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An accurate first-passage simulation technique formulated by the authors [J. Appl. Phys. 68, 
3892 (1990)] is employed to compute the effective conductivity LT, of distributions of 
penetrable (or overlapping) spheres of conductivity a, in a matrix of conductivity (TV. 
Clustering of particles in this model results in a generally intricate topology for 
virtually the entire range of sphere volume fractions & (i.e.; O<&( 1). Results for the 
effective conductivity a, are presented for several values of the conductivity ratio a! = ~z/@t, 
including superconducting spheres (a: = CO ) and perfectly insulating spheres ((r = 0), 
and for a wide range of volume fractions. The data are shown to lie between rigorous three- 
point bounds on a, for the same model. Consistent with the general observations of 
Torquato [J. Appl. Phys. 58, 3790 (1985)] regarding the utility of rigorous bounds, one of 
the bounds provides a good estimate of the effective conductivity, even in the extreme 
contrast cases ((r) 1 or d--O), depending upon whether the system is below or above the 
percolation threshold. 

1. INTRODUCTION 

Determination of effective properties (e.g., transport, 
mechanical, and electromagnetic properties) of disordered 
composite materials is a subject of great importance in 
science and engineering, and in recent years has attracted 
considerable attention in the literature (see Refs. 1 and 2 
and references therein). In order to predict the effective 
properties, an infinite set of correlation functions that sta- 
tistically characterize the microstructure must be known2 
In practice, such complete statistical information is never 
known, making exact determination of the effective prop- 
erty for arbitrary volume fractions and phase properties 
generally impossible, even for the simplest class of prob- 
lems, i.e., steady-state diffusion properties such as conduc- 
tivity, dielectric constant, and diffusion constant: the focus 
of this study. There are essentially two theoretical ap- 
proaches in predicting the properties of arbitrary random 
composites: effective-medium approximations3’4 and rigor- 
ous bounding techniques. ‘*z5-* The accuracy of these the- 
ories can be ascertained by comparing them to “exact” 
data for well-defined model microstructures as obtained 
from computer-simulation experiments. 

It is only very recently that such benchmark results 
have been obtained for continuum (off lattice) models of 
random composite media.‘-13 The authors in particular 
have devised a first-passage-time simulation technique to 
compute “exactly” the effective conductivity a, of general 
models of n-phase heterogeneous media having phase con- 
ductivities ul, +,... , a,, where Gi can be fmite or infinite.” 
The method was shown to yield effective conductivities for 
periodic arrays of particles that were in excellent agree- 

*)Author to whom all correspondence should be addressed. 

ment with known exact results for such idealized models, 
for a wide range of conditions (including superconducting 
particles), validating the accuracy of the simulation 
technique. lo-l2 The procedure was also employed to com- 
pute the effective conductivities of random arrays of 
nonoverlapping, oriented cylinders” and of nonoverlap- 
ping spheres.” 

In this paper, we seek to apply the first-passage-time 
method to determine the effective conductivity of identical 
fully penetrable spheres (i.e., spatially uncorrelated 
spheres). This model is sometimes referred to as “overlap- 
ping spheres,” “randomly centered spheres,” or as the 
“Swiss-cheese” model. For simplicity we will refer to it as 
overlapping spheres. Figure 1 shows a two-dimensional re- 
alization of overlapping particles. Overlapping-particle sys- 
tems have a richer topology than the “equilibrium” 
nonoverlapping-particle systems examined by the authors 
in Refs. 10-12. For example, the latter model possesses 
only monomers, (clusters of size one) for the entire range 
of particle volume fractions &, except at the maximum 
volume fraction corresponding to the random close-pack- 
ing value,14 i.e., the percolation threshold $5 -N 0.63. By def- 
inition, an infinite cluster exists in any statistically homo- 
geneous system at the percolation threshold. In contrast, 
clusters of various sizes (e.g., monomers, dimers, trimers, 
etc.) are present in systems of identical overlapping 
spheres at finite volume fractions below the percolation- 
threshold value” 4; N 0.3. Nontrivial clustering occurs 
above the threshold as well, indeed, up to the maximum 
volume fraction of & = 1. The system is, in fact, bicontin- 
uous in the range 0.3 < q$ < 0.97: the value & = 0.97 cor- 
responding to the value at which the space exterior to the 
spheres fails to percolate. l6 The overlapping-sphere system 
is a prototypical model that has been employed extensively 
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A. Effective conductivity 

For a Brownian particle (conduction tracer) moving 
in a homogeneous medium of conductivity a, the mean 
hitting time r(R), which is defined to be the mean time 
taken for a Brownian particle initially at the center of a 
sphere of radius R to hit the surface for the first time, is 
r(R) = R2/6a. lo The conductiv’ y it c7 of an infinite me- 
dium is therefore given by 

CT= [R2/67(R) ] IRAm. (1) 

Likewise, the effective conductivity a, of a composite me- 
dium can be expressed as 

a, = [X2/67-e(X) 1 I x-c.,. (2) 

Here r,(X) is the total mean time associated with the total 
mean-square displacement X2 of a Brownian particle mov- 
ing in the composite medium. 

