
is also a quantity of great interest in stereology.” For ex- 
ample, the “mean intercept length” is the first moment of 
P(Z). 

Another quantity of interest is what we call the “free- 
path distribution function” (defined below) p(z,a) which 
takes into account the finite size of a spherical particle of 
radius a undergoing discrete free-path motion in the het- 
erogeneous material. The function p(z,a) is actually the 
chord-length distribution function for a system in which 
the “pore space” is the space available to a jnite-sized par- 
ticle of radius a. Thus it is shown that p(z) =p(z,O). It is 
demonstrated that the free-path distribution function 
p(z,a) is related to a generalized lineal-path function 
L(z,a) which depends upon the size a of the particle. 

In Sec. II we define the basic morphological quantities 
of interest for heterogeneous of arbitrary microgeometry, 
i.e., nearest-neighbor functions, chord-length distribution 
function, free-path distribution function, and lineal-path 
function. In Sec. III we derive the relationship between the 
generalized lineal-path function L(z,a) and the free-path 
distribution function p(z,a) for arbitrary statistically iso- 
tropic two-phase media. By setting a=O, the relationship 
between the lineal-path function and the chord-length dis- 
tribution function follows immediately. In Sec. IV we de- 
rive exact series representations of L(z,a) for systems of 
spheres with a polydispersivity in size in arbitrary dimen- 
sion D. In Sec. V we specialize to the case of spatially 
uncorrelated spheres (i.e., fully penetrable spheres). For 
this model microstructure, we are able to evaluate exactly 
the lineal path function L (z,a) and hence the free path and 
chord length distribution functions, mean free path, and 
mean chord length. In Sec. VI we obtain corresponding 
analytical formulas for the case of mutually impenetrable 
(i.e., spatially correlated) polydispersed spheres. 

II. BASIC DEFINITIONS AND CONCEPTS 

The disordered porous medium is a domain of space 
Y(o) ~59~ (here the realization w is taken from some 
probability space a) of volume V which is composed of 
two regions: the void or pore region Y,(w) of volume 
fraction +I and solid-phase region Y2(w) of volume frac- 
tion $2. Denote by Vi the volume of region Vi so that the 
total system volume Y= Yl + V2. Let J?‘-(o) be the sur- 
face between Y, and Y2, and S be the total surface area of 
the interface cW’. The characteristic function of the pore 
phase 1(x+) is defined by 

A particularly important class of functions in the H,, is 
the nearest-neighbor distribution functions which was 
comprehensively studied by Torquato, Lu, and Rubin- 
stein” for monodispersed-sphere systems. Lu and Tor- 
quato16 subsequently generalized the analysis of Ref. 15 to 
the case of sphere systems with a polydispersivity in size. 

Now we generalize this concept to heterogeneous me- 
dia with arbitrary microgeometries. The nearest-surface dis- 
tribution function h(‘) (r) for general heterogeneous media 
can be defined such that h”‘(r)dr is the probability that an 
arbitrary point in the system the nearest surface of phase i 
lies at a distance between r and r+dr. The related surface 
exclusion probability eCi) (r) can then be defined as the 
probability of finding a region R, which is a 
D-dimensional spherical cavity of radius a centered at 
some arbitrary point, empty of phase i material. As in the 
case of many-particle systems,16 we have the following re- 
lationship between the nearest-surface distribution func- 
tion and the surface exclusion probability function: 

eci)( r) = 1 - c r h”‘(y)dy, (2.5) 
J--m 

or 

-de(‘)(r) 
hen(r)= dr . (2.6) 

I( x,0) = 
I 0, XEY2’ (2.1) The integral of (2.5) represents the probability of finding 

at least some material of phase i in region Ofi 
The nearest surface distribution function may be writ- 

ten as a product of two different correlation functions: 
The characteristic function of the pore-solid interface is 
given by 
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&=(I) = lim VI/V, (2.3) 
Y), Y- Q) 

o=(M)= lim S/V. (2.4) 
S,Y+m 

Here angular brackets denote an ensemble average. 
Torquato’ has developed a formalism to represent and 

compute the so-called general n-point distribution function 
H,, for random media composed of statistical distributions 
of D-dimensional (possibly) penetrating spheres. He 
showed that the H,, contained, as special cases, all of the 
different types of correlation functions which have arisen in 
rigorous relations for effective transport and mechanical 
properties of heterogeneous media. The key idea in obtain- 
ing the H,, is the space and surface available to p different 
“test” particles of radii bi (i= 1,2,...,p) inserted into the 
system of spheres. Because of the exclusion-volume effects, 
the available space and surface to the ith test particle of 
radius bi will be different than the pore space and interface, 
respectively, i.e., the space and surface available to a 
“point” test particle. 

