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Cross-property relations linking the fluid permeability k associated with viscous flow through a 
porous medium to effective diffusion properties of the medium have recently been derived. 
Torquato [Phys. Rev. Lett. 64,2644 (1990)] found that k<D4,7, where r is the “mean survival 
time” associated with steady-state diffusion of “reactants” in the fluid region of diffusion 
coefficient D and porosity #i of a porous medium containing absorbing walls (i.e., trap 
boundaries). Subsequently, Avellaneda and Torquato [Phys. Fluids A 3,2529 ( 1991)] related k 
to the electrical formation factor F (inverse of the dimensionless effective electrical 
conductivity) and the principal (largest) diffusion relaxation time T, associated withy the 
time-dependent trapping- problem, namely, k<DTl/F.. ‘In this study, we compute the 
aforementioned bounds, using an efficient first-passage-time algorithm, for grain-consolidation 
models of porous media and compare them to exact results for these models. We also conjecture 
a new relation connecting k to r and F for a wide class of porous media, namely, k<Dr/F, and 
show that it gives the sharpest permeability estimate among the existing bounds. The importance 
of this relation lies not only in its usefulness as an estimator of-the permeability but that it 
involves the diffusional parameters r and F which can be measured in situ. 
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I. INTRODUCTION 

An intriguing fundamental as well as practical ques- 
tion in the study of heterogeneous materials is the follow- 
ing: Can different ‘effective properties of the medium be 
rigorously l inked to one another? Such cross-property rela- 
tions become especially useful if one property is more eas- 
ily measured than another property. In the context of 
transport in porous media, this question has been explored 
only very recently. I-3 

The fluid permeability k of a porous medium, defined 
by Darcy’s law, ,- .” 

U(x) = -; Vpo(x>, (1) 

governs the rate at which a viscous fluid flows through it. 
Here U(x) is the average fluid velocity, VP,,(X) is the ap- 
plied pressure gradient, and p is the dynamic viscosity. The 
permeability k, which has dimensions of (length),2 de- 
pends upon the details of the pore geometry in a complex 
fashion, and, roughly speaking, may be regarded to be an 
effective cross-sectional area of pore %hannels.” Indirect 
measurements of the permeability are of great interest be- 
cause it is often difficult to measure in situ. There are nu- 
merous relations which approximately relate k to other 
effective properties of the porous medium:G the most no- 
table among them is an approximate relation due to 
Johnson et al6 

Torquato’ derived the first rigorous relation connect- 
ing the permeability tensor to an effective diffusion param- 
eter, namely, the mean survival time r associated with 

_- 

steady-state diffusion of “reactants” in the fluid region of a 
porous medium containing perfectly absorbing pore walls 
(i.e., infinite surface rate constant K) . The scalar version of 
this expression, valid for arbitrary isotropic media, is given 
by 

k<WT,. (2) 

where D is the diffusion coeillcient and $i is the porosity. 
Relation (2) becomes an equality for transport interior to 
parallel tubes of arbitrary cross section (in the direction of 
the tubes). The bound (2) is relatively sharp for flow 
around dilute arrays of obstacles, e.g., for equi-sized 
spheres k=2D&r/3. For a cubic array of narrow tubes it 
is less sharp: k=D&7/3. This last example is revealing in 
that it highlights the fact that the mean survival time r-can 
not distinguish between pore channels involving significant 
momentum transport from those involving little or no mo- 
mentum transport. Moreover, for any disconnected pore 
space, .k is zero while r is nonzero, reflecting the fact that 
r does not contain nontrivial topological information. Note 
that in the more general case of partially reflecting pore 
walls (KC 03), T(K) >~=r( CQ), and hence one has the 
generally weaker inequality 

k<.Qb&). (3) 
It is important to emphasize that r can be obtained exper- 
imentally from nuclear magnetic resonance (NMR) mea- 
surements in fluid-saturated porous media.’ This point is 
elaborated upon below. 

More recently, Avellaneda and Torquato3 derived the 
first rigorous relation connecting the permeability to the 
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effective electrical conductivitv of the porous medium. For a 
porous medium with effect&e electrical ,_ .i_ conductivity a, 
containing a conducting fluid of-conductivity o1 and an 
insulating solid phase, they found 

k=$ (4) 

where F is the formation factor defined by 

and L is a length parameter which is a weighted sum over 
the viscous relaxathz. t&es 8, associated with, the time- 
dependent Stokes equations (i.e., inversely proportional to 
the eigenvalues of the Stokes operator).3 Relation (4) is 
exact. The parameter L, which interestingly reflects both 
information on momentum and electrical transport, was 
bounded from above in terms of the principal (largest) 
viscous relaxation time 0,:3 

k<$ 
~. 