In the actual computer simulation, in most cases where 
the Brownian particle is far from the two-phase interface, 
we employ the time-saving first-passage-time technique’&i2 
which is now described. First, one constructs the largest 
imaginary concentric sphere of radius R around the diffus- 
ing particle which just touches the multiphase interface. 
The Brownian particle then jumps in one step to a random 
point on the surface of this imaginary concentric sphere 
and the process is repeated, each time keeping track of 
Rf (which is equivaIent to keeping track of the mean hit- 
ting time 7) where Ri is the radius of the ith first passage 
sphere, until the particle is within some prescribed very 
small distance of two-phase interface. At this juncture, we 
need to compute not only the mean hitting time TJR) 
associated with imaginary concentric sphere of radius R in 
the small neighborhood of the interface but also the prob- 
ability of crossing the interface. Both of these quantities are 
functions of cl, a2 and the local geometry. Thus the ex- 
pression for the effective conductivity used in practice is 
given by”*” 

FIG. 1. A two-dimensional realization of overlapping particles. Here 
there are 12 monomers, three dimers, and six trimers. 

in the study of the effective properties of heterogeneous 
systems2’i7”* and of continuum-percolation theory. “*i9 It 
is therefore a model for which benchmark results for the 
effective conductivity are highly desirable. 

In the ensuing section we briefly describe first-passage- 
time equations in the homogeneous regions and near-inter- 
face boundaries. We then discuss the simulation procedure 
for the model of overlapping spheres. In the following sec- 
tion we present our simulation data for the effective con- 
ductivity for values of the conductivity ratio 
a = (~;?/oi = 0, 10, 50, and ~4, for a wide range of sphere 
volume fractions. This data is compared to previously ob- 
tained rigorous three-point bounds on a, for the same 
model. 

II. FIRST-PASSAGE-TIME FORMULATION 

A general formulation to obtain exactly the effective 
conductivity a, for general isotropic n-phase composites 
having phase conductivities oi, o,... , CT,, was originally 
given by the authors” in terms of certain averages of 
Brownian motion trajectories. The appropriate first-pas- 
sage-time equations that apply in the homogeneous phases 
and at the multiphase interface for d-dimensional media of 
arbitrary microstructure was then derived and applied to 
compute the effective conductivities a, of equilibrium dis- 
tributions of two-dimensional hard disks.” It was subse- 
quently applied to compute a, of equilibrium distributions 
of three-dimensional hard spheres.” Since the formulation 
is general, it can be also applied for distributions of over- 
lapping spheres which, as indicated in Sec. I, is topologi- 
tally much more complex than nonoverlapping-sphere sys- 
tems. Here we briefly present the appropriate formulation 
for the model of interest, that is, of the distribution of 
overlapping spheres of conductivity a2 in a matrix of con- 
ductivity oi. 

(W: + X& + &R;) 
@‘= 6(%-l(4) + +3z(Rj) + W,(Rd) XNm’ (3) 

sinceX2 = (B& + Z& + 2,Ri). Hererl(R) [T=(R)] 
denotes the time for a Brownian particle to make a first 
passage in a homogeneous sphere of radius R of conduc- 
tivity o1 ( az), the summations over the subscript i and j 
are for the Brownian paths in phase 1 and phase 2, repec- 
tively, and the summation over the subscript k is for the 
Brownian paths crossing the interface boundary. 

Since rl(R) = R2/601 and T=(R) = R2/6a2, we 
have 

(&-I(RJ + +I&) f &q(Rk)) -- 
: - %-I(&) + +q(R/>/a + &7,(Rk)) Xhm’ (4) 

Here a = a2/ol is the conductivity ratio. Note that, for an 
infinite medium, the initial position of the Brownian par- 
ticle is arbitrary. Equation (4) is the basic equation to be 
used to compute the effective conductivity a, of distribu- 
tions of overlapping spheres. 
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FIG. 2. Two-dimensional depiction of the small neighborhood of (a) 
smooth and (b) nonsmooth interface boundaries which are the surfaces 
between the matrix of conductivity q and overlapping spheres of con- 
ductivity oz. 

8. Brownian particle crossing the interface 

The first-passage quantities (described below) when 
the Brownian particle is very close to the generally irreg- 
ular interface must be determined. We first discuss the 
first-passage quantities for the special case of a smoothly 
curved interface and subsequently for the case of a gener- 
ally irregular interface. 

