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The lineal-path function L(z) for two-phase heterogeneous media gives the probability of finding a
line segment of length z wholly in one of the phases, say phase 1, when randomly thrown into the sample.
The function L(z) is equivalent to the area fraction of phase 1 measured from the projected image of a
slab of the material of thickness z onto a plane. The lineal-path function is of interest in stereology and
is an important morphological descriptor in determining the transport properties of heterogeneous
media. We develop a means to represent and compute L(z) for distributions of D-dimensional spheres
with a polydispersivity in size, thereby extending an earlier analysis by us for monodispersed-sphere sys-
tems. Exact analytical expressions for L(z) in the case of fully penetrable polydispersed spheres for arbi-
trary dimensionality are obtained. In the instance of totally impenetrable polydispersed spheres, we de-
velop accurate approximations for the lineal-path function that apply over a wide range of volume frac-
tions. The lineal-path function was found to be quite sensitive to polydispersivity for D > 2. We demon-
strate how the measurement of the lineal-path function can yield the particle-size distribution of the par-
ticulate system, thus establishing a method to obtain the latter quantity.

PACS number(s): 47.55.Mh, 05.20.—y, 61.20.Gy

I. INTRODUCTION

In the most general sense, a heterogeneous material
consists of domains of different materials (phases) or the
same material in different states [1]. Examples of such
media include suspensions, composite materials, porous
media, and biological media. In considering the micros-
tructure of such materials, an interesting and fundamen-
tal question to ask is the following: What is the probabil-
ity of finding a line segment of length z wholly in phase i?
We have referred to this quantity as the “lineal-path
function” L'?(z) [2]. For three-dimensional systems, we
observed that the lineal-path function L‘?(z) is the area
fraction of phase i/ measured from the parallel projected
image of a three-dimensional slice of thickness z onto a
plane. Evaluation of the projected area fraction for
three-dimensional particle systems is a problem of long-
standing interest in stereology [3]. The lineal-path func-
tion L (z) is also the average transmittance [4] of a pho-
tographic emulsion of thickness z. Elsewhere [5] we plan
to show that the lineal-path function is related to the
chord-length distribution function [6], an important mor-
phological descriptor of porous media, and the free-path
distribution function [7] associated with diffusion of gases
in porous media.

In the first paper of this series [2] (henceforth referred
to as I), we developed a means to represent and compute
the lineal-path function L(z)=L"(z) for general distri-
butions of identical spheres (phase 2) using statistical-
mechanical principles. The purpose of the present paper
is to generalize the approach of I to treat spheres with a
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polydispersivity in size. Polydispersed-sphere systems are
useful models of the many random heterogeneous media
characterized by many length scales. It is shown that a
knowledge of L(z) can be used to infer the size distribu-
tion of the particles.

In Sec. II we develop an exact series representation of
the lineal-path function L(z) for systems of D-
dimensional spheres with polydispersivity in size. In the
case of fully penetrable spheres, we obtain L(z) exactly
for arbitrary dimensionality D. In Sec. III, we derive ap-
proximate but accurate expressions of L(z) for the in-
stance of hard (totally impenetrable) spheres for D=1, 2,
and 3. Finally, in Sec. IV, we make some concluding re-
marks.

II. EXACT REPRESENTATION
OF THE LINEAL-PATH FUNCTION L(z)
FOR POLYDISPERSED PARTICLE SYSTEMS

A. System description and general n-point
distribution functions

Consider the determination of the lineal-path function
L(z) for a system of N interacting D-dimensional spheres
with a polydispersivity in size. In general, polydispersivi-
ty may manifest itself because of variation in charge,
chemical properties, mass, as well as size. In this paper,
we are interested in systems of spherical particles with
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polydispersivity in radii or diameters. The method ap-
plied here can also be used to study other kinds of po-
lydispersivity. The N particles are spatially distributed in
the D-dimensional space of volume V according to the
N-particle probability density Py(r"), which is in turn
determined by the system Hamiltonian and, in general,
dynamical processes. Py(r®) characterizes the probabili-
ty of finding the particles labeled 1,2,...,N with
configuration r¥=r,,r,,...,ry, respectively. The en-
semble average of any many-body function F(r ) is given
by