A. Nearest neighbor distribution functions 

M(x) = Ivm) I (2.2) 

If the medium is statistically homogeneous (the focus of 
this article), then ensemble averages of (2.1) and (2.2) 
yield the porosity & and specific surface s (interface area 
per unit volume), respectively, i.e., 

h(')(r)=e(')(r)g(')(r) , (2.7) 

where gCi) (r)dr is the probability, given that a region nE is 
empty of phase i material, of finding phase i material in the 
spherical shell of volume sg( r)dr encompassing the cavity. 
Therefore, g(‘)(r) is the probability that a test particle of 
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FIG. 1. Schematic of chord-length measurements for a cross section of a 
many-particle system. The chords are defined by the intersection of lines 
with the two-phase interface. 

radius r is in contact with surface of phase i material. The 
quantity sg(r) is the surface area of a D-dimensional 
sphere of radius r: 

s,(r) =2, (2.8) 

s2 ( r) = 2nr, (2.9) 

sg(r) =47rr2. 

From expressions (2.6) and (2.7) we have 

(2.10) 

( I 

r 

e(‘)(r) =exp - g”‘(Y)& * 
1 

(2.11) 

In our earlier work,’ the quantities ey( r), h”(r), and 
gV(r) were used to represent the “void” exclusion proba- 
bility function, the nearest-surface distribution function, 
and the “surface contact” correlation function, respec- 
tively, for D-dimensional sphere systems, with the sub- 
script V indicating that the reference point is in the void 
phase. In terms of the present general notation we have 
that eV(r)=ec2)(r) and hv(r)=hc2)(r). Note that for 
a=O, ey( r) is simply equal to the porosity, i.e., 

ed0) =A. (2.12) 

The exclusion probability e”(r) and the nearest-surface 
function h V( r) will be useful in establishing the relation- 
ship between the chord-length distribution function p(z) 
(defined below) and the lineal-path function L(z). Simi- 
larly, such quantities will also be useful in establishing the 
connection between the free-path distribution function 
p (z,a ) and the generalized lineal-path function L (z,a ) (de- 
fined below). 

B. Chord-length distribution function and free-path 
distribution function 

Chords are the distributions of lengths between inter- 
sections of lines with the interface (see Fig. 1) . A chord is 
then a special line segment with its end points on the in- 
terface and all other points in one of the two phases. The 

chord-length distribution function p”’ (z) is defined such 
that p”‘(z)dz is the probability of finding a chord of length 
between z and z+dz in phase i. The chord-length distribu- 
tion function p(z) =p”’ (z) is a fundamental morphologi- 
cal descriptor of heterogeneous media. It has been mea- 
sured for sedimentary rocks by Krohn and Thompson.‘4 
To our knowledge, there is, however essentially no theo- 
retical work on the calculation of the chord-length distri- 
bution function p(z) for nontrivial models of heteroge- 
neous materials. The mean chord length lc is the first 
moment of the chord-length probability distribution func- 
tion, i.e., 

Z,= m  zp(z)dz. 
s 0 

(2.13) 

This is also referred to as the “mean intercept length” in 
stereology.” 

The chord-length distribution function p(z) and close 
relatives (described below) are intimately related to trans- 
port properties of the porous medium. For example, such 
quantities arise in free-path models of gas diffusion in po- 
rous media.‘7-20. This model assumes the gas molecules 
leave a molecule collision isotropically, and the fraction of 
molecules that are emitted from a small volume and travel 
a distance r or greater before collision with another mole- 
cule is exp( -r/lo), where lo is the mean free path for 
molecule-molecule collisions. Molecular collisions with 
the solid surface are treated according to the laws of dif- 
fusive scattering. In principle, free path theories can treat 
the entire spectrum of possible transport, i.e., Knudsen 
diffusion lo>ls to continuum diffusion lo<ls, where 1, is a 
characteristic length of the pore phase defined below. Free 
path models lead to the well-known Bosanquet formula for 
the effective diffusion coefficient DC The self-diffusion co- 
efficient D in a porous medium is decreased in two ways: 
( 1) D is reduced by a factor which accounts for porosity 
and tortuosity, and (2) D is reduced because of the asso- 
ciated decrease of the mean free path lo due to molecule- 
wall collisions. Tokunaga2’ has shown that the effective 
mean free path I, is given by the following “harmonic- 
average” relation: 

1&1;‘+1;? (2.14) 

Here, IS is the mean free path due to molecule-solid colli- 
sions and is the first moment of what we refer to as the 
free-path distribution function described shortly below. 
One of the aims of this article is to calculate 1, for non- 
trivial models of porous media by obtaining corresponding 
expressions for the free-path distribution function. 