Let fi = f12, Uf.& be the small spherical iirst-passage 
region of radius R centered at the interface at position 
xc, where sli is the portion of fi that is in phase i, and 
d& is the surface of fii excluding the two-phase interface 
[see Fig. 2(a)]. The key questions are: (i) What is the 
probability pl (ps) that the Brownian particle initially at x 

where 

near xc eventually first arrives at the surface da1 (the sur- 
face do=), and (ii) what is the mean hitting time rS for the 
Brownian particle initially at x to hit ~3fi ( = dfllUiK12) 
for the first time? 

The first-passage-time quantities pi and TV are solutions 
of certain Laplace and Poisson boundary-value problems, 
respectively, as obtained by the authors.‘0-12 They specifi- 
cally gave analytical expressions for pl, p2, and rS in case of 
a generally curved interface [Fig. 2 (a)], which can be sum- 
marized as follows: 

PI = 

A ,“‘, 
1 2 

A $h, 
1 2 

for xCRl, 

for XC& 

(5) 

P2 = I-Pl, 

= 

and 

A y; l-a 5 B2m+lE2m+1 , for xCf2,, 
1 2 m=O 

1 

A :; 1+ for xCfi2, 
1 2 m=O 

(6) 

R2 V, + V2 3a - 1 
G Vl+aV, 

l---+-r- ? mj$o c~~~+,,imi-~), for xc% 

R2 V, + V, a-3 

G v, +av, ‘+ 2a 
------2-g mz.o qm+,2m+l), for xCQ2, 

(7) 

B 
( - l)m(2m)! 4m + 3 

2rnf 1 = 22mf1(m!)2 m + 1 

and 

G 
(- l)m+1(2m)l 3(4m + 3) 

m+1= 22m+1(m!)2 (2m - l>(m + 2)(m + 1) . 

Here Ai(i = 1,2) is the area of the surface dfii in phase i, 
V, is the volume of region Szi, and E = r/R = 1 x 
- %1/R. Note that Eqs. (5)-(7) were originally devel- 

oped for the generally smoothly curved interface [or inter- 
face of an arbitrarily shaped convex monomer as in Fig. 
2(a)]. 

In the present model of suspensions of overlapping 
spheres, however, the interface generally consists of inter- 
secting sphere surfaces. The Brownian particle, therefore, 
may at times be very near to the region of intersection 
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between two or more spheres in such a way that the first- 
passage sphere encompasses intersecting sphere surfaces 
[see Fig. 2(b)]. Even though the accurate solutions, (5)- 
(7) can be always used by making the first-passage sphere 
arbitrarily small, it is more practical from a simulation 
point of view to use modifications of these results when the 
first-passage sphere encompasses intersecting sphere sur- 
faces. This is done by noticing the second terms in the 
square bracket of the right-hand side (rhs) of Eqs. (5) and 
(6) are of order O(E) and that the second and third terms 
in the square bracket of the rhs of Eq. (7) are of order 
O(2). The modifications to (5)-(7) in such situations as 
depicted in Fig. 2(b) are then as follows: 

Pl==A I ,A1a&[l+O(E)l=Al~ld , 
2 

(8) 
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pz= 1 -p1= Alyf;, [I + adI =Aly; , 

2 (9) 

and . 

In employing Eqs. (8)-( lo), the center of the first-passage 
sphere is at x instead of x0 at the interphase boundary. 
Equations (8)-( 10) imply that the effects of irregularity of 
the local geometry of the interface boundary on pl, pz, and 
rS are accounted for only by the area ratio AZ/Al and by the 
volume ratio V,/Vt, respectively and that they can be 
therefore used for generally irregular interface boundaries. 
Note that these equations were also employed in our stud- 
ies of hard particles’O*” when the particles were close to 
one another (i.e., high sphere concentrations) and were 
found to yield highly accurate results for the respective 
effective conductivities. 

C. Brownian particle at the surface of 
superconducting phase 

Consider suspensions of superconducting spheres (a 
= co >. If a = M), Eqs. (5)~( 10) yield trivial answers: 

p1 = O,p, = 1, and rS = 0. This implies that the Brownian 
particle at the interface boundary always gets trapped in 
the superconducting phase and never escapes from there, 
spending no time in the process. This is undesirable from a 
simulation standpoint since we need to investigate the 
Brownian particle behavior in the large time limit. The 
essence of the first-passage time technique for this case, 
developed by Kim and Torquato,” is as follows: (i) A 
Brownian particle moves in the same fashion as the Brown- 
ian motion in the homogeneous region if it is in the non- 
superconducting region far from the interface boundary; 
(ii) once it is very close to the interface boundary (in 
practice, within a prescribed small distance from the inter- 
face boundary), it is absorbed into the superconducting 
cluster and jumps out of the cluster after spending time 
7s; (iii) if it happens to be inside the superconducting clus- 
ter, the procedure of (ii) is applied. Note that the compu- 
tation of rS in step (ii) is crucial to the technique and is 
now described below. 