(Fe™)= [F(rMPy(cMdr " . 2.1

Torquato [8)] has developed a methodology to represent
and compute the general n-point distribution function H,
for random media composed of statistical distributions of
D-dimensional identical spheres. A representation of the
general n-point distribution function for polydispersed
systems was subsequently given by Lu and Torquato [9].
H,(x™;x?7™;r7) characterizes the correlation associated
with finding m points with positions x,, ={x;,...,x,,}
on certain surfaces in the system, p —m points with posi-
tions x” " "={X,, 41,...,X,} in certain regions exterior
to the spheres, and any ¢ of the spheres with
configuration r 9 where n=p+q. Two different series
representations of H, have been found in terms of the
pn(r") which enables one to compute it. The key idea in
arriving at these representations is the “available space”
to “test” particles which are added to the system of N
spherical included particles having M components with
composition Ny, ...,N,, such that S N =N. Let
Raj be the radius of the type ¢ included particle which is
centered at r; (crj=1, ...,M) and b; the radius of the
ith test particle. The ith test particle is capable of exclud-
ing the centers of the actual inclusions of type o; from
spheres of radius a;”. For b, >0, afj)=jo +b;, and for

b; =0, we allow the test particle to penetrate the included
particles so that 0<a/”’<R_ . It is natural to associate

with each test particle a subd{vision of space into two re-
gions: D;, the space_available_to_the_ith test particle, and
D}, the space unavailable to the ith test particle. Let &,
denote the surface between D; and D;*. Then, more
specifically, H,(x ™;x?~"™;r?) gives the correlation asso-
ciated with finding the test particle of radius b, at x; on
&1, ..., and the test particle of radius b, at x,, on &,
and the test particle of radius b,,,, at x,,,; in
D,, +y, ..., and the test particle of radius b, at x, in D,
and of finding any ¢q inclusions with configuration r 9.

From the general quantity H,, one can obtain all of the
different types of correlation functions that have arisen in
rigorous expressions for effective properties of random
arrays of spheres [1]. For example, the well-known n-
point probability functions S,, which arise in a host of
rigorous relations for effective properties (see Ref. [1] and
references therein), are given by

S, (x,)=S"(x,)=lim
ai->R,V

H,(Z;x ") . (2.2)

i
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Another important class of correlation functions that
can be obtained from the H, are the so-called “nearest-
surface distribution functions” introduced by the authors
[10]. Here one need only consider the addition of a single
test particle of radius b. It is convenient to use the fol-
lowing notational change:

r=b . (2.3)
The nearest-surface quantities are then given by
hy(r)=H(x;0;9) , (2.4)
ey(r)=H (D;x;0)
=1—f0hy(y)dy . 2.5

The quantity h,(r) is the “void” nearest-surface distribu-
tion described by Lu and Torquato [10], which is an ex-
tension of the nearest-neighbor distribution function
studied earlier by Torquato, Lu, and Rubinstein [11] for
monodispersed systems. The quantity e (r) is the “void”
surface exclusion probability [2] and gives the probability
of finding a region Q, which is a spherical cavity of ra-
dius r centered at some arbitrary point, empty of particle
material. We refer to ey,(r) as a “surface” exclusion
probability because it is equivalent to the probability of
finding any inclusion surface no closer than the radial dis-
tance r from an arbitrary point in the system. Note that
ey(r) for monodispersed particles of radius R is
equivalent to the probability of finding a spherical region
of radius r + R empty of sphere centers, i.e., it is equal to
the “void exclusion probability” E, (r +R ) of Ref. [11].

We shall show below that the lineal-path function L(z)
for polydispersed-sphere systems is actually a special type
of surface exclusion probability function.

B. Calculation of the exclusion probability function

From- the general- expression- of- H, for the
polydispersed-sphere system [9], we derived [10] the fol-
lowing expansion for the surface exclusion probability
ep(r):

N
ey(r)= 3 (=DkeP(r), (2.6)
k=0
where
1
eé/k)(r)zﬁf"'fdﬁl'"dﬁkf(ﬁl)"'f(ﬁk)
ka(rk;ﬁl, . e ’ﬁk)
k
X IT m(lx—r;l;r)dr; 2.7
ji=1
and
ed(r=1 (2.8)
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The result above has been expressed for a system of in-
cluded particles with a continuous distribution in radius
R characterized by the normalized probability density
f(AR). The continuous representation is more general
and concise than the one for the discrete case. From the
expressions for the continuous case, one can easily obtain
the results of the discrete case. For example, in the
discrete homogeneous case with M different components,
the size distributions f (7 ;) in relation (2.7) become unity

for j=1,...,9 and jzyzl(pa/p)S(ﬁj—Raj) for

j=q+1,...,9+s, where p, is the number density of
type o particles and 8(R) is the Dirac delta function. In
BN, p(r Ry, RI(R ) f(R,) is the probabili-
ty density function associated with finding an inclusion
with radius 77, at r;, another inclusion with radius %, at
r,, etc. The case n=1 is degenerate in the sense that
pi(r;72) is independent of r, and in the instance of sta-
tistically homogeneous media is simply equal to the total
number of density p. The quantity m( |x—rj |;7) is an in-
dicator function defined as