The free path for diffusing particles due to molecule- 
solid surface collisions is the distance the particle moves 
between two successive collisions with the solid surface. 
The free-path distribution function simply characterizes 
the distribution of such lengths. For “point” diffusion par- 
ticles (particles of zero radius), the free-path distribution 
function is precisely the chord-length distribution p(z) and 
hence 
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(2.15) 
In the analytical formulas derived in subsequent sections 
for L(z,a) in the case of systems of spheres, we find the 
function f(z) = -z. Thus for such f(z), we have 

More generally, if the diffusing particle has finite size, then 
the space available to it is less than the pore space because 
of exclusion-volume effects. The problem of diffusion of 
finite-sized Brownian particles has been recently studied by 
Torquato2’ and by Kim and Torquato.22 Let us consider 
spherical diffusing particles of radius a and define the char- 
acteristic function of the available space T1(a) as 

L(z,a) =eV(a)exp[ -AZ]. (2.22) 

Ill. RELATIONSHIP BETWEEN THE GENERAL 
LINEAL-PATH FUNCTION L(z,a) AND THE FREE- 
PATH DISTRIBUTION FUNCTION p(z,a) 

I( x;a) = I 
1, xEyl(a), 
0, otherwise. 

The free-path distribution p(z,a) is defined such that 
p(z,a)dz is the probability of finding a free path (due to 
molecule-solid surface collisions) with length between z 
and z+dz. Then we have the more general definition for 
the mean free path Is(a), i.e., 

For general homogeneous and isotropic systems, the 
lineal-path function L(z,a) and free-path distribution 

(2.16) p(z,a) satisfy a differential equation which we will derive 
below. For simplicity, we first derive the relationship be- 
tween the lineal-path function L(z) = L(z,O) and the 
chord-length distribution function p(z) s-p (z,O ) . The rela- 
tionship between L(z,a) and p(z,a) for nonzero a follows 
immediately. For convenience of derivation, we introduce 
the cumulative free-path probability function 

Is(a) = 
s 

m zp(z,a)dz. 
0 

(2.17) 

Note that the chord-length distribution function p(z) is 
equal to the free-path distribution function when a=O, i.e., 

(2.18) 

C. General lineal-path function L&a) 

An interesting and useful statistical measure for heter- 
ogeneous materials is the “lineal-path function” L(z) in- 
troduced by Lu and Torquato.‘2T’3 The lineal-path function 
L(z) gives the probability of finding a line segment of 
length z wholly in one of the phases, say phase 1, 
Y’“, = Y, (a=O), or equivalently, the probability that a 
point can move along a lineal path of length z in the pore 
phase 2(/‘i without passing through the solid phase. 

Consider now a more general lineal-path function 
L(z,a) associated with the space available 2r, (a) to a 
spherical “test” particle of radius a in the porous medium. 
L(z,a) gives the probability of finding a line segment of 
length z in z;T, (a), the space available to the test particle of 
radius a. Similarly the lineal-path function L(z,a) is the 
probability that a test particle of radius a can move along 
a lineal path of length z without passing through the solid 
phase. 

For arbitrary isotropic media, the general lineal-path 
function L(z,a) has the general form12P13 

L(w) = L(O,akxp[ -&f(z) 1, (2.19) 

where f(z) is a function of z such that 

f (0) =o (2.20) 

and A is a structure-dependent constant. Here L(O,a) is 
the probability of finding a test particle of radius a in phase 
1, i.e., L(O,a)=e,(a), where ey(a) is the surface exclu- 
sion probability defined earlier in Sec. II (see also Ref. 16). 
Therefore, we generally have 

L(w) =ev(a)exp[-Af(z)]. (2.21) 

B. Lu and S. Torquato: Free-path distribution functions 6475 

P(z,a) = 
I 

m 
p(r,a)dr, (3.1) 

z 
which is the probability of finding a free path for a diffusing 
particle of radius a larger than the length z. Clearly, one 
has that P(O,a) = 1. 

To begin with let us take a=O. For statistically homo- 
geneous and isotropic materials, the chord-length distribu- 
tion function p(z) can be obtained by determining the dis- 
tribution of chord lengths from an infinitely long line 
placed randomly into the system. Similarly, the lineal-path 
function L(z) can be obtained by counting the relative 
number of times that a line segment of length z is wholly in 
phase 1 when thrown randomly onto the infinite line. 
Clearly the line segment (of length z) being wholly in 
phase 1 implies that all the points on the line segment (of 
length z) are in phase 1. The strategy now will be to ex- 
press L(z) in terms of p (z) using the following probability 
argument. First, if we consider a special point on the line 
segment, say, the midpoint of the line segment referred as 
point A, then A has to be in phase 1. The probability that 
point A is in phase 1 is simply the porosity of the system, 
i.e., #i. Second, given the condition that the point A is in 
phase 1 (it is then on a chord), we ask what is the prob- 
ability that point A is on a chord with length between y 
and y+dy? Since the length fraction of a chord with length 
between y and y +dy is given by 

w(y)& is om w(yMy, 
then the probability that the point A is on a chord with 
length between y and y+dy is this length fraction multi- 
plied by the porosity +,, i.e., 

h.w(r>dy / s,” w(y)dy. 

