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The effective diffusion coefficient D, for porous media composed of identical obstacles of 
radius A in which the diffusing particles have finite radius PR (fl>O) is determined by an 
efficient Brownian motion simulation technique. This is accomplished by first computing D, 
for diffusion of “point” Brownian particles in a certain system of interpenetrable spherical 
obstacles and then employing an isomorphism between D, for this interpenetrable sphere 
system and De for the system of interest, i.e., the one in which the Brownian particles have 
radius BR. [S. Torquato, J. Chem. Phys. 95,2838 ( 199 1) 1. The diffusion coefficient is 
computed for the cases /3 = l/9 and ~!3 = l/4 for a wide range of porosities and compared to 
previous calculations for point Brownian particles (B = 0). The effect of increasing the size of 
the Brownian particle is to hinder the diffusion, especially at low porosities. A simple scaling 
relation enables one to compute the effective diffusion coefficient D, for tinite 0 given the 
result of D, for p = 0. 

1. INTRODUCTION 

Understanding the transport of macromolecules in dis- 
ordered porous media (i.e., particles which are of the order 
of the size of the pores) is of importance in a variety of appli- 
cations, including gel size-exclusion chromatography, sepa- 
ration of catalytic processes in zeolites, solvent swelling rub- 
bers, and reverse osmosis membrane separation. ‘+ 
Transport of finite-sized particles in porous media is hin- 
dered (relative to the case of “point-sized” particles) due, in 
part, to the fact that the finite-sized particle is excluded from 
a fraction of the pore volume. Hindered diffusion of macro- 
molecules has been recently studied by Sahimi and Jue4 for a 
lattice model of porous media. Torquato5 subsequently in- 
vestigated the problem of diffusion-controlled trapping of 
finite-sized Brownian particles for a continuum model of 
traps (i.e., suspensions of spherical traps). There have been 
numerous studies dealing with the prediction of the effective 
diffusion coefficient D, of continuum models of porous me- 
dia in which the diffusing particles have zero radius,6-9 i.e., 
point particles. In contrast, we are not aware of any investi- 
gation attempting to determine D, of continuum models 
with finite-sized Brownian particles. 

In this paper, we determine by Brownian motion simu- 
lation the effective diffusion coefficient De for porous media 
composed of a statistical distribution of identical spherical 
obstacles of radius R at number densityp when the diffusing 
particles are spheres with radius PR, p>O. In particular, we 
will employ the accurate first-passage-time technique devel- 
oped by the authors to obtain the effective conductivity of 
composite media for “point” diffusing particles.7V8 

‘) Author to whom all correspondence should be addressed. 

II. ISOMORPHISM BETWEEN TRANSPORT OF FINITE- 
SIZED AND POINT BROWNIAN PARTICLES 

Torquato’ utilized the fact that the trapping of a spheri- 
cal tracer particle of radius @R in a medium of hard spherical 
traps of radius R is isomorphic to the trapping of a point 
particle of zero radius in a particular system of interpenetra- 
ble spherical traps to determine the trapping rate of the for- 
mer system. We briefly describe this isomorphism which will 
be applied to the problem at hand. Consider the diffusion of a 
spherical tracer particle of radius b in the space exterior to a 
random distribution of hard spherical inclusions or obstacles 
of radius a at number density p. (The ensuing argument is 
not limited to hard obstacles, and hence applies to partially 
penetrable or overlapping obstacles.) As the result of exclu- 
sion-volume effects, the volume fraction available to the cen- 
ter of the tracer particle of radius b (for b > 0) is smaller than 
the porosity 4i (i.e., the volume fraction available to a point 
particle of zero radius). A key observation is that the diffu- 
sion of a tracer particle of radius b is isomorphic to the diffu- 
sion of a point particle in the space exterior to spheres of 
radius a + b (centered at the same locations as the original 
obstacles of radius a) at number densityp, possessing a hard 
core of radius a surrounded by perfectly penetrable concen- 
tric shell of thickness b. The latter system is precisely the 
penetrable-concentric shell (PCS) or “cherry-pit” model in- 
troduced by Torquato,” in which the dimensionless ratio 

a E=- (1) 
a+b 

. _ 

is referred to as the “impenetrability” parameter since it is a 
measure of the relative size of the hard core: E = 0 and E = 1 
corresponding to “fully penetrable” and “totally impenetra- 