1, |x—r1;[<r+R;
m(lx—rjl;r)= 0, lx—r,|Zr+7, . (2.9)
Note that the function m defined here is slightly different
from the one defined in Ref. [9] in that it is the surface in-
dicator function.

The evaluation of the void quantities is generally non-
trivial because of the appearance of the p,. For the spe-
cial case of “overlapping” or “randomly centered” (i.e.,
spatially uncorrelated) homogeneous sphere systems, the
p, are especially simple:

par Ry R)= T oolx, R)) (2.10)
j=1
We then have the following results:
ey(r)=exp[ —plop(r+R))]. (2.11)

Here vy (7?) is the volume of a D-dimensional sphere with
radius 72, i.e.,

v (R)=2R , (2.12)
v(R)=mR?, (2.13)
03(7‘2):T1T7f3 . (2.14)

An important dimensionless parameter that will be
used throughout the ensuing sections is the reduced den-
sity 17 in D dimensions defined by

M 77_D/2

-5 — T, RD. 2.15
= 2 T+p/2)PeRe @.13)

In the case of included particles with a continuous distri-
bution in radius 72 characterized by the normalized prob-
ability density f (), we have
D/2
s
= ﬁD N
"= Tta+o2P

where the average of any function A (%) is given by

(2.16)
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(RN = [ " AR (R)R . (2.17)

Finally, we note that only in the case of hard spheres is 1
equal to the sphere volume fraction ¢,. For penetrable-
sphere systems, 1> ¢,.

In the instance of totally impenetrable or hard spheres,
the exact series representation of e, (r) can only be evalu-
ated exactly for the case D =1 (i.e., hard rods). It is im-
possible to evaluate e (r) for D =2 because the n-particle
probability densities p,(r") are not known exactly. One
must devise an approximate scheme to evaluate and sum
the series. Lu and Torquato [10] obtained ey (7) from the
Percus-Yevick  [12], scaled-particle [13,14], and
Carnahan-Starling [15] approximations of the related
conditional “pair” distribution function G, (r). For ex-
ample, the scaled-particle result for the exclusion proba-
bility for D =3 is given by

ey(r)=(1—n)exp[ —mp(cr +dri+gr?)], r>0 (2.18)
where
2
czw R (2.19)
1—7
12
a=HA D8 gy 2.20)
=y (1—n)
4 85,(R) 16£2
= + + (R?), .21
50— (1—9?  (1—9y)?
with
£ =p T2k TR . (2.22)

3

For D=2, the scaled-particle approximation gives the
surface exclusion probability for » > 0:

r2+2{R)r | rPmp(R)*
ey(r)=(1—mn)exp | —7p 1 + (=) ,
r>0. (2.23)

It is only in the case of one-dimensional hard rods that
the exclusion probability function is known exactly for
D-dimensional hard spheres. Specifically, one has

ey(r)=(1—n)exp 1——3% , r>0. (2.24)

A commonly employed size distribution function f (%)
is the Schulz distribution function [16], which is defined
as

m+1

_ 1 m+1 m —(m+ 1R
SR=tmTn [ | R |
m>—1 (2.25)

where I'(x) is the gamma function. The nth moment of
the Schulz distribution function is

(m+1)7n n

(R =(R)"——"— ] (m+i). (2.26)
m i=0
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By increasing z, the variance decreases, i.e., the distribu-
tion becomes sharper. In the monodisperse limit, z— o,
we have

fR)=8R—(R)) .

Note that for statistically homogeneous and isotropic
media, the density of the particles with radius between 72
and R +dR is pf(R)dR with p the total density.