In Fig. 3, a schematic diagram of a superconducting 
dimer (Le., a cluster made of two spheres of radius a) is 
drawn. In order to use the first-passage algorithm in such 
instances, whenever the Brownian particle is within a small 
prescribed distance &a (L+(l) from the interface, instead 
of computing Vt and Vz in Eq. (7) or Eq. (lo), we need to 
compute the volumes V, and Vo The quantity V1 is the 
inner union volume of two spheres of radius a( 1 + fil), 
where Sp is the actual distance of the Brownian particle 
from the interface boundary, whiie Vo is the outer union 
volume of two spheres of radius a( 1 f S,), where Sz is 
another prescribed number such that 0 < a1 < 6r < & 

FIG. 3. An illustration of a cluster made of two overlapping particles for 
the case of a = ~~/a, = OS. Here V, is the union volume of two overlap- 
ping particles of radius a plus the imaginary concentric inner shell of 
thickness 6p (of conductivity CT,) and V, is the volume of the imaginary 
concentric outer shell of thickness &a (of conductivity a,), respectively. 
V, is the sum of F’, and V,. 

< 1. The details on how to compute V, and V, are de- 
scribed in the following section. The expression for rS is 
then given by” 

7 s = T*[ 1 - (v;‘s/v~s>] , (11) 
where r1 is the mean hitting time for the Brownian particle 
initially at the center of mass of the homogeneous region of 
volume V. and conductivity crl to first strike the surface of 
this volume. 

III. SIMULATION DETAILS 

Here we apply the Brownian motion formulation to 
compute the effective conductivity CT, of random distribu- 
tions of overlapping spheres of conductivity a2 in a matrix 
of conductivity crl. We consider the cases of phase conduc- 
tivity ratio a = c~/u~ = 0, 10, 50, and CO. Before present- 
ing these simulation results, we first describe the simula- 
tion procedure in some detail. 

Obtaining the effective conductivity a, from computer 
simulations is a two-step process: (i) First, one must gen- 
erate realizations of the random heterogeneous medium; 
(ii) second, employing the Brownian motion algorithm, 
one determines the effective conductivity for each realiza- 
tion (using many Brownian particles) and then averages 
over a sufficiently large number of realizations to obtain 
0,. 

A simple and efficient means of generating configura- 
tions of overlapping spheres at volume fraction &, is to 
randomly and sequentially place each sphere of radius a in 
a cubical cell of size L3 until the desired density p 
= N/L3 is reached. For all the computer-generated con- 

figurations considered, the number of spheres in a config- 
uration N was taken to be N = 125400 in almost all cases. 
In order to study finite-size effects in the superconducting 
cases (a = CO ), we sometimes examined systems with N 
up to 20 000 (see discussion below). Notice that for an 

2730 J. Appl. Phys., Vol. 71, No. 6, 15 March 1992 I. C. Kim and S. Torquado 2730 

Downloaded 11 Mar 2009 to 140.180.169.188. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



FIG. 4. Two-dimensional regularly arranged template used by Smith and 
Torquato (see Ref. 20) to measure two-point correlation function. A 
similar measuring template is used in this paper except that the measuring 
points are chosen randomly and uniformly. 

equilibrium distribution of overlapping spheres, the vol- 
ume fraction &, is related to the density p by 

tj2 = 1 - exp( -7) = 1 - exp[ - (4?r/3)pa3], (12) 
where the reduced density 77 is defined by the relation 
q = 4rpa”/3. 

The essence of the Brownian motion algorithm has 
been described in Sec. II. Here we need to be more specific 
about the conditions under which the Brownian particle is 
considered to be in the small neighborhood of the interface 
and hence when the mean time rs and probabilities p1 and 
p2 need to be computed. An imaginary thin concentric 
shell of radius a( 1 + 6,) is drawn around each cluster 
consisted of overlapping spheres of radius a. We first de- 
scribe the algorithm for the case of the distributions of 
clusters consisting of nonsuperconducting (a# CO ) over- 
lapping spheres. If a Brownian particle enters this thin 
shell, then we employ the first-passage-time equations (5)-- 
(lo), where the local phase surface area ratio AZ/A1 and 
the local phase volume ratio V2/Vl of the imaginary sphere 
should be computed. However, for the case of nonsmooth 
interface boundary as shown in Fig: 2(b), the exact deter- 
mination of AZ/Al and VJVl is generally impossible. In 
order to accomplish this, we introduce here what we call 
the template method. The idea was originally adopted by 
Smith and Torquato*’ where they placed an imaginary 
measuring template in the two-phase medium to determine 
whether two points separated by distance r belong to the 
same phase and then to compute numerically the two-point 
correlation function &(r). They chose the measuring 
points at regular sites of the template (see Fig. 4). We 
instead choose the measuring points uniformly and ran- 
domly. First, in order to compute AZ/Al, we uniformly and 
randomly throw iw, points on the surface of the imaginary 
first-passage sphere of radius R = &a and count the num- 
ber of occasions MA,1 (Med,J that these points fall on 
afit (&$) [see Fig. 2(b)]. The area ratio AZ/A1 is then 
determined to be MA,JiVA,,. Next, MV points are thrown 

inside the first passage sphere and the number of occasions 
M,, (M,,,) that these points fall in fit (a,) is counted. 
The volume ratio V2/Vlm is then determined to be 
M&M,,. Of course, for the case of a smooth interface 
boundary as shown in Fig. 2(a), these quantities are ex- 
actly computed analytically without any difficulty. 