1498 J. Chem. Phys. 96 (2), 15 January 1992 0021-9606/92/021498-06$06.00 0 1992 American Institute of Physics 
Downloaded 11 Mar 2009 to 140.180.169.188. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



ble” spheres, respectively. Therefore, the volume fraction 
available to the tracer particle q4 (p,a + 6) 
= 1 - & @,a + 6) is equal to the volume fraction available 

to a point tracer in the PCS model, where #2 (p,; + 6) is the 
unavailable volume fraction. When b = 0, the unavailable 
volume fraction & @,a) = p4ra3/3 and di is just the stan- 
dard porosity of the system. The quantity 42 (p,a + b) is 
clearly greater than d2 @,a) but is less than p4rr( a + 6) )/3 
because the concentric shells of thickness b may overlap. The 
volume fraction 42 @,a + 6) in the PCS model is nontrivial- 
ly related top and radius (a + b) . 

Recently, Torquato er al.” studied the so-called “near- 
est-neighbor” distribution functions, E, (r) and H, (r), for a 
random system of identical spherical obstacles. The “exclu- 
sion” probability function E, (r) is defined to be the proba- 
bility of finding a spherical cavity of radius r, empty of the 
centers of the spherical obstacles and is related to “void” 
nearest-neighbor probability density H, (r) by the relation12 

JE, (r) 
H,(r)= --. 

dr 
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x=r, 
2a 

(5) 

77=p$5z3, (6) 

e(q) = (l+v) 
(1 -aI3 ’ 

(7) 

f(v) = - 11(3 + ‘I) 
2(1-7/7)3 ’ 

(8) 

g(q) = v2 
2(1 -?j)3’ 

(9) 

h(q) = 
- 97j2 + 77 - 2 

2(1-7#7)3 * 
(10) 

Relations (3) and (4) in conjunction with the isomorphisms 
described earlier are utilized to determine the volume frac- 
tion and specific surface, respectively, available to a test par- 
ticle of radius b in a system of hard spherical obstacles of 
radius a at number density p, i.e., one has in terms of the 
dimensionless variables’*12 

(2) 
41(w) =E, -& ( > 2E 

, (11) 

S(W) = Hv 
( > &Pl - (12) 

It is important to note that this formalism can be ex- 
tended to include cases in which the test particle of radius PR 
is inserted into a system of interpenetrable spheres of radius 
R having hard cores of radius AR surrounded by perfectly 
penetrable shells of thickness ( 1 - /2) R. This is isomorphic’ 
to the insertion of a test particle of radius b = ( 1 - A + fi) R 
into a system of hard spherical obstacles of radius (I = AR, 
and hence 

H, (r)dr is the probability that at an arbitrary point in the 
system the center of the nearest spherical obstacle lies at a 
distance between r and r + dr. Alternatively, Eu (r) can be 
defined to be the fraction of volume available to a “test” 
particle of radius b = r - u when inserted into a system of 
spherical obstacles of radius a at number densityp and there- 
fore equal to 4] @,a + b). Therefore, knowledge of E, will 
enable us to compute the volume fraction of the PCS model.5 
Similarly, the nearest-neighbor probability density H, (r) 
can be alternatively defined to be specific surface (surface 
area per unit volume) available to a test particle of radius 
b = r - a, denoted by s(p,a + b). 