(2.27)

C. Series representation of lineal-path function

The derivation of the exact series representation of the
lineal-path function L(z) follows closely the derivation of
the corresponding expression for the exclusion probabili-
ty function e (r) for a spherical test particle of radius .
The lineal-path function L(z) is a special type of surface
exclusion probability function, i.e., the probability of
finding a line segment of length z wholly in the void phase
(phase 1), i.e., the space exterior to the inclusions. There-
fore, the center of a particle with radius R j should be
outside a region Qg(z,72;), the exclusion region between
a line of length z and a sphere of radius 72;. The region
Qg(z,7;) in this case is hence a D-dimensional sphero-
cylinder of cylindrical length z and radius R ;j with hemi-
spherical caps of radius #; on either end (see Fig. 1).
Following Torquato [8], we introduce the exclusion re-
gion indicator function

1, XEQE(Z,ﬁj)

m;(x;z)= .
0 otherwise .

J (2.28)

The derivation of the series representation of L(z) follows
in exactly the same fashion as that for spherical test par-
ticles as outlined in Sec. II A and thus we find

FIG. 1. Spherocylindrical exclusion region (dotted lines) for
a line segment of length z and a sphere of radius ;. Two cases
are shown: one for a sphere of radius 72, and the other for a
sphere of radius 72,> R ,.
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Lo=1+ 3 SV fan dR, fR)f R
o k! 1 k 1 k
ka(rk;ﬁl,...,ﬁk)
k
X II m;(x;z)drx; . (2.29)

j=1

In the instance of fully penetrable spherical inclusions,
results (2.10) and (2.29) yield the exact result

L(z)=exp[ —p{vg(z,R))], (2.30)

where vg(z,R) is the D-dimensional volume of the ex-
clusion region Qg(z,R):

47777%3+777f22 (D=3) (2.31)
YET |\ pR242Rz (D=2) (2.32)
2R+z (D=1). (2.33)

Since the porosity ¢, (i.e., the volume fraction of the

space exterior to the spheres) for fully penetrable spheres

is simply given by
¢, =exp(—n), (2.34)

where 7 is given by (2.13), then the lineal-path function
may be written as

¢exp(—pm{R?)z), D=3 (2.35)
L(z)= {¢,exp(—2p{R)z), D=2 (2.36)
dexp(—pz), D=1. (2.37)

These results can be written as a function of  and the
moments of particle radius distribution, i.e., we
specifically have

2

#,exp _34:?’{332 =¢{+3(ﬁ2>z/(4(7?3)), D=3

(2.38)

L(z)= {¢,exp __211(_7f2)_z :¢:+2(7f)z/(w<7?2))’ D=2
m(R*)

(2.39)

drexp | =Gy | D=1, a4

For the special case of monodispersed system, these re-
sults reduce to the expression (2.34)-(2.36) in I (Ref.
[2D.

As an example, we show the results for polydispersed
systems characterized by a Schulz distribution as ex-
pressed in (2.25). The lineal-path function L(z) can then
be explicitly written as

(2.41)
(2.42)

L(Z)=¢}+31(m+1)/[4(7f)(m+3)], D=3

L(Z)=¢}+22(m+1)/[7r(7f)(m t2] p=2
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L(Z)=¢}+z/(2(7?)), D=1. (2.43) T T

0.6 i
Note that for the one-dimensional case, if we scale the ‘\
length z with 22, L (z) for the polydispersed system has F\\ Fully Penetrable Spheres
the same form as for identical spheres. Therefore po- \ Do
lydispersivity has no effect on the lineal-path function 04| \\ B i
L (z) for D =1 provided that the system has the same aver- @ \ $,=0.4

L(z \

age particle size. Under the condition that the particle
volume fraction is a constant, the lineal-path function
changes as the ratio {#?) /{?) is varied for D =3. For
D =2, L(z) changes with the ratio (%) /{R?). For sys-
tems of particles with a simple functional form of the size
distribution, the expressions (2.38)-(2.40) provide a
means to compute the size distribution of the particles by
measuring the ‘“projected” area fraction of the void
phase. The expressions (2.41)-(2.43) give the explicit
relationship between L(z) and the parameter m for the
Schulz distribution, in particular. One can easily obtain
the associated inverse expressions, i.e., relations for m in
terms of L (z). For example, we have
Ing,

-1
| -
for three-dimensional systems.

In Figs. 2 and 3 we plot our analytical results for po-
lydispersed fully penetrable spheres described by a Schulz
distribution at values of the sphere volume fraction
¢,=0.4 for D=3 and 2, respectively, with m =0 and oo
in each case. Recall that m = o corresponds to the
monodisperse limit. For any D, L(z) is a monotonic de-
creasing function of z. This behavior is expected since
the larger the line segment or ‘slice” of material of

(R)
3nz

InL(z)

1— (2.44)

m=2

- - T T
0.6 i
\
\
\ Fully Penetrable Spheres
\
\ D=3
0.4 \ N,
\
¢$,=0.4
L) N ?
0.2 i
- m=0
0 Il ‘L— -
0 10

z/2<R>

FIG. 2. Lineal-path function L(z) vs the dimensionless dis-
tance z/2{R ) for three-dimensional (D =3) fully penetrable
polydispersed spheres characterized by a Schulz distributicn
with m =0 (dashed line) and m = o (solid line) at a sphere
volume fraction ¢,=0.4, as obtained from (2.38). (R) is the
average particle radius.