In case of superconducting clusters (a = CO ), in order 
to use Eq. ( 1 1 >, we need to compute the volumes V,, V, 
associated with each cluster (see Fig. 3). Since the spheres 
are free to overlap, the shape of the clusters can be arbi- 
trarily irregular even though the constituents are spherical. 
An exact determination of the volumes associated with the 
generally irregular cluster is not easy especially if the clus- 
ter is made of four or more overlapping spheres. In order 
to overcome this difficulty, we devised what we call the 
pixel method, in which we tesselate the unit cell into a 
large number of cubical pixels and identify each pixel by 
the cluster (or matrix) to which it belongs. This is easily 
done with the aid of the so-called Hoshen-Kopelman 
algorithm. 21 The volume of a cluster is simply determined 
to be the number of pixel centers contained within the 
cluster. The concentric shell of thickness Sp surrounding 
each cluster is very small (SI < S1 ( 1) . Therefore, the vol- 
ume of the inner cluster r/, is taken to be the number of 
pixel centers that belongs to the cluster made of spheres of 
radius a [instead of a( 1 + S[)]. This is done since it is 
difficult to compute V, exactly because S1 varies continu- 
ously between 0 and 61. In practice, choosing a instead of 
the exact a( 1 + 6,) in computing VI involves little error 
and, in fact, its effect on the effective conductivity a, was 
found to be well within statistical fluctuations. In contrast, 
the volume of the outer cluster V, (see Fig. 3) is computed 
directly by growing the radius of each constituent sphere 
from a to a( 1 + 6,) and counting the number of pixel 
centers belonging to the resultant bigger cluster. Once all 
the outer cluster volumes are computed, then the Brown- 
ian particles are released. Whenever a Brownian particle 
comes close to a superconducting cluster, Eq. ( 11) is used 
with the appropriate VI and V,. 

After a sufficiently large total mean-square displace- 
ment, Eq. (4) is then employed to yield the effective con- 
ductivity for each Brownian trajectory and each realiza- 
tion. Many different Brownian trajectories are considered 
per realization. The effective conductivity Ok is finally de- 
termined by averaging the conductivities over all realiza- 
tions. Finally, note that the so-called grid methodz2 was 
used to reduce the computation time needed to check if the 
walker is near a cluster. It enables one to check for spheres 
in the immediate neighborhood of the walker instead of 
checking each sphere. 

In our simulations, we have taken 6, = 0.0001 and 
ii, = 0.01. We considered 100-250 equilibrium realizations 
and 100 Brownian particles per realization, and have let 
the dimensionless total mean-square displacement X2/a2 
vary from 1 to 10, depending on the value of +2 and a. 

In the superconducting instance (a = CO ), we studied 
finite-size effects, even though we only considered the 
range O~$~s;O.28, where the threshold & = 0.3. For the 
range #2 ~0.25, the number of particles N = 500 turned 
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out to be sulliciently large, i.e., o, did not change (within 
statistical errors) for N> 500. We, therefore, computed 
a, for systems with N = 500 for this range of volume frac- 
tions. However, for the range r&)0.25, finite-size effects 
were observed even in very large systems with N = 20 000, 
i.e., CT, increased as N increased to 20 000. Therefore, for 
&.>0.25, we first computed a, for the systems with N 
= 500, 1000, 2000, 5000, 10 000, and 20 000 and then 

extrapolated to the N- CO limit. 
Compared to previous simulation techniques, the 

Brownian motion simulation algorithm yields accurate val- 
ues of a, with a relatively fast execution time (e.g., on 
average, the calculations required 4-10 CPU hours on the 
CRAY Y-MP), especially considering the large system 
sizes used here. Our calculations were carried out on a 
VAX station 3100 and on a CRAY Y-MP. 

TABLE I. Brownian motion simulation data for the scaled conductivity 
uJoi of random distributions of overlapping spheres of conductivity o, in 
a matrix of conductivity (T, for a = 02/a1 = 10 for selected values of the 
sphere volume fraction in the range 0 <&<0.8. Included in the table are 
the rigorous three-point bounds for overlapping spheres (Refs. 6, 7, and 
17) and the exact simulation data for uJoi of equilibrium distribution of 
hard spheres (Ref. 11). 