Third, that point A of a line segment of length z (distinct 
from the length y) is in phase 1, however, does not mean 
that the whole line segment is in phase 1. The probability 
that a line segment of length z is on a chord of length y 
under the condition that the point A is on that chord is 

J. Chem. Phys., Vol. 98, No. 8, 15 April 1993 
Downloaded 08 Jul 2002 to 128.112.82.136. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



(Y--z)H(Y---z)/Y, 

where H(x) is the Heaviside step function defined by 

I 1, if x>O, 
H(x) = 

0, otherwise. (3.2) 

Now L(z), the probability that the line segment of length 
z is entirely in phase 1, can then be obtained by combining 
the results given immediately above, i.e., integrating the 
probability for the line segment being on chords with 
length between y and y+dy over all possible y, we find 

L(z) =4tlo” +-z)p(yM.fU--z) 
So”vpWdy * (3.3) 

Differentiation of (3.3) and use of (3.1) yields 

dL(z) -= 2 p(z)* 
dz k 

(3.4) 

Differentiation of (3.4) and rearrangement of terms gives 

lc d2L(z> 
p(z) =-& -g.g- * (3.5) 

Formula (3.5) establishes a new connection between 
chord-length distribution function p(z) and the lineal-path 
function L(z) . It is important to note that the above rela- 
tions are valid for statistically isotropic systems of arbi- 
trary microgeometry. 

Establishment of the relationship between general 
lineal-path function L(z,a) and the free-path distribution 
function p(z,a) for finite-sized diffusion particles is 
straightforward. Since the center of a finite-sized diffusing 
particle is constrained to be in its available space Y, (a), 
then the chord-length distribution function of the system 
with “pore space” YI(a) is actually the free-path distri- 
bution functionp(z,a). Because the average available space 
is ev(a), we then have 

dL(w) eda) -= 
dz 

-- P(z,a) 
1s (3.6) 

and 

1~ d2L(z,a) 
p(w) =- ev(a) d22. (3.7) 

For the general lineal-path function L(z,a) of the form 
(2.22), we see that (3.4) yields the expression 

p(z,a) =Als exp( -AZ). (3.8) 

The normalization condition P( 0,a) = 1, therefore, deter- 
mines the mean free path Is as 

Is= l/A. (3.9) 

For such L(z,a), we thus find that the free-path distribu- 
tion function is of the form 
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IV. SERIES EXPANSIONS OF THE DISTRIBUTION 
FUNCTIONS FOR POLYDISPERSED SPHERES 

A. System description 

Let us consider the relevant distribution functions for 
systems of polydispersed spheres.23 Assume that the sys- 
tem is composed of included particles with a continuous 
distribution in radius Z? characterized by the normalized 
probability density f (3). Note that the continuous parti- 
cle size distribution includes the discrete particle size dis- 
tribution as a special case. For example, in the discrete 
homogeneous case with M  different components, the size 
distributions 

hi PO 
f(S?j)= C --S (gj-Rc.)Y 

u=l P  3 

where p. is the number density of type (T particles and 
S (&’ ) is the Dirac delta function. The system is character- 
ized by the probability density function 
p,(r”;~P,...,~~)f(~‘l)...f(W,) associated with finding 
an inclusion with radius g,, at ri, another inclusion with 
radius B2 at r2, etc. Clearly the case n = 1 is degenerate in 
the sense that pl(rl;gP1) is independent of ri and in the 
instance of statistically homogeneous media is simply equal 
to the total number of density p. 

An important dimensionless parameter that will be 
used throughout the ensuing sections, is the reduced den- 
sity 17 in D dimensions. In the discrete case it is defined by 

M -D/2 
q=c “’ 

,,=, l?(l+D/2) pd2,D* (4.1) 

In the case of included particles with a continuous distri- 
bution in radius .%’ characterized by the normalized prob- 
ability density f (8 ), we have 

(4.2) 

where the average of any function A (9) is given by 

(AL@‘))= Jo- A(*)f (9)dB. (4.3) 

Finally, we note that only in the case of hard spheres is n 
equal to the sphere volume fraction #2. For penetrable- 
sphere systems, v > 42. 

A commonly employed size distribution function 
f (2’) is the Schulz distribution function, which is defined 
as 

m+l m+l 
f(9’El?(ml+l) (R) ( 1 9m 

I 

-(m+l).@ 
X exp (9j 1 , m>---1, (4.4) 

where l?(x) is the gamma function. The nth moment of the 
Schulz distribution function is 

&a) =A exp[ -AZ] = 
exp( -z/Is) 

1s 
(cP)=(S)” (m+ml)-n ifio (m+i>. (4.5) 
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By increasing m, the variance decreases, i.e., the distribu- 
tion becomes sharper. In the monodisperse limit, z-+ CO, 
f (.9? ) = 6 (9 - (9) ) . Note that for homogeneous and iso- 
tropic media, the density of the particles with radius be- 
tween 9 and 9 +d.@ is pf (9)dk%’ with p the total den- 
sity. 