0.2

z2/2<R>

FIG. 3. Lineal-path function L(z) vs the dimensionless dis-
tance z /2{7R ) for two-dimensional (D =2) fully penetrable po-
lydispersed spheres characterized by a Schulz distribution with
m =0 (dashed line) and m = « (solid line) at a sphere volume
fraction ¢,=0.4, as obtained from (2.39). (R ) is the average
particle radius.

length z is, the smaller is the probability of finding the
line wholly in the matrix or the smaller is the “projected
area” of the void phase. For the same z and the same
volume fraction of particle phase, L(z) changes dramati-
cally with the size distribution of particles for D > 2. The
effect of the polydispersivity is to increase the lineal-path
function L(z). For three-dimensional systems this effect
is much stronger than for two-dimensional systems. Note
that, for the case of identical spheres (m = ), L(z) for
D=3 is smaller than the L(z) for D=2 because the
spheres fill space more efficiently as D increases. Howev-
er, the stronger effect of the polydispersivity leads to the
fact that L(z) for D=3 is much larger than L(z) for
D=2 at m =0. As we have already discussed, for one-
dimensional systems, the polydispersivity has no effect on
the lineal-path function L (z) (under the condition that
(4R ) remains unchanged).

For impenetrable spherical inclusions, an exact evalua-
tion of the series (2.29) is out of the question for reasons
given earlier. The subsequent section describes the
derivation of an approximate but accurate expression for
L (z) for hard-sphere systems.

III. ANALYTICAL EXPRESSIONS
FOR THE LINEAL-PATH FUNCTION
FOR D-DIMENSIONAL POLYDISPERSED SPHERES

A. Preliminary discussion

The initial-path function L(z) for systems of D-
dimensional identical hard spheres was obtained in I by
calculating the reversible work to create a cavity which is
empty of sphere centers [2]. For polydispersed systems,
finding an arbitrary-shaped cavity empty of particle ma-
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terial is equal to finding that the centers of particles of ra-
dius A (for all R) are a normal distance & away from the
cavity surface. A key step in obtaining L(z) for po-
lydispersed systems is the fact that the work needed to
create a cavity empty of particle material is the sum of
the work associated with excluding the center of the par-
ticle of radius 2 a normal distance 7 from the cavity
surface. To elucidate this point, it is necessary to review
briefly some fundamental concepts concerning the
nearest-surface distribution function and related func-
tions developed by Lu and Torquato [2,10].

For a polydispersed spherical particle system, we define
the void nearest-surface distribution function 4,(r) as the
probability that at an arbitrary point in the system the
nearest particle surface lies at a distance between r and
r+dr. The closely related void “exclusion” probability
ey(r) was defined in Sec. II. The nearest-surface distribu-
tion function 4,(r) can be written as a product involving
conditional probabilities:

hy(r)=gy(riey(r) . (3.1

The quantity g, (r) in (3.1) is the probability, given that a
region ) (spherical cavity of radius r) is empty of parti-
cle material, of finding the particle surface in the spheri-
cal shell of volume s, (7)dr encompassing the cavity. The
quantity sp(r) is the surface area of a D-dimensional
sphere of radius r:

si(r)=2, (3.2)
s,(r)=2mr , (3.3)
sy(r)=4dmr? . (3.4)

It is a well-known result of statistical thermodynamics
that the work done to create a spherical surface exclusion
cavity of radius r is

Wy (r)=—KkT Iney(r)
=kT [ gy(»)dy .

The second line of (3.5) follows since the exclusion proba-
bility e, (r) is related to conditional pair distribution
function g(r) via the expression

- f_rwgy(y)dy] .