- (6) 
jr.*. 

where Y is the kinematic viscosity. Avellaneda and Tor- 
quato also showed that ,, 

Y&<DTI, i .!z, 
where T1 is the principal (largest) dzfiuion relaxation time 
(see Sec. II) and hence, in light of (5), found 

DTI kq- . (8) : 

In principle, T, can be obtained from NMR experiments.. 
Thus, the permeability is related to purely diffusional pa: 
rameters, i.e., T1 and F, which are more easily measured 
than the viscous relaxation time 81. 

Let us compare bound (2) to bound (8). It was 
shown3 that for flow through arrays of circular tubes of 
radius a the upper bound-(8) gives 

a291 k<- 5.784 ’ (9). 

in contrast to (2), which is exact for this microgeometry. 
Moreover, for porous media characterized by a wide range 
of pore sizes, T, is substantially larger than r (see Ref. 2) 
and relation (2) is expected to provide a better estimate of 
the permeability than (8). On the other hand, for porous 
media with a small and. finite range of pore sizes and sig- 
nificant tortuosity, relation (8) should yield a sharper es- 
timate of k than (2), especially at low porosities. This 
follows for two basic reasons: First, it is rigorously true 
that F-‘(#,. Significant tortuosity results in an inverse 
formation factor that is considerably smaller than the po- 
rosity, especially at low porositiesI Indeed, it is noteworthy 
that in contrast to formula (2), which is nonzero when the 
pore space is disconnected, formula (8) is identically zero, 
as it should be since F-‘=O. Second, although it is rigor- 

ously true that T+r, it has been argued that T1 will be of 
order of T provided that there is a small and finite range of 
pore sizes.2 

There are virtually no calculations of the relaxation 
time T1 for nontrivial models of porous media. One of the 
aims of this paper will be to compute T, for grain- 
consolidation models and thus evaluate the bound (8) ‘dn 
the fluid permeability for such models. The bound (8). is 
then compared to-bound (2) and another bound _ -: i 

Dr. ,il 
k<y 3 

relating permeability, mean’survival time;-and formation 
factor, which we conjecture here to hold for a wide class of 
porous media. Relation ( lo), which is seen to’ be a hybrid- 
ization~ of expressions (2) and ( 8), is .shown to-provide the 
sharpest upper bound on the permeability for this’&& of 
media. Relation (10) is not only appealing because it ap- 
pears to provide a relatively sharp bound on k but because 
r and F can be measured in situ: the former from an NMR 
measurement and the latter from an electrical resistivity 
measurement. Relation (lo), which is sharper thaneither 
of the aforementioned bounds, is seen to be a hybridization 
of expressions (2) and (8). 

. . 

In Sec. II we describe the basic equations for the time: 
dependent- and steady-state diffusion problems and discuss 
the connection with NMR measurements. In Sec. III we 
calculate the principal relaxation time -,T1 for grain- 
consolidation. models for a wide range of porosities. For 
selected values of the porosity, we also determine the mean 
survival time r for these models. In Sec. IV we compare the 
bounds (2) and (8) to exact results for the permeability k 
for the same models. We also propose the cross-property 
relation ( 10) and show that the bound is satisfied for a host 
of porous media. Finally, in Sec. V we make some conclud- 
ing remarks. r*- 

II. BASIC EQUATIONS FOR TH_E RELAXATION AND 
MEAN SURVIVAL PROBLEMS 

The random porous medium is a portion of space 
Y(w)eR3 (where the realization o is taken from a prob- 
ability space a) of volume V, which is composed of two 
regions: the void (pore) region Yi(w) through which 
fluid is transported of volume fraction, (porosity) ~$i, and a 
solid-phase region 2ir2(w) of volume fraction &. Let Vi be 
the volume fraction of region pi, V= Vi+ V2 be the total 
system volume, a.Y(w) be the surface between Y, and 
Y/;, and S be the total surface area of the-interface JY. 
The characteristic function of the pore region is,clefined by 