Three-point Three-point Hard- 
Simulation lower bound” upper bound* sphere 

42 data up/u* &)/cl, A y,/A resultsb 

& 1.64 1.57 1.74 0.17 0.41 1.54 

o:4 1.86 1.76 2.02 0.26 0.38 ... 
2.73 2.41 3.05 0.58 0.45 2.41 

0.6 4.63 3.94 4.90 0.96 0.72 3.87 
0.8 7.11 6.33 7.24 0.91 0.86 ... 

aReferences 6, 7, and 17. 
bReference 11. 

IV. RESULTS AND DISCUSSION 

In order to test the accuracy of our “template method” 
for finite a and “pixel method” for a = co, respectively, we 
carried out the simulations for a simple cubic array of 
spheres: an idealized geometry for which exact numerical 
data are available.23 The results obtained over a wide range 
of densities (including near close packing) were found to 
be exact to three significant figures, confirming that the 
Brownian motion algorithm can be used in conjunction 
with the template and pixel methods to compute accurately 
the effective conductivity of distributions of overlapping 
spheres. 

Our simulation data for overlapping spheres will be 
compared to the best available rigorous bounds (due to 
Beran and Milton7) on the effective conductivity for this 
model computed by Torquato and Stell.r7 These authors” 
evaluated three-point upper6 and lower’ bounds on a,, i.e., 

u~3)~ue<og), 

where 
(13) 

&) = w?$ + %$2 - 
4142C~2 - 4 

3fl1+ (A+ X2) (a2 - o*> ’ 
(14) 

and 

( 
2 

C3) = g, 
1 + (1 + 242#21- XhC2 - 42w21 

OL 
2 1. 1 + 4lP2, - %%2 + 42u32cj21 

(15) 
Here $~r = 1 - &, P2i = (a - l)/(a + 2), and c2 is a mi- 
crostructural parameter that is a multidimensional integral 
over a three-point statistical correlation function. For sub- 
sequent discussion, it is convenient to introduce the follow- 
ing quantities, which involve the bounds: 

A = (u:~‘/u,) - (~~~‘/a~) , (16) 

YL = (uJo1) - (a1;3)/al), (17) 

Yu= (&)/al) - (UJffJ. (18) 

The quantity A is the bound width made dimensionless 
with the conductivity of the matrix crl. The quantities yL 
and yu are the absolute differences between the exact di- 
mensionless effective conductivity and lower and upper 
bounds, respectively. 

For arbitrary composite media, it has been observed by 
Torquato24 that when one phase is much more conducting 
than the other, say 02’2,01, lower bounds are expected to 
yield good estimates of ah/a1 provided that 42 < $5 (where 
$“, is the percolation threshold of phase 2) and that the 
average cluster size of phase 2 AZ is much smaller than the 
system size L. Thus, even though the bound width A is 
very large when u2$al (and, indeed, goes to infinity in the 
limit &al + 00 ), lower bounds should give a reasonable 
estimate of o, (i.e., 3/L 4 1) provided that AZ -g L. Similarly, 
upper bounds are expected to yield useful estimates of o, 
for ~~$0~ when 42 > $5 and A1 ( L, where A, is the average 
of cluster size of phase 1. For. the special case of overlap- 
ping spheres, the average cluster is composed of approxi- 
mately 10 particlesi at 42 = 0.2. As 42 increases beyond 
41~ = 0.2, the size of the average cluster grows precipitously 
until it becomes infinitely large at the threshold value of 
45 5 0.3. At 4s = 0.28, for example, the average cluster 
consists of approximately 150 particles.‘” Thus, for the 
model under consideration, it may be argued that the con- 
dition A2 ( L holds when 0~4~~0.2. On the other hand, 
phase 1 (matrix) ceases to percolatei at &z-0.97. Thus, 
the condition hi < L holds in the vicinity of 4~~ = 1. 

We chose to examine three different contrast values for 
the cases of conducting spheres (a > I), i.e., a = 10, 50, 
and CO. Our simulation data for a = 10 together with the 
rigorous three-point bounds are presented in Table I and 
Fig. 5. Included in Fig. 5 is Torquato’s approximation 
(19) and included in Table I are the bound quantities A 
and yL and the simulation results for the effective conduc- 
tivity of the distributions of hard spheres due to Kim and 
Torquato.” It is seen that the overlapping-sphere data al- 
ways lie between the upper and lower bounds. Although a 
is not much greater than unity here, the data lie closer to 
the lower bound for b2 < 4; = 0.3 and he closer to the upper 
bound for 42 > 0.3. Not surprisingly, the effective conduc- 
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FIG. 5. Scaled effective conductivity oJ0, of an equilibrium distribution FIG. 6. Scaled effective conductivity %a1 of an equilibrium distribution 
of overlapping spheres in a matrix for a = 10. Solid lines are rigorous of overlapping spheres in a matrix for cz = 50. Solid lines are rigorous 
three-point bounds (see Refs. 6 and 7) and filled circles are our simula- three-point bounds (see Refs. 6 and 7) and filled circles are our simula- 
tion data. tion data. 

tivity for overlapping spheres is always higher than for 
hard spheres at the same volume fraction. This is because 
the average cluster size A, for overlapping spheres is al- 
ways greater than or equal to A2 for nonoverlapping 
sheres. 