For the discrete case, the “generic” distribution function
gy(r) is related to the “specific” distribution function
8y,;(r) by the relation

(3.5)

ey(r)=exp

(3.6)

gy(r)= Eg,,,j(r) R (3.7)
J

where gy, ;(r)dr is defined to be the probability, given that
region (1, (spherical cavity of radius 7) is empty of parti-
cle material, of finding the surface of j-type particles in
the spherical shell of volume s, dr encompassing the cavi-
ty. Note that the establishment of the relationship (3.7) is
based on the independence of the events associated with
the specific distribution function gy, j- Accordingly, asso-
ciated with gy, ;(r), we define the work W;(r) as
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Wy, (n=kT [ gy (»dy . (3.8)
Therefore, combination of (3.5) and (3.8) yields the total
work to be

Wy(n=3 Wy (r). (3.9)
j

The specific surface distribution function gy, ;(r) can be
further written as

where p;sp(r)Gy ;(r) is defined as the probability that,
given a region Q, (spherical cavity of radius 7) is empty
of particle centers, j-type particle centers are contained in
the spherical shell volume s, (r)dr encompassing the cavi-
ty.

In the case of continuous particle-size distributions, we
define g (r;R)dR as the probability, given that region
Dy, (spherical cavity of radius #) is empty of particle ma-
terial, of finding the surface of particles with radius be-
tween /2 and #+dR in the spherical shell of volume
spdr encompassing the cavity. Therefore we have

gy(r)= fO”GV(r;ﬁ )V (RMR . (3.11)
The work associated with G(r;72) then can be written as
Wy(r; ), and we have

Wyn= [ “Wy(rR1dR . (3.12)
Further separation of the work Wy, ; [or Wy (r; )] pro-
duces the corresponding “pressure” p; [or p(72)] and the
“surface tension” o; [or o(#)]. Note that p(R) and
0(R) do not denote the thermodynamic pressure p
(without the argument) and the surface tension o
(without the argument). These quantities will be defined
later in this section.

B. Analytical expression of the lineal-path function
for D-dimensional hard spheres

We assume that the system of D-dimensional hard
spheres is in thermal equilibrium. This enables us to ex-
ploit the well-established concepts of equilibrium statisti-
cal mechanics to obtain approximate but accurate expres-
sions for the lineal-path function L(z) for such models.
The reversible work W(z) required for the creation of a
surface exclusion cavity of line segment of length z in a
D-dimensional polydispersed hard-sphere system is exact-
ly related to the probability of finding a line segment of
length z wholly in the matrix phase L (z), by

—Wi(z)

L(z)=exp T

) (3.13)

where k is the Boltzmann constant and T is the tempera-
ture of the system. Since the reversible work done to
create the cavity is process independent, then we can con-
sider the simplest process to calculate W(z). First we
create a point cavity (a surface exclusion cavity of zero
radius). Let the work done for this part be denoted by
W,. Then we expand this surface exclusion cavity along
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one direction to create a line segment of length z and let
W, denote the associated work. Thus we have that

W(z)=W,+W,(z) . (3.14)

The work W, is related to the exclusion probability e (7)

evaluated at » =0 by
W,=—kT lne,(0) , (3.15)

where e,,(0)=S,=¢, is the volume fraction of phase 1.
We then have

L(z)=e,(0) Wa2)
— _
174 exp kT
_ _ Wy(2)
éexp T (3.16)

As in the case of identical spheres, the simplest way of
calculating this constant is to obtain W, from the initial
infinitesimal expansion process, i.e., from a surface ex-
clusion cavity of zero radius to a surface exclusion line
segment of length dz.

It is important to realize that, to a particle of radius 72,
creating a surface exclusion cavity of sphere of zero ra-
dius (the first step) is equal to excluding the center of the
particles from a sphere of radius /2. Accordingly, for the
particle of radius A, the infinitesimal expansion process
(the beginning of the second step) is equal to expanding a
spherical cavity of radius ? to a spherocylinder of length
dz and radius /2. We then can use the same approach as
for identical spheres. All the quantities involved in the
following analysis will be purely center related quantities.
The work W, () can be written as

R
Wy R)=KT [ pf(R)sp(p)Gyly; Rody ,  (3.17)
and the form of the elementary work in the process can
be written as

AW, (r,R)=kTpf(R)sp(r)Gy(r;R)dr . (3.18)

The conditional pair distribution function G,(r;%) in
the scaled-particle approximation is given by
az(ﬁ ) 03(7‘2 )

Gylr+R)=a(R)+ o+ =, D=3

(3.19)

where a,(R), a,(R), and a;(R) are functions of the ra-
dius of the particle:

6R 12R%€2
a (=L 2 2 (3.20)
- (1—%)?* (1—9)
6R? 24R3€2
ay(R)=— 522 — 523 , (3.21)
(1—n) (1—n)
12R4€2
a,( )=—§§,. (3.22)
(1—m)
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In the case of two-dimensional hard-sphere systems (i.e.,
hard disks), we have from the scaled-particle approxima-
tion
L ap{RIR  wp({RIR*
I=9  (1—9? (1—pXr+R)
D=2. (3.23)

G, (r+R)=

>

The simplest instance is that for one-dimensional hard-
sphere systems (i.e., hard rods), where we have the exact
result

G r+R)=——, D=1

1=n
Following the principle idea of scaled-particle theory,
the work W), can be further considered to be the sum of
the following two parts: the work related to the volume
change and the work related to the surface change

dWy(r;R)=p(R)dvp(r)+o(R)dsp(r) .

(3.24)

(3.25)

It is clear that the expression (3.25) is also a definition of
p(R) and o(R). The quantity o(R) can be further writ-
ten as

8(R)

¥

o(R)=0y(R) [1— (3.26)

Substituting expressions (3.19)-(3.24) into (3.18) and
comparing to (3.25), we have for D=3

1 6RE, 1272&3
(R)=kTpf(R) +
P °f =7  (1—7)2? (1—9)
(3.27)
36,72 12§§ﬁ3|
(R)=—kTpf(R) , (3.28)
70 2 {(1—77)2 (1—7)}
R2E,
S(R)=————— (3.29)
1=§m+4RE,
for D=2,
1 mp{RIR
(R)=pf(RIKT + (3.30)
P of I=n = (1—9y) ]
a(ﬁ)z_ﬁﬁ%ﬁ%ﬂ%)}cr , (3.31)
-
8(R)=0, (3.32)
and for D=1,

p(R)= fl‘y_fi’kT, (3.33)
ool R)=8(R)=0 . (3.34)

In the special case that the system is composed of identi-
cal spheres, our results reduce to the results obtained in
Paper L.

The calculation of the work W,(z;72) needed to ex-
pand the spherical cavity of radius /& into a sphero-
cylinder is then quite straightforward. We have that
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W,(z; R)=p(RIAV +o(R)AS , (3.35)

where AV is the change in volume for the expansion pro-
cess:

7R%*2z, D=3 (3.36)
AV=1{2Rz, D=2 (3.37)
z, D=1 (3.38)

and
7R*2, D=3 (3.39)
AS= 12z, D=2 (3.40)
0, D=1. (3.41)

Substitution of the relations (3.26)-(3.34) and
(3.36)—(3.40) into (3.35), and application of Eq. (3.12),
yields

ﬁkTe(ﬁz)z
(1—m) 7

2(R) _
2pkTz 1—p D=2

D=3 (3.42)

W,(z)= (3.43)
LLILAy Y

, (3.44)
I—9

Finally, substituting results (3.42)—(3.44) into (3.16) we
obtain the lineal-path distribution function for D-
dimensional polydispersed hard-sphere systems:

_ 2
(1—m)exp —mp{ Rz , D=3 (3.45)
1—7
L(z)=
(1—mlexp[ —2pz({R)/(1—n)], D=2 (3.46)
(1—mn)exp[—pz/(1—7)], D=1. (3.47)

These expressions can be written in terms of the reduced
density 7 as

(1—mlexp{ —3n(R*)z /[4{R*)(1—7)]},
D=3 (3.48)
21nz{R)
_ Ji1—mn) - p= 3.49
L(z) TR T =AY ‘ 2 OY
(1— —I =
7)exp T=){(7) ’, D=1. (3.50)

In ]:he special instance of a polydispersed system charac-
terized by the Schulz distribution, we have the specific re-
sults

7299
3In(im+1)z
1— —_ =
(1= mlexp 4(1—n)(m+3)<7%>" b=3
(3.51)
_ _ . 2yp(m+1)z _
L@= |1 | =t +20(7) ] p=2
(3.52)
—mz _
(1—m)exp A=) () J, D=1. (3.53)

For monodispersed spheres, the results given above
reduce to the results we obtained previously in I and
which were found to be in very good agreement with
Monte Carlo simulation data. Under the condition that
the particle volume fraction is a constant, the lineal-path
function changes with the ratio { 22) /(R>) for D=3, as
was the case for fully penetrable spheres [cf. (2.38)].
Similarly, L(z) changes with ratio (% )/{&?) and (R)
for D=2 and 1, respectively. The expressions
(3.51)—(3.53) can easily be inverted to yield the parame-
ter m of the Schulz distribution in terms of L(z). For ex-
ample, for D =3, we find

si—g(R) L) |
3nz 1—7q

m=2|(1— —3, D=3. (3.54)