The exact integral representation of E, (r) and H, (r) 
was given by Torquato et al.’ ’ in d dimensions in terms of the 
n-body distribution functions which statistically character- 
ize the microstructure of the system. It is generally impossi- 
ble to determine the complete set of these distribution func- 
tions for d>2, and therefore, the exact evaluation of Eu (r) or 
H,(r) is not possible in two and higher dimensions. For 
distribution of hard spherical obstacles, Torquato et al. ob- 
tained two different sets of expressions for these quantities: 
one within the framework of Percus-Yevick approximation 
and the other within the framework of the Carnahan-Star- 
ling approximation. These approximations were compared 
to the scaled-particle approximations*3 and Monte Carlo 
simulations’4 and it was found that the Carnahan-Starling 
expressions gave excellent and the best agreement with the 
data. Specifically, the most accurate approximations found 
by Torquato et al.” are given by 

E,,(x,l)) = (1 - g)exp[ - 7(&x3 + 12fx2 + 24gx + h)ll 
x4 (3) 

H,(w) = % (ex’ +fx + g)E,(x,v), x&j (4) 

where 

41 (w,P) =Ev ( $+A3 > , (13) 

s( TXP) = Ho 
( 

l+P ,-J?a3 . 
> 

(14) 

In summary, application of the aforementioned isomor- 
phism enables one to obtain the effective diffusion coefficient 
for Brownian particles of radius b in a system of hard spheri- 
cal inclusions of radius a, D, [ 42 (p,a);b 1, from the corre- 
sponding result for point particles in the PCS model from the 
relation 

D,[$,(p,a);b] =D,[#,(p,a+b);O]. (15) 
More generally, if the Brownian particles of radius j?R are 
diffusing in a system of interpenetrable spherical obstacles of 
radius R with impenetrable cores of radius AR, then,’ using 
the notation of Eq. ( 13)) one has 

D,[4,(77AO);P] =D,[4,(77,~$);O]. (16) 
We perform calculations (in the subsequent section) for 

the specific cases in which the spherical obstacles are mutu- 
ally impenetrable. 

Ill. CALCULATION OF THE EFFECTIVE DIFFUSION 
COEFFICIENT BY FIRST-PASSAGE-TIME TECHNIQUE 

The authors7-9 developed a first-passage-time technique 
to efficiently compute the effective conductivity a, of con- 

J. Chem. Phys., Vol. 96, No. 2,15 January 1992 
Downloaded 11 Mar 2009 to 140.180.169.188. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



1500 I. C. Kim and S. Torquato: Diffusion in porous media 

tinuum model of n-phase composite media having phase 
conductivities or ,...,a,. Whereas Refs. 7 and 8 dealt with 
composite media composed of hard particles, Ref. 9 treated 
media composed of fully penetrable or overlapping particles. 
In all of these works, the Brownian particle had zero radius. 
Mathematically, the problem of diffusion is the same as the 
problem of two-phase conduction in which phase 2 is a per- 
fectly insulating phase, i.e., D, = a,, D = ur and a, = 0. 
Here we shall apply the first-passage-time technique to com- 
pute D, for porous media composed of hard spherical obsta- 
cles of radius R when the Brownian particles have radius fiR. 
As discussed earlier, this is equivalent to diffusion of point 
particles in an equivalent PCS model according to Eq. ( 16). 
We shall briefly summarize the first-passage-time tech- 
nique.7-9 The reader is referred to Refs. 7-9 for specific de- 
tails. 

Consider a Brownian particle (diffusion tracer with 
zero radius) moving in a homogeneous region with diffusion 
coefficient D. The mean hitting time r( Y), which is defined 
to be the mean time taken for a Brownian particle initially at 
the center of the sphere of radius Y to hit the surface for the 
first time, is r( Y) = Y2/6D. This implies that once r( Y) is 
known as a function of the mean square displacement Y2, 
then the diffusion coefficient is computed by 
D = Y 2/6r( Y) . Likewise, the effective diffusion coefficient 
D, associated with diffusion in a fluid-saturated porous me- 
dium can be expressed as 

x2 I II=- --e 
67(X) 1 x2+ m - 

\- , 

Here r(X) is the total mean time associated with the total 
mean square displacement X 2 of a Brownian particle mov- 
ing in the space exterior to particle phase, phase 2. The limit 
X 2-+ 00 is taken since we consider an infinite porous medi- 
um. In the actual computer simulation, this is realized by 
taking X2 sufficiently large. Therefore, in order to compute 
the effective diffusion coefficient D,, it is sufficient to obtain 
X2 as a function of r(X). Note that X2 is an average over 
many Brownian motion trajectories and system realizations. 