I(r,w) = L 
1, rEYl(a), 
0, rEY2(w). ” (11) 

The characteristic function of the pore-solid interface is I . 
defined by 

M(r,w) = IVl(r,w) I. - (12) 

For statistically homogeneous, but possibly anisotropic, 
media, the ensemble averages of ( 11)’ and ( 12) yield 
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&=(I)= lim ;, (13) 
v,,v- m 

s 
a=(M)= lim 7, (14) 

.s,V-.m 
which are, respectively, the porosity and specific surface. 
Here angular brackets denote ensemble averaging. 
A. Time-dependent relaxation problem 

The relaxation times associated with the decay of phys- 
ical quantities such as the concentration field or nuclear 
magnetization density are related closely to the character- 
istic length scales of the pore of the fluid region. Let c(r,t) 
generally denote the physical quantity of interest at local 
position r and time t, obeying the time-dependent diffusion 
equation 

ac 
~=DAc+c&(t) in y1 (15) 

in the jnite but large pore region yl. Here K is the surface 
rate constant, A is the Laplacian operator, n is the unit 
outward normal from the pore region, co is the initial con- 
stant field, and s(t) is the Dirac delta function.’ 

The solution of ( 15) and ( 16) can be expressed as an 
expansion in orthonormal eigenfunctions {Y,): 

c(k,t) m 
co= lE, ane-f’TnYrr(r), 

where 

(17) 

A’4,= --/z,‘P, in q, 

D2-t-Kv,,=o On 8% 

The diffusion relaxation times T, are related to the eigen- 
values /2,, by the simple relation 

1 
Tn=o,z,. (19) 

At long times, the smallest eigenvalue il, or principal re- 
laxation time T1 dominates. The initial condition and the 
normal mode expansion ( 17) give 

i a,YJr) = 1. 
fl=l (20) 

The eigenfunctions { Y, ] are orthonormal such that 

1 
v, Y, I y,(rP,(r>dr=&,, (21) 

and therefore the eigenfunction coefficients are given by 

1 
an=- 

I Vl Y, 
YJr)dr. 

It is to be recalled that 

(22) 

v1=41v (23) 

is the tootalpore volume. We also have, because the set {Y,,) 
is complete, that 

nfl a2,=1. (24) 

The survival probability S(t) in terms of c( r,t) is given 
by the relation 

S(t) + 
s 

4rA 

9 
T dr. (25) 

This quantity gives the fraction of Brownian particles 
which survive until time t. Substitution of ( 17) into (25) 
gives 

S(t)= ni, a$z-“Tn. (26) 

This relation will prove to be very useful to us in the sub- 
sequent section. 

Ultimately, we will pass to the limit V, + 00, Y- CO. In 
this limit, ergodicity enables us to equate ensemble and 
volume averages of some stochastic function f(r) so that 

(f)=;Fm i I f(r)dr. 

Equations ( 17), ( 18) and (21) become, respectively, 

and 

1 dr,t) 
s(t)=F -7 * 1 ( > 

(29) 

B. Steady-state survival problem 

A different but related diffusion problem is the one 
associated with steady-state diffusion of “reactants” among 
static, partially absorbing traps with a prescribed rate of 
production of the reactants. The average or mean survival 
time 7 of a Brownian particle is g&n by9 

where the scaled field u solves the equations 

Au= - 1 in vl, (31) 

The mean survival time T depends not only on D but on the 
surface rate constant K. 

We note that 7 is related to the survival probability 
S(t): 
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7= (33) 

This relation is easily proven using the results of Ref. 2. 

C. Relationship between relaxation and survival 
problems 

Torquato and Avellaneda2 showed that the relaxation 
times and the mean survival time are related to one another 
through the relation 

-T= i a:T,, (34) 
ll=t 

which states that r is a weighted sum over the relaxation 
times. Using this expression, Torquato and Avellaneda’ 
easily proved that 

7~ TI, (35) 
and thus related the mean survival time r to the principal 
diffusion relaxation time T,. This relation will also be use- 
ful to us later. 