In Figs. 4 and 5 we plot our analytical results for total-
ly impenetrable polydispersed systems characterized by a
Schulz distribution with m =0 and « at values of the
sphere volume fraction ¢,=0.4 for D =2 and 3, respec-
tively. The effect of polydispersivity is the same as in the
case of fully penetrable spheres. For a broader size distri-

0.6 n
\ Totally Impenetrable Spheres
\
\ D=3
0af| .
: \\ $,=0.4
L)
0.2 u
=0 4
0 - - \. - L o= ==
10 15
z/2<R>

FIG. 4. Lineal-path function L(z) vs the dimensionless dis-
tance z/2(R) for three-dimensional (D=3) totally impene-
trable polydispersed spheres characterized by a Schulz distribu-
tion with m =0 (dashed line) and m = « (solid line) at a sphere
volume fraction ¢,=0.4, as obtained from (3.51). (R ) is the
average particle radius.
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T T T
0.6 |- T
\
[\ Totally Impenetrable Spheres
\
\ D=2
oaf\" .
: \ $,=0.4
\
L(2)
0.2 7
|
0 S T o= = e o
0 10

z/2<R>

FIG. 5. Lineal-path function L(z) vs the dimensionless dis-
tance z /2{ R ) for two-dimensional (D =2) totally impenetrable
polydispersed spheres characterized by a Schulz distribution
with m =0 (dashed line) and m = oo (solid line) at a sphere
volume fraction ¢,=0.4, as obtained from (3.52). (R) is the
average particle radius.

bution of particles (a smaller value of m), the lineal-path
function L(z) increases for fixed z and ¢,. This effect is
stronger for three-dimensional systems than for two-
dimensional systems. Again, for one-dimensional sys-
tems, polydispersivity has no effect on the lineal-path
function (under the condition that (%) remains fixed).
Figure 6 compares the lineal-path function for fully pe-
netrable spheres to the corresponding quantity for totally
impenetrable spheres at ¢,=0.45. The reason why the
fully penetrable curve lies above the impenetrable curve
is because the probability of finding void regions in the
former system is larger than in the latter system [11].

IV. CONCLUDING REMARKS

We have generalized the formalism of I for
monodispersed-particle systems to represent and compute
the lineal-path function L(z) for systems of D-
dimensional spheres with polydispersivity in size. For
fully penetrable spheres, exact results were obtained us-
ing the derived series expansion for L(z). For totally
impenetrable spheres, we found approximate but accurate
expressions for L(z) for arbitrary dimension. It was
found that the effect of polydispersivity on L (z) depends
on dimension. For one-dimensional systems with the
same value of the average radius of particles, polydisper-
sivity has no effect on the lineal-path function L(z). For
D >2, L(z) was strongly affected by polydispersivity.
Thus the lineal-path function is a useful signature of the
microstructure of the heterogeneous media as it reflects
multiple length scales that may exist in the system. It
was also shown that knowledge of L(z) can yield the

0.6 | E

0.4

L(z)

0.2

z/2<R>

FIG. 6. Lineal-path function L(z) vs the dimensionless dis-
tance z/2(R) for three-dimensional (D =3) fully penetrable
(dotted line) and totally impenetrable (solid line) polydispersed
system characterized by a Schulz distribution with m =0 at a
sphere volume fraction ¢,=0.45, as obtained from (2.41) and
(3.52). (R is the average particle radius.

particle-size distribution of particulate systems, thus es-
tablishing a method to measure the latter quantity.

Elsewhere [5] we plan to show that the lineal-path
function L(z) is directly related to other important mor-
phological information of heterogeneous media. For ex-
ample, L(z) will be shown to be related to the chord-
length distribution function p(z) by the relation

le d’L(z)
(z)=— , 4.1)
d ¢, dz?
where [, is the mean chord length given by
.= : 4.2)
. fo zp(z)dz

Here p(z)dz gives the probability of finding a chord of
length between z and z +dz in phase 1. Chords are the
lengths between intersections of infinitely long lines with
the two-phase interface. The chord-length distribution
function p(z) has been measured for sedimentary rocks
[6].

It will also be demonstrated [5] that the free-path dis-
tribution function associated with diffusion of gases in
porous media is directly related to L(z). The former
quantity determines the “effective mean free path” for
the process.
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