B. Exact series expansions 
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m (-Ilk 
L(z,a)=l+ 1 - 

k=l k! s 
do 

1” ‘d.@kp&k;~,,...,~k) 

xf(B’l)*‘*f(gk) ,kl mj(x-rj;z)drj. (4.11) 

For the special case a = 0, series (4.11) reduces to the one 
derived by the authors in Ref. 13. Series (4.11) in conjunc- 
tion with the expression linking the free-path distribution 
function p(z,a) to L (~,a) yields the corresponding series 
expression for p(z,a) and thus for the chord-length distri- 
bution function p(z) -p(z,O). 

In an earlier work,t6, we derived exact series expansion 
for the surface exclusion probability e,(r) : 

N 

e”(r) = C (- IYe)?‘( 
s=o 

where 

(4.6) 

and 

ep’(r) = 1. (4.8) 

The quantity m ( 1 x - rj 1 ;r) is an indicator function defined 
as 

XP,(~%‘P~,...,~~) n [m( Ix-rjl );rldrj 
j=l 

(4.7) 

(4.9) m( Ix-rjI;r)= I 1, IX-rjl <r+9j, 

0, IX-rjI>r+.S. I’ 
where x is an arbitrary position vector in the system. Note 
that the function m defined here is slightly different from 
the one defined in Ref. 3 in that it is the surface indicator 
function. 

The derivation of the exact series representation of the 
general lineal-path function L(z,a) for a spherical test par- 
ticle of radius a follows closely the derivation of the cor- 
responding expression for the lineal path function L(z) for 
a point test particle as derived by Lu and Torquato.‘2V’3 
The lineal-path function L(z,a) is a special type of exclu- 
sion probability function, i.e., the probability of finding a 
“test” particle which is a spherocylinder of length z, and 
radius R empty of particle material. Therefore, center of j 
particle of radius ~j should be outside a region R, the 
exclusion region between a spherocylinder of length z and 
radius R and a sphere of radius ~j. The region sl,(z,?Zj 
+a) in this case is therefore a D-dimensional spherocylin- 
der of cylindrical length z and radius ~j+a with hemi- 
spherical caps of radius ~j+u on either end. Following 
Torquato’ we introduce the exclusion region indicator 
function 

For the special case of “overlapping” or “randomly 
centered” (i.e., spatially uncorrelated ) homogeneous 
sphere systems, the p,, are especially simple: 

pn(r”;9b...,9J= ii Pl(rj,gj). (5.1) 
j=l 

The simplicity of p,, for such polydispersed-sphere systems 
enables one to exactly sum the infinite series given in the 
previous section. Lu and Torquatot6 found that the “void” 
exclusion probability is given by 

e&9 =exp[ -p(vdr+9))1. (5.2) 
Here v,( 9) is the volume of a D-dimensional sphere with 
radius 9, i.e., 

Vi(9) =29, (5.3) 

v2(97) =7T.s2, (5.4) 

v3(.9?) =$rr93. (5.5) 
Similarly, series (4.11) and Eq. (5.1) yields the exact re- 
sult for the general lineal-path function as 

L(w) =expI -p(v&,~+a))l, (5.6) 
where v~(z,.!% +a) is the D-dimensional volume of the ex- 
clusion region flE(z,99 + a) : 

vE=(4~/3)(%‘+a)3+~(S?+a)2z, D=3, (5.7) 

v~=~T(~+u)~+~(~+~)z, D=2, (5.8) 

vE=2(.%‘+a) +z, D= 1. (5.9) 
By using the expressions of the surface exclusion probabil- 
ity ey( r) for fully penetrable spheres, the linear-path func- 
tion may be written as 

mj(Y;Z) = 
l, YEflE(Z,sj+Q)* 

0, otherwise, 

Ww) =eda>d, 3((9+‘7)2)z/(4>(93)), D=3 , (5.10) 

L(q) ,ey(~)~:((~)+‘)“(~(~~)), D=2, (5.11) 
(4.10) 

L(z,a) =ev(a)+f”9), D= 1. (5.12) 

For the special case of a=O, the results reduce to those we 
obtained for the lineal-path function L(z) in our earlier 
paper. I3 Results (5.10)-( 5.12) for arbitrary values of a are 
new. 

where y is measured with respect to the centroid of the 
exclusion region. Using the same analysis of Lu and Tor- 
quato,‘2*‘3 the series expansion of the general lineal-path 
function t(z,a) is found to be given by 

V. EXACT RESULTS FOR FULLY-PENETRABLE- 
SPHERE SYSTEMS 
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The free-path distribution function for fully penetrable 
spheres is obtained using the relationship (3.7) and 
(5.10)-(5.12): 

p(z,a) = -Pn $1((B+a)2)/(93) 

,#9+~)*)z/(49*), D=3, 

p(w) = -In @t(9) +a)/ 

(5.13) 

(~(~2))~:((d)+o)z’(a(B2)), 0~2 (5.14) 

p(z,a) = -In #t/(&Z’)&‘@ ), D= 1. (5.15) 