D. Connection to NMR measurements 

It is important to emphasize that the problems de- 
scribed above have a direct connection to NMR measure- 
ments in fluid-saturated porous media.7 The characteristic 
times involved in the decay of nuclear magnetism are re- 
lated to the pore size because of enhanced relaxation at the 
pore-solid interface. The equations governing the decay of 
the magnetization density m(r,t) are precisely Eqs. ( 15) 
and (16) with c(r,t) and co replaced by m(r,t) and mo, 
respectively. The dimensionless volume-integrated magne- 
tization M(t)/Mo(Mo=moV~) is simply~what we have re- 
ferred to as the survival probability s(t) given by relation 
(25), i.e., 

M(t) 
S(t) =- . 

MO 
(36) 

The net magnetization M(t) is usually -the quantity of 
principal interest in an NMR experiment. 

Ill. CALCULATION OF THE PRINCIPAL RELAXATION 
TIME T, OR SMALLEST EIGENVALUE 12, FOR 
GRAIN-CONSOLIDATED MODEL 

A. Periodic grain-consolidated models 

Consider a periodic lattice of spheres such as simple 
cubic (SC), body-centered cubic (BCC) , or face-centered 
cubic (FCC). The grain consolidation (GC) model” is a 
trivial extension of these sphere lattices in that it allows the 
sphere radii to increase beyond the point of touching. The 
overlapping spheres then form a consolidated medium 
whose solid volume fraction +2 may increase up to unity, 
completely filling all space (or, equivalently, whose poros- 
ity may decrease down to zero). Thus in the GC model, 
the entire volume fraction range may be spanned, i.e., 
O<&<l or O&<l. The feature of overlapping particles 
beyond touching enables one to achieve two microstruc- 

*. 
**.* 

f... 

0 9’ - 
-...* . . . . . . * I * I , , 

0 1 2 
Dt/c2 

FIG. 1. The survival probability s(t) vs the dimensionless time Dt/d 
for the grain-consolidation model in the case of a simple-cubic (SC) 
lattide at a porosity &=0.7. The sphere radius is denoted by a. Note that 
S(t) is equal to the @mensionless net magnetization M( r)/M, [cf. (36)]. 

tural aspects of realistic porous media that are absent in 
classical unconsolidated periodic arrays: ( 1) very low po- 
rosities (or very high solid volume fractions) and (2) bi- 
continuous phases. For a SC lattice, for example, the 
spheres touch at 4i= 1 --?r/6~0.476. Below this porosity 
the grains are consolidated but the pore space remains in- 
terconnected until a threshold is reached at &=0.0349. 

B. Calculation procedure 

The principal relaxation time T1 or smallest eigenvalue 
/2r has not been computed for the GC model for arbitrary 
porosity I&. For simplicity, we consider perfectly absorbing 
traps (K= CO ) only. This is accomplished by determining 
the survival probability S(t) [or, equivalently, the dimen- 
sionless net magnetization M(t)/M,, cf. (36)] for large 
time C. -According to relation (26), for large t, the survival 
probability has the asymptotic form 

S(t) -e--r’T1 
or, alternatively, 

(37) 

In S(t) --t/T1. (38) 
Thus, the inverse of the slope of In S(t) vs t yields T, for 
large t. 

r The survival probability S(r) is determined using the 
efficient first-passage time algorithm of Torquato and 
Kim” used to compute the mean survival time r. For a 
particular volume fraction, we employ a very large number 
of Brownian particles (up to 10’) and record the fraction 
of them that survive up to time t. As an example, Fig. 1 
shows a plot of s(t) vs t for a SC lattice of spheres of 
,radius a at a porosity 4,=0.7. For large t, we obtain T, 
from relation ( 38 ) . 

One of the objectives of this study is to,compare the 
survival time bound (2) to the relaxation time bound (8). 
Felderhof12 obtained T exactly for unconsolidated lattices. 
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TABLE I. Dimensionless relaxation time DT,/d,- and dimensionless TABLE III. Dimensionless relaxation time DT,/u2, and dimensionless 
mean survival t ime Or/d, for the grain-consolidation model in the case of mean survival t ime DT/$, for the grain-consolidation model in the case of 
simple-cubic lattice, as function of porosity 4,. Results for T, are our body-centered-cubic lattice, as function of porosity q$. Results for T, are 
simulation data. Results for r for #,>0.5 are obtained from FelderhoP our simulation data. Results for r for 9t$O.3 are obtained from Felder- 
and for 4, ~0.5 are the simulation data of the present study. hoP and for & =O. 1 is the simulation datum of the present study. 