The simulation data and the bounds for the case a 
= 50 are summarized in Table II and Fig. 6. Figure 6 

includes Torquato’s approximation ( 19) and Table II in- 
cludes the quantities A and yti It is seen that the data 
always lie within the bounds. For & < &, the data lie 
closer to the lower bound, and indeed for #~2<0.2 the lower 
bound provides a good estimate of aJ~i, consistent with 
observations of Torquato.‘4 On the other hand, for 
C#J~ > 0.42, the data lie closer to the upper bound. It is in- 
teresting to note that a simple linear interpolation formula 
based upon the upper and lower bounds for a > 1 and 
&, > 4; can be obtained which accurately estimates the con- 
ductivity data2’ for this range of parameters. 

The case of superconducting overlapping spheres (a 
= CO ) is presented in Table III and Fig. 7. Figure 7 in- 

TABLE II. Brownian motion simulation data for the scaled conductivity 
o/a, of random distributions of overlapping sheres of conductivity 0s in 
a matrix of conductivity o, for a = ox/u, = 50 for selected values of the 
sphere volume fraction m the range 0 <&2<0.8. Included in the table are 
the rigorous three-point bounds.” 

41 

Three-point Three-point 
Simulation lower bound* upper bound* 

data up/u, UO’/U, A Y/A 

0.2 2.16 1.78 3.60 1.62 0.23 
0.25 2.67 2.06 4.87 2.81 0.22 
0.4 6.44 3.28 10.11 6.83 0.46 
0.6 15.16 6.54 20.29 13.75 0.63 
0.8 30.74 15.33 33.81 18.48 0.83 

‘References 6, 7, and 17. 

eludes an approximation due to Torquato24 which also de- 
pends on the microstructural parameter LJ2, namely, 

0, 1+ m321- &M2&, -= 
fl1 1 - AD21 - %ha%, * 

(19) 

Relation (19) should provide an excellent estimate of a, 
provided that the dispersed phase 2 does not possess large 
connected substructure. This condition will be met for 
~j~~0.2 as discussed above. Table III includes the quantity 
yL and our simulation data for hard spheres.” The upper 
bound is not shown since it is infinite in this instance. 
Nonetheless, the approximation (19) and lower bound 
provide a good estimate of ada, for 1$~<0.2, which again is 
consistent with Torquato’s observations. 

Table IV and Fig. 8 show our simulation results for the 
case of the distributions of the insulating (a = 0) spheres. 
Here we compare our results to the rigorous upper bound 
(14) and the exact results for the corresponding case of 
hard spheres. ” The lower bound vanishes for a = 0. It is 

TABLE III. Brownian motion simulation data for the scaled conductivity 
u/a, of random distributions of superconducting overlapping spheres in 
a matrix (a = Q) ) for selected values of the sphere volume fraction in the 
range 0<&<0.28. Included in the table are the rigorous three-point 
lower bound for overlapping spheres* and the exact simulation data for 
crJcr, of equilibrium distribution of hard spheres.b 

42 

Simulation 
data 

Three-point 
lower bound” 

Up/U1 

Hard-sphere 
resultsb 

0.1 1.38 1.35 . . . 
0.15 1.70 1.58 . . . 
0.2 2.25 1.85 1.83 
0.25 3.36 2.17 . . . 
0.27 4.27 2.41 . . . 
0.28 5.31 2.49 . . . 

‘References 7 and 17. 
bReference 11. 
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6 

FIG. 7. Scaled effective conductivity oJui of an equilibrium distribution 
of superconducting overlapping spheres (a = m ) in a matrix. The solid 
line is the rigorous three-point lower bound (see Ref. 7) the dotted line is 
an approximation due to Torquato (see Ref. 24). The filled circles are our 
simulation data. 

BIG. 8. Scaled effective conductivity ada, of an equilibrium distribution 
of insulating overlapping spheres (a = 0) in a matrix. The solid line is the 
rigorous three-point upper bound (see Ref. 6) and the filled circles are 
our simulation data. 

clear that the increased particle-phase connectivity due to 
overlapping lowers aJo1 relative to the hard-sphere case. 