In obtaining relations (5.13)-( 5.15) we have used the fact 
that &=ev(0)=exp[-pp((vD(g))] [cf. (5.2)]. For the 
special case of a=O, we have that the chord-length distri- 
bution function is given by 

p(z)= - i In ~l(a2)/(a3)~:(YP2)z’(4~3), D=3, 
(5.16) 

p(z)= -2 In ~l(~)/(a(b2))~:‘~‘“‘“‘~2”, D=2, 
(5.17) 

p(z) = --In #i/(~)&“~), D= 1. (5.18) 

The mean free path Is can easily be evaluated through use 
ofEqs. (2.17) and (5.13)-(5.15).Thusthemeanfree-path 
for fully penetrable spherical systems can be written as 

Is= -4(.?Z3)/[3 In +l((&‘+a)2)], D=3, (5.19) 

Is= -rr(S?2)/(2(9%‘+2a)ln &), D=2, (5.20) 

Zs= - (.@ )/ln I$,, D= 1. (5.21) 

The mean chord length Ic for fully penetrable spherical 
systems is obtained by setting a=0 in the expressions im- 
mediately given above: 

Zc=--4(~%“)/(3 In (pi@?‘)), D=3, (5.22) 

Zc= -rr(L@2)/(2(g)ln &), D=2, (5.23) 

Zc= - (.%‘)/ +,, D= 1. (5.24) 

To illustrate the results given above, we consider poly- 
dispersed systems characterized by a Schulz distribution 
(4.4). Recall that as the parameter m  increases, the distri- 
bution becomes sharper. Clearly, the lineal-path function 
L(z,a) is a monotonic increasing function of 4,. In Figs. 2 
and 3, we plot our analytical results for fully penetrable 
spheres for D= 3 and D=2, respectively, at a sphere vol- 
ume fraction 42=0.4 and a=O.l (9) and a=0 with m=O 
and m  = 00 in each case. For any D, L (z,a) is a monotonic 
decreasing function of z and a. This behavior is expected 
since the larger and longer is the spherocylinder, the 
smaller is the probability of finding it wholly in phase 1. 
For fixed length z, radius a, and volume fraction $2, L (z,a ) 
changes dramatically with the size distribution of particles 
for D= 3 and D= 2, and the effect of the polydispersivity is 
to increase the lineal-path function L(z,a). For three- 
dimensional systems, this effect is much stronger than for 
two-dimensional systems. Note that for D= 1, polydisper- 

I ’ ’ 1 ’ I ’ 

Fully Penetrable Spheres 

FIG. 2. Lineal-path function &,a) versus the dimensionless distance 
z/2R for a three-dimensional fully penetrable polydispersed system char- 
acterized by a Schulz distribution (4.4) with m= Q), a=0 (solid line), 
m= m, a=O.l (9) (dashed line), m=O, a=0 (dashed and dotted line), 
m=O, a=O.l (9) (dotted line), at a sphere volume fraction &=0.4, as 
obtained from (5.10). 

sivity has no effect on L(z,a) for fixed (9). In Fig. 4, we 
plot our analytical results of p(z,a) for fully penetrable 
spheres for D= 3 at a sphere volume fraction r$,=O.4 for 
a=O.l (9) and a=0 with m= CO in each case. Note that 
case a=0 yields the chord-length distribution function. 
The figure shows that the effect of polydispersivity is to 
broaden the distribution function p(z,a), i.e., increasing 
polydispersivity decreases p (z,a ) for small z but increases 
p(z,a) for large z. The same general trends are found for 
D=2 and hence this case is not shown graphically. 
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FIG. 3. As in Fig. 2, except for D=2 obtained from (5.11). 
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FIG. 4. Free-path distribution function p(z,a) versus the dimensionless 
distance z/2R for a three-dimensional fully penetrable polydispersed sys- 
tem characterized by a Schulz distribution (4.4) with m= 00, a=0 (solid 
line), m= CO, o=O.l (9) (dashed line), a=0 (dashed and dotted line), 
and m=O, n=O.l (9) (dotted line), at a sphere volume fraction &=0.4, 
as obtained from (5.13). 

In Fig. 5, we show the analytical results of the mean- 
free path for fully penetrable spheres for D= 3 [Es. (5.19)] 
at a sphere volume fraction C#J~ =0.4 for a =O. 1 (5%‘) and 
a =0 with m =0 and m = CO in each case. As in the case of 
p(z,a) [cf. Fig. 41, the effect of polydispersivity is to in- 
crease the mean-free path. We can also clearly see the effect 
of size variation of the diffusing particles from Figs. 4 and 
5; the smaller is the diffusing particle, the broader is the 

probability density function p(z,a) . This indicates that for 
smaller diffusing particles, one has a larger mean free path, 
as expected. 