91 DT,/$ Ddi2 

0.1 0.0193 0.0111 
0.2 0.0274 0.0171 
0.3 0.0405 0.0260 
0.4 0.0574 0.0389 
0.5 0.0821 0.0576 
0.6 0.125 0.09 10 
0.7 0.198 0.161 
0.8 0.387 0.338 
0.9 1.127 1.041 
0.99:. -~ -~ 21.432 - ii.131 
0.997 84.474 83.479 

“See Ref. 12. 

For consolidated cases (low porosities), ‘7 was computed 
and plotted by Kostek et al. l3 but for such low porosities it 
is diilicult to accurately read their figure. Accordingly, we 
will calculate and tabulate here r for the consolidated cases 
using the efficient first-passage-time algorithm. l1 

’ There are several ways that we can check our numer- 
ical determinations of .the grincipal relaxation time Ti. 
Fist, in the dilute-sphere lim it, one can compute Tr ex- 
actly14 according to the relation 

T1= (p,& - (39) 

This lim it represents a severe test.on the simulation tech- 
nique because the Brownian particles can wander a sub- 
stantial amount of time in the large void space before they 
are trapped. Second, the integral of S(t) over time is’the 
mean survival time r [cf. (35)]. This calculation of r can be 
compared to Felderhof’s exact calculation for unconsoli: 
dated cubic lattices” and to our simulation data for the 
consolidated cases obtained here. Third, according to (35) 
the relaxation time T, -must’ bound r from above: . i: 

C. RESULTS 

Tables I-III summarize our numerical determinations 
of T1 for the GC models in the cases of SC, BCC, and FCC 
lattices, respectively. Included in the tables are correspond- 

.- :<1: 

TABLE II. Dimensionless relaxation time DT,/d, and dimensionless 
mean survival t ime Dv’c?, for the grain-consolidation model in the case of 
face-centered;cubic lattice, as function of porosity q$. Results for T, are 
our simulation data. Results for r for qQO.3 are obtained from Felder- 
hoP and for #,=O.l is the simulation datum of the present stbdy. I 

41 I DT@ __~ DT/d 

0.1, I- 7 0.0134 0.00578 I- 
0.3 0.0277: . j 0.0115 
0.5 0.0534 0.,0356 

‘. 0.7 0.154. 0.131 
0.9 1.054.,” 0.986 

‘See Ref. 12. -~. 
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91 DT,/d . Dda’ 

0.1 0.00345 0.00209 
0.3 0.0147 0.0112 _ 
0.4 0.0249 0.0187 
0.5 0.045 1 0.0348 
0.7 0.148 0.130 
0.9 1.072 0.986 

“See Ref. 12. 

ing ‘exact data for the mean survival time 7. Data for r for 
unconsolidated and consolidated porosities are obtained 
from Felderhofi2 and the present study, respectively. For 
small sphere concentrations (high porosities), the data for 
the principal relaxation time T, are seen to be in excellent 
agreement with the results derived from the exact asymp- 
totic expression (39). The integral of the survival proba- 
bility (equal to r) was found to be in very good agreement 
with data for 7. Finally, it is seen from the tables that T, 
and r satisfy the bound (35),These three checks attest to 
the accuracy of our data for the relaxation time T1. Figure 
2 depicts the dimensionless time DTl/a2 versus porosity 
for the three GC lattices. ’ 

IV. COMPARISON OF RIGOROUS PERMEABILITY 
BOUNDS AND A-NEW RELATION CONNECTING k 
TOrANDF 

Using the results of the previous section and data for 
the formation ‘factor, lo we compare the survival time 
bound (2) to the relaxation time bound (8) for the GC 
models. It is convenient to restate these bounds here: 

k<Dqhr, (40) 

=FCC 

_- 

FIG. 2. The dimensionless principal relaxation time DT,/d vs porosity 
q$ for the GC models in the case of a simple-cubic (SC) and face- 
centered-cubic (FCC) lattices. The sphere radius is denoted by a. 
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k 
7 

10 I * ’ ’ 8 

GC-BCC 

FIG. 3. The dimensionless permeability War vs porosity #t for the GC 
model in the case of a SC lattice. The black circles are the permeability 
data of Refs. 15 and 16, dashed line is the upper bound (41), dotted line 
is the upper bound (40), and the solid line is the relation (43). The sphere 
radius is denoted by a. 