It should be noted that Tobochnik, Caing, and 
Wilsonz6 also used a Brownian motion technique to com- 
pute u, for overlapping spheres, but only reported results 
for the extreme contrast values of a = 0 and a = M) , Their 
methodology differs from our technique in two basic ways, 
however. First, when the Brownian tracer is near to a 
smooth interface as in Fig. 2(a), we use the accurate ana- 
lytical expression (7) for the mean hitting time rs while 
they simply approximated, in the language of this paper, 
rs = (1 + i12/A1)R2/6a1 for a = 0. This is, in fact, a 
further approximation to the expression (10) for rs which, 
in turn, is already a modification of Eq. (7) and which we 
use only when the first-passage sphere encompasses com- 

TABLE IV. Brownian motion simulation data for the scaled conducfivity 
udcr, of random distributions of insulating overlapping spheres (a = 0) 
in a matrix of conductivity c, for selected values of the sphere volume 
fraction in the range 0 < &<0.95. Included in the table are the rigorous 
three-point upper bound for overlapping spheres” and the exact simula- 
tion data for CJJU, of equilibrium distribution of hard spheres.b 

42 

Three-point 
Simulation upper bound’ Hard-sphere 

data o-p/u, A YJA resultsb 

plex intersecting surfaces [as illustrated in Fig. 2(b)]. Sec- 
ond, they used the aforementioned approximation when- 
ever a Brownian tracer encounters the interface regardless 
of its shape. Since their approximation of the area ratio 
AZ/A1 instead of the volume ratio V2/V1 is independent of, 
and hence is not properly retlecting, the detailed inner 
structure of the first-passage sphere, then the resulting data 
obtained by their alogorithm are expected to involve more 
errors as the interface boundary becomes more complex, 
which is the case for the distributions of the overlapping 
spheres. Note that p1 and p2 need not be calculated when 
a = 0. Comparison of our simulation data to theirs, which 
are not shown here, revealed that their data are slightly 
lower than ours. 

In the case a = CO, Tobochnik and co-workersz6 used 
another approximation for the mean hitting time TV. They 
approximated the mean hitting time, in the language of this 
paper, by the relation rs = S;a’/2al in contrast to Eq. 
( 11) . Their approximation underestimates rs and hence 
leads to an overestimation of adat. This is easily proved in 
the case of a spherical monomer since the exact 
expression” is given by, for negligibly small St, 

a2 2 2 

‘“=6-& [(l +a2Y-- 11 =g+ 6 S,( 1 - S,). 
1 

(201 

0.1 0.855 0.855 
0.2 0.714 0.719 
0.3 0.593 0.593 
0.4 0.461 0.476 
0.5 0.346 0.370 
0.6 0.248 0.274 
0.7 0.160 0.188 
0.8 0.0760 0.113 
0.9 0.0222 0.0496 
0.95 0.0063 0.0227 

0.855 
0.719 
0.593 
0.476 
0.370 
0.274 
0.188 
0.113 
0.0496 
0.0227 

0.000 ... 
0.007 0.724 
0.000 ‘.. 
0.032 0.491 
0.065 0-e 
0.095 0.287 
0.149 ... 
0.327 ..- 
0.552 ‘.. 
0.722 ... 

aReferences 6 and 17. 
bReference 11. 

It is evident from Eq. (20) that the approximation of To- 
bochnik and co-workers underestimates r, and therefore 
overestimates a,, since S2 is always taken to be less than 
unity. (In this study, it is taken to be 0.01.) To further 
support our claim that the algorithm of Tobochnik and 
co-workers overestimates o, for a = CO, we computed Us 
for a simple cubic array using their algorithm with 
St = 0.0001 and S2 = 0.01. As noted earlier, this is a useful 
benchmark model since exact results are available.23 Their 
algorithm yields o,Jat = 3.28 at #2 = 0.3 and oJoi 
= 11.77 at & = 0.5. This is to be compared to exact re- 
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suits of CrJq = 2.33 at & - 0.3 and aJol = 5.89 at 
42 = 0.5. Our algorithm in contrast predicts the exact re- 
sults to three significant figures. In the case of overlapping 
spheres, for example, Tobochnik and co-workers found 
that aJo1 c 8.5 (within the scale of their figure) at 
& = 0.25, whereas we obtained that cr,/al = 3.36 at 
& = 0.25. Note that as explained earlier, p1 and p2 need 
not be calculated for a = CO. 

V. CONCLUDING REMARKS 

The general first-passage-time technique developed by 
the authors earlier’@+ ’ has been applied to compute the 
effective conductivity a, of the distributions of overlapping 
spheres. To facilitate the calculation for generally irregu- 
larly shaped interfaces, the “template method” for nonsu- 
perconducting clusters and the “pixel method” for super- 
conducting clusters were developed and applied. The 
simulation procedure was shown to yield highly accurate 
estimates of conductivity for benchmark models. Our cal- 
culations of a, for overlapping spheres always lie between 
three-point bounds and, to our knowledge, are the most 
accurate and comprehensive data for this model obtained 
to date. Consistent with the observations of Torquato,” 
one of the bounds yields a good estimate of CT,, even in the 
extreme cases of a = 0 and a = 03, depending upon the 
size of the average cluster. Because the average cluster size 
in overlapping spheres is larger than for equilibrium hard 
spheres” at the same volume fraction, the effective conduc- 
tivity of the former system is larger (smaller) than a, for 
the latter system when a > 1 (a < 1). 
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