VI. ANALYTICAL EXPRESSIONS FOR THE 
DISTRIBUTION FUNCTIONS FOR POLYDISPERSED 
HARD-SPHERE SYSTEMS 

A. Results for the surface exclusion probability e”(r) 

In the instance of totally impenetrable or hard spheres, 
the exact series representation of ey( r) can only be evalu- 
ated exactly for the case D= 1 (i.e., hard rods). It is im- 
possible to evaluate ey(r) for 022 because the n-particle 
probability density pn(r”) are not known exactly. One 
must therefore devise approximate schemes to evaluate and 
sum the series. Lu and Torquato16 evaluated e,(r) for 
polydispersed hard-sphere systems in various approxima- 
tions. For example, their scaled-particle result for the ex- 
clusion probability for D=3 is given by 

edr) = (1 -q)exp[ -77p(cr+c-@+g3) I, r>O, 
(6.1) 

where 

4(92) 
c=l-rl’ 

(6.2) 

4cw 1x2 
d= l--r] +(l-# (22), (6.3) 

4 862(~) 1%; 
g=3(1-~)+(l-11)2+(l-q)s (9’)s 

(6.4) 

with 

&=p(~r/3)2~-‘(9?~). (6.5) 

For D= 2, the scaled-particle approximation gives the sur- 
face exclusion probability as 

B. Lu and S. Torquato: Free-path distribution functions 6479 

ey(r)=(l-q)exp -rp [ ( 3+2w’)r 
1-V 

~qew2 
+ u-r1)2 )I , r>O . (6.6) 

It is only in the case of one-dimensional hard rods that the 
exclusion probability function is known exactly for 
D-dimensional hard spheres. Specifically, one has 

e&)=(1-rl)exp[--2pr/(l-q)], U>O. (6.7) 

B. Evaluation of the general lineal-path function 
L(w) 

FIG. 5. Mean free path 1s versus the sphere volume fraction of 4s for a 
three-dimensional fully penetrable polydispersed system characterized by 
a Schulz distribution (4.4) with m= CO, a=0 (sold line), m= m, o 
=O.l (W) (dashed line), a=0 (dashed and dotted line), and m=O,R 
=O.l (59) (dotted line), as obtained from (5.19). 

We have already developed an approachI to calculate 
the lineal-path function L(z) for hard-sphere systems with 
polydispersivity in size in the case of point test particles 
(a=O). The method can be extended to evaluate the gen- 
eral lineal path function L (~,a) for a > 0. The main ideas 
are summarized as follows: 

( 1) The probability of finding a surface exclusion cav- 
ity which is a spherocylinder of length z and radius a is, 
according to statistical mechanics 
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L(z,a) =exp[ - W(z,a)/kT], (6.8) 

where W(z,a) is the reversible work needed to create the 
surface exclusion spherocylindrical cavity and k to the 
Boltzmann constant and T the temperature of the system. 
(Note that here we are speaking about “surface-based” ‘\ 
rather than “center-based” quantities as explained in Refs. 0.4 ‘\ ‘: ‘\ 
13 and 16.) n L(z,a) “:. ‘\ . . . . . ‘\ 

‘\ (2) The process of creating the spherocylinder cavity 
may be looked upon as a two-step process: first one creates 
a surface exclusion sphere cavity of radius a and then ex- 
pands this sphere along one direction to form a spherocyl- 
inder. The work W(z,a) then is the sum of the work for 
these two processes: 

\ . . 
I\ 

‘\ . . 
0.2 ‘, 

. . ‘\ 
. . ‘\ 

. . ., m=O 
\ ‘. . . ‘\ . . 

W(z,u) = w1+ w,. (6.9) 

(3) The work W,(a) is known from the explicit ex- 
pression for the surface exclusion probability e,(u), i.e., 

WI= -kT In ev(u), (6.10) 

and we have 

.-. -.-. 0 . . . . . . . . ..____..__. -.-. -.-.-__ __._ 0 5 10 

z/2<- 

L(z,u) =ey(u)exp[ - WJkT]. (6.11) 

(4) The work W, can be further considered to be com- 
posed of the following two parts: the work Wls related to 
the volume change and the work W,,s related to the sur- 
face area change: 

w2= w2,p+ w2,. (6.12) 

(5) The simplest way of evaluating W2 is to calculate 
the elemental work from the initial infinitesimal expansion 
process, i.e., from a sphere of radius a to a spherocylinder 
of length dz and radius a. Following our previous work,6 
the calculation is quite straightforward. Within the scaled- 
particle approximation, we have 

FIG. 6. Lineal-path function L(z,a) versus the dimensionless distance 
z/2R for a three-dimensional totally impenetrable polydispersed system 
characterized by a Schulz distribution with tn=oo, a=0 (solid line), 
WI= a, a=O.l (1) (dashed line), m=O, a=0 (dashed and dotted line), 
and m=O, a=O.l (5%‘) (dotted line), at a sphere volume fraction q&=0.4, 
as obtained from (6.16) and (6.17). 