DTI kq- . (41) 

Figures 3-5 compare these bounds to the exact data of 
k/a2 obtained from Sangani and Acrivo~‘~ for the uncon- 
solidated porosities and from Larson and Higdon16 for the 
consolidated porosities. For a wide range of porosities, pro- 
vided that & is not small, the survival time bound (39) is 
sharper than the relaxation-time bound (41). For low po- 
rosities, however, the converse is true. Thus, even though 
r< T,, F- * becomes appreciably smaller than the porosity 
I& at small porosities, consistent with expectations given in 
the Introduction. Both bounds are sharp at high porosities 
but become progressively worse as the porosity is de- 
creased. 

;;j ; , , , , , ** , , 1 
0 0.5 1 

FIG. 4. As in Fig. 3, except for the GC mooel in the case of a FCC lattice. 

FIG. 5. As in Fig. 3, except for the GC model in the case of a BCC lattice. 

As noted. earlier, bound (41) will be a substantially 
poorer estimator of the permeability than bound (40) for 
porous media characterized by a wide range of pore sizes, 
because Tl>r in such instances. An example of such a 
porous medium is a solid phase composed of a Poisson 
distribution of spheres in a large but finite box.” Thus, the 
GC models present bound (42 ) in a favorable light because 
the range of pore sizes is limited by the lattice spacing. 

Let us examine a little more closely the observation 
that both bounds (40) and (41) give poor estimates of k at 
low porosities. It is convenient to restate the exact relation3 
for the permeability involving the length parameter L: 

L2 
k=@. (42) 

The appearance of F reflects tortuosity information about 
the pore topology. In the absence of tortuosity, e.g., flow in 
parallel tubes, F-’ is simply equal to the porosity 4,. For 
general topologies, F-‘(4,. The parameter L2, roughly 
speaking, reflects information about the effective minimum 
“throat area” for the “dynamically connected’; .part of the 
pore region. For flow in a bundle of parallel, circular tubes 
of radius a, L2=a2. Generally, L2 depends upon the dy- 
namically connected pore topology in a complex fashion. 
Bound (40) appreciably overestimates k at low porosities 
because 41 is appreciably greater than F-’ and rD overes- 
timates L /8, for reasons already noted in the Introduc- 
tion. Similarly, although bound (41) correctly reflects tor- 
tuosity information in that it contains the correct factor of 
F-‘, the quantity DT1 grossly overestimates the effective 
minimum throat area associated with the dynamically con- 
nected pore topology, i.e., DT+L2/8 at small IJ$. On phys- 
ical grounds, one expects that Or would provide a consid- 
erably sharper upper bound on L”/8. 

We therefore conjecture that the fluid permeability k 
for a wide class of porous media is bounded from above in 
terms of &the mean survival time r and formation factor F 
according to the relation ._ 
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10 
Randomly Overlapping Spheres 

k 
7 

FIG. 6. The dimensionless permeability k/a2 vs porosity 4, for randomly 
overlapping spheres of radius a. The black circles are the permeability 
data of Ref. 17, dotted line is the upper bound (40), and the solid line is 
the relation (43). Data for T and F are obtained from Refs. 18 and 19, 
respectively. The sphere radius is denoted by a. The bound (41) involving 
the relaxation time T, is infinitely large for this model because of rare 
fluctuations characterized by infinitely large pores (Ref. 2) and hence is 
not shown. 

This conjecture is motivated by several observations. First, 
for transport around dilute periodic arrays of spheres, the 
exact relations 

r-g2( l- l.76cg3), 
F- 1-&, (45) 

k-$( l- l.76$y3), (46) 

have been derived. Therefore, since 

Dr a2 
y-$1 - 1.76#;‘3), (47) 

the inequality (43) is obeyed. Second, for transport around 
dilute arrays of randomly arranged spheres, we have the 
exact results 

(48) 

(49) 

The inequality (43) is again satisfied. Third, the bound is 
satisfied for-all porosities in the GC models (see Figs. 3-5). 
Fourth, the bound (43) is satisfied for transport around 
fully penetrable spheres (i.e., Poisson distributed spheres). 
This is demonstrated in Fig. 6, where bound (43) is com- 
pared to bound (40) and simulation datai for this model. 
Here the data for survival time r and formation factor F  

are obtained from Refs. 18 and 19, respectively. Fifth, the 
bound (43) is obeyed for all of the two-dimensional mod- 
els studied recently by Kostek et aL,13 namely, the “tortu- 
osity models” and “Koch curve models.” Thus, there is 
considerable evidence to support the existence of bound 
(43) for a wide class of porous media. Identification of this 
class of media still must be determined, however (see dis- 
cussion in Sec. V). 