In the actual computer simulation, in the preponder- 
ance of cases where the Brownian particle is far enough from 
the boundary of the obstacles (or the pore-solid interface), 

Fluid phase . * - - - - * . 

. 

Soild phase 

Fluid phase 

we employ the time-saving first-passage-time technique 
which is now described. First, one constructs the largest 
imaginary concentric sphere of radius r around the diffusing 
particle which just touches the interface. The Brownian par- 
ticle then jumps in one step to a random point on the surface 
of this imaginary concentric sphere and the process is repeat- 
ed, each time keeping track of 6 (or the mean hitting time) 
where rj is the radius of the ith first-passage sphere, until the 
particle is within some prescribed very small distance S, R of 
the interface boundary. Once the Brownian particle is very 
close to the interface, then it will take a large number of steps 
(and large computation time) to move again far enough 
from the interface since the first-passage sphere would be of 
very small radius. To avoid this difficulty at this juncture, 
the Brownian particle makes a big jump in one step to a 
random point on the available surface of the first-passage 
sphere of radius r (S, < r/R < 1) (see Fig. 1 ), spending the 

. mean hittmg time r, as discussed below. Thus the expression 
for the effective diffusion coefficient used in practice is given 
by 

D, = 
18i3;3 + zj$> 

6(Xidri) + xjr,(rj)) x2-m’ 
(18) 

since X2 = (Xi< + 8e). Here 7(r) denotes the mean hit- 
ting time for a diffusion tracer with the diffusion coefficient 
D associated with a first-passage sphere of radius r. The sum- 
mations over the subscripts i and j are for the first-passage 
sphere entirely exterior to the obstacles and the first-passage 
sphere encompassing the interface boundary (as illustrated 
in Fig. 1 ), respectively. Alternatively, since r(r) = ?/SD, 
we have 

D, (xidri 1 + xjdrj) > -= (19) 
D (xidri) + xjrs(rj)) x2--’ 

Note that, for an infinite medium, the initial position of the 
Brownian particle is arbitrary. Equation (19) is the basic 
equation to be used in our Brownian motion simulation to 
compute the effective diffusion coefficient D, associated 
with random distributions of spherical obstacles. 

The key quantity that should be determined in employ- 
ing the aforementioned first-passage time technique is the 
mean hitting time r1 (r) for a diffusion tracer associated with 

. . , . . first-flight sphere of radius-r in a small 
*. . -_I-* neighborhood of (a) smwth and (b) 

Solid phase nonsmooth fluid-solid interface. 

(b) 
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the first-passage sphere of radius r encompassing the inter- 
face boundary (see Fig. 1). The authors’ recently showed 
that it is given by the solution of a Poisson boundary-value 
problem. They also gave an accurate analytical solution for 
r* (r) that depends on the pore-solid geometry contained 
within the first-passage sphere of radius r and the molecular 
diffusion coefficient D. In the following, we state their essen- 
tial results in the language of this paper. In the case that the 
interface encompassed by the first-passage sphere is smooth- 
ly curved [as in Fig. 1 (a) 1, the mean hitting time r1 ( r) for a 
diffusion tracer at x associated with the first-passage sphere 
of radius r centered at x,, at the interface is given by 

q- 5 (r) = rZ 4n”3 
60 v 

l++h’-+ z CZm+,hZmtl , 
m 0 I 

where 
(20) 

C 
( - 1)“+‘(2m)! (4m + 3) 

2m+1= 22”+‘(m!)2 (2m- I)(m+2)(m+ 1) ’ 

Here h = Ix - x, I/r and Vis the volume of the region inside 
the first-passage sphere that lies entirely in the fluid phase. 
Note that the first-passage sphere is centered at x, at the 
interface boundary instead of the location of the diffusion 
tracer x since the former lends itself to a more tractable solu- 
tion. If the interface boundary encompassed by the first-pas- 
sage sphere is nonsmooth as in the surface of the union of two 
or more overlapping obstacles [as illustrated in Fig. 1 (b) 1, it 
is more practical from a computational point of view to use a 
modified version of Eq. (20)) which is as follows:9 