W,(z) =rkTpz 
( (g+a12) +6&(a2(g) +a(8’) I 

Cl---rl) u-r1>2 

12&2( 9’2) 

+ (1-q)3 ] 
, D=3, (6.13) 

A=pz/( 1 -v), D= 1. (6.19) 

Figure 6 depicts our analytical results of L(z,u) [Eq. 
(6.16)] for totally impenetrable polydispersed sphere sys- 
tems characterized by a Schulz distribution (4.4) with 
m=O and m= 03 and u=O.l (9) and a=0 at the sphere 
volume fraction 4,=0.4 for D= 3. The larger is the diffus- 
ing particle, the smaller is the lineal-path function L (~,a). 
The effect of polydispersivity is qualitatively the same as in 
the case of fully penetrable spheres. For a broader size 
distribution of particles (a smaller value of m), the lineal- 
path function L(z,u) increases. This effect is much stron- 
ger for three-dimensional systems than for two- 
dimensional systems. Again, for one-dimensional systems, 
polydispersivity has no effect on the lineal-path function 
(under the condition that (9) remains unchanged). At 
fixed z and a, the effect of increasing the impenetrability of 
the inclusions is to decrease L(z,a) (cf. Figs. 2 and 6). 

, D=2, 

(6.14) 

W,(z)=pkTz/(l-v), D=l. (6.15) 

Combination of relation (6.11) and’ (6.13)-(6.15) 
yields the lineal-path distribution function L(z,u) for 
D-dimensional polydispersed hard-sphere systems as 

L(z,u) =ey(u)exp[ --AZ], (6.16) 

where A is given by 

A=rp] 
( (9 +a12) +6&(a2(g) +a(2’) I 

1-V (l-d2 

12&Z2(&) 
+ (1-1)j3 I, D=3, (6.17) 

Totally Impenetrable Spheres 

D=3 

#,=0.4 

D=2 
9 (6.18) 

C. Results of free-path distribution function p(z,a) 
and mean free path /, chord-length distribution func- 
tion p(z) and mean chord-length lc 

We recall from Sec. III and Eq. (3.10), in particular, 
that a lineal path function of the form (6.6) yields a free- 
path distribution function given by 

p(z,u) =A exp( -AZ), (6.20) 

where A is given by (6.17)-(6.19) for D=3,2,1, respec- 
tively. The mean free-path is simply 

Is= l/A. (6.21) 
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FIG. 7. Free-path distribution function p(z,a) versus the dimensionless 
distance J2R for a three-dimensional totally impenetrable polydispersed 
system characterized by a Schulz distribution with m= m, a=0 (solid 
line), m= m, a=O.l (2) (dashed line), m=O, a=0 (dashed and dotted 
line), and m=O, o=O.l (9) (dotted line) at a sphere volume fraction 
&=0.4, as obtained from (6.20) and (6.17). 

For the special case of a =0, we have that the chord-length 
distribution functions p(z) are given by 

+@2> 
p(z) =- 

1-v 2Pw7’) 
p(z)=- i 2/M wf’> +a) 

1-q exp - 1 l-11 ’ 

PZ Pz 
p(z)=- - 

1-v exp -l-7 , i 1 D= 1. (6.24) 

The explicit expressions for the mean chord-lengths (or 
“mean-intercept” lengths) are given by 

I , D=3, 1 l--r] 
1 I,=---, D=3, 

ape?) 
(6.25) 

(6.22) 
1 1-q 

D=2, ‘c=zpm, D=2, (6.26) 

(6.23) Zc=(l-7)/p, D=l. (6.27) 

In Fig. 7, we plot our analytical results of p(z,u) for 
totally impenetrable polydispersed systems characterized 
by a Schulz distribution with m=O and m= 03 and a 
= 0.1 (9 ) and a = 0 at the sphere volume fraction c$~ = 0.4 
for D=3 [Eq. (6.22)]. Increasing polydispersivity is again 
seen to broaden the function p(z,u). In Figs. 8 and 9, we 
depict the analytical results for the mean free path for 
totally impenetrable spheres for D= 3 and D=2, respec- 
tively, at a sphere volume fraction ~$~=0.4 for u=O. 1 (9) 
and u =0 with m = 0 and m = co in each case. The effect of 
polydispersivity is to increase the mean-free path for dif- 
fusing particles as in the case of systems for fully penetra- 
ble spheres. 

0 0.2 0.4 0.6 

FIG. 9. As in Fig. 8, except for D=2 as obtained from (6.21) and (6.18). 
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FIG. 8. Mean free path Is versus the sphere volume fraction d2 for a 
three-dimensional totally impenetrable polydispersed system character- 
ized by a Schulz distribution (4.4) with m= m, a=0 (solid line), m= 00, 
a=O.l (2) (dashed line), m=O, a=0 (dashed and dotted line), a 
=O.l (..+?‘) (dotted line) as obtained from (6.21) and (6.17). 
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