It is clear that because F-‘<c$, and r<T1, then the 
relation (43) for the permeability will always be below or 
equal to either bound (40) or (41). At low to moderate 
volume porosities, the bound (43) is seen to be substan- 
tially sharper than either bounds (40) or (41). Indeed, in 
the BCC case (cf. Fig. 5), relation (43) provides a rela- 
tively accurate estimate of the permeability. 

V. CONCLUSIONS AND DISCUSSION 

We have devised a methodology to compute the prin- 
cipal relaxation time T1 in fluid-saturated porous media 
using first-passage-time techniques. The procedure has 
been specifically applied to determine T, for three grain- 
consolidation (GC) models. These results combined with 
data for the formation factor F  enabled us to compute 
upper bound (41) for these geometries and to compare it 
to cross-property relations (40) and (43) and to “exact” 
permeability data. In all cases, relation (43) provided the 
best estimate of k and always lay above the permeability 
data. For moderate to large porosities, the survival-time 
bound (40) was found to be sharper than (41). However, 
for small &, the converse is true. The GC models cast 
bound (41) in a favorable light because the range of pore 
sizes is lim ited by the lattice spacing. For porous media 
characterized by a wide range of pore sizes, such as ran- 
domly overlapping spheres, Ti>r and therefore bound 
(41) is a very poor estimator of the permeability (cf, Fig. 
6). 

In contrast to relation (43), expression (41) is a rig- 
orous upper bound for any isotropic porous medium. The 
precise class of m icrogeometries for which (43) is a rigor- 
ous upper bound on k should be identified in future work. 
Insight into this question can be obtained by constructing 
models that violate the bound (43). For example, consider 
a porous medium comprised of a bundle of parallel circular 
tubes of radius R, and porosity & and isolated spheres of 
radius R, and porosity &, such that the total porosity 
41-h+h20 Fluid is contained in both the tubes and 
spheres but can only flow in the tubes. For this highly 
idealized model, it is easy to compute all of the properties 
in (43) exactly, i.e., 

(51) 
Thus, (43) is violated when Rs/RT< (15/8) “‘z 1.369. 
We conclude that (43) can be violated for porous media 
containing isolated pores and dead-end regions whose size 

2618 J. Appl. Phys., Vol. 72, No. 7, 1 October 1992 S. Torquato and I. C. Kim 2618 

Downloaded 11 Mar 2009 to 140.180.169.188. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



is on the order of or smaller than the e@ctive dynamic 
‘%hannel” length L which appears in the exact expression 
(42). Although such counterexamples are not common in 
practice, they clearly serve to offer insight into the wide 
class of porous media that indeed satisfy the bound. 

In a future study we intend to examine the aforemen- 
tioned cross-property relations for other model microstruc- 
tures. There we will also compare them to the useful ap- 
proximate relation 

(52) 

obtained by Johnson, Koplik, and Schwartz.6 Here A2 is a 
dynamically weighted ratio V&S’ (pore volume to surface 
area) involving the electric field. The formula (52) pro- 
vides a good estimate of k for a variety of media6’*r and is 
usually superior to the well-known Kozeny-Carmen rela- 
tion 

(531 

which just involves the simple length scale VI/S. We note 
in passing that in contrast to relations (40), (41), and 
(43), the formula (52) captures the correct critical behav- 
ior at the threshold where the pore space of the GC models 
become disconnected.‘3’22 On the other hand, quantities 
such as the mean survival time r appearing in both rela- 
tions (40) and (43) or the principal relaxation time T1 
appearing in (41) are easier to measure than the parameter 
A in (52). Ease of measurement is a practically important 
point. If the quantities involved in an indirect measure- 
ment of the permeability are difficult to measure, then the 
cross-property relation loses its practical appeal even if it is 
an accurate expression. This explains why to this day the 
simple Kozeny-Carmen relation (53 ) is still employed by 
practicing scientists and engineers in spite of the fact that it 
is sometimes not very accurate. 
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