The essence of the first-passage-time algorithm has been 
described in Sec. III. Here we need be more specific about 

(21) the conditions under which a Brownian particle is consid- 
ered to be in the small neighborhood of the interface bound- 
ary and hence when the first-passage quantity rr needs to be 
computed by Eq. (20) or (22). An imaginary thin concen- 
tric shell of thickness 6, R is drawn around each cluster con- 
sisting of PCS spheres of radius R. If a Brownian particle 
enters this thin shell, we employ the first-passage-time equa- 
tion (20) or (22). We then construct an imaginary first- 
passage sphere of radius r which is taken to be the distance to 
the next nearest neighboring obstacle or some prescribed 
smaller distance S, R with S, <r/R<& < 1. In employing 
Eq. (20) or (22)) the determination of the volume portion V 

r(r) =rZ!l!IZ. I 60 v 
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tracer particles) and subsequently average over a sufficient- 
ly large number of realizations to obtain D,. 

In particular, we shall generate equilibrium distribu- 
tions of spheres in the PCS model for fixed il and number 
density p by employing a conventional Metropolis algo- 
rithm.” N spherical obstacles having hard-core radius AR 
are initially placed at the lattice sites of body-centered cubi- 
cal array in a unit cell of size L 3. The unit cell is surrounded 
by the periodic images of itself. Each obstacle is then moved 
by a small distance to a new position which is accepted or 
rejected according to whether the inner hard cores overlap 
or not. This process is repeated until equilibrium is reached. 
In our simulation, N = 125 and each obstacle is moved 450 
times before sampling for the first equilibrium realization. 
Subsequent equilibrium realizations were sampled at inter- 
vals of 50 moves per obstacle, ensuring that equilibrium is 
achieved.’ 

In the application of Eq. (22), the first-passage sphere is 
centered at the location of the diffusion tracer x, unlike in 
Eq. (20). 

IV. SIMULATION DETAILS 

(22) 

Here we apply the first-passage time technique to com- 
pute the effective diffusion coefficient D, of a porous media 
composed of equilibrium distributions of hard spherical ob- 
stacles of radius R in which the diffusing particles are taken 
to have radius equal to R /4 and R /9. This is done by com- 
puting D, associated with point diffusing particles in porous 
media composed of spheres in the PCS model with R = 0.8 
or R = 0.9 and utilizing the results of Sec. II. For these spe- 
cial cases, relation ( 16) yields 

of the first-passage sphere exterior to the obstacle is essen- 
tial. However, for the case of nonsmooth interface boundary 
as shown in Fig. 1 (b), the exact analytical determination of 
V is generally impossible. The authors’ recently employed 
the so-called template method to determine this quantity nu- 
merically. One uniformly and randomly throws M, measur- 
ing points inside the first-passage sphere and counts the OC- 
casions M that the measuring points happen to be thrown 
exterior to the obstacle. V is then simply determined to be 
V = 477-?/3-M/M,. Of course, for the case of smooth inter- 
face boundary as shown in Fig. 1 (a), V is exactly computed 
analytically without any difficulty. 

D [qb, (7,1,0);1/4] = D [#2 (qO.8,0.25);0], (23) 
and 

After a sufficiently large total mean square displace- 
ment, Eq. ( 18) is then employed to yield the effective diffu- 
sion coefficient for each Brownian trajectory and each real- 
ization. Many different Brownian trajectories are considered 
per realization. The effective diffusion coefficient D, is final- 
ly determined by averaging the diffusion coefficients over all 
realizations. Finally, note that so-called Grid methodi was 
used to reduce the computation time needed to check if the 
tracer is near an obstacle. 

D [c15, (7,7,1,0);1/9] = D [#2 (7,7,0.8,1/9);0]. (24) 

In order to compute the effective diffusion coefficient 
D, from computer simulations, we must first generate real- 
izations of the particle distributions and then employ the 
first-passage-time technique, i.e., determine the effective dif- 
fusion coefficient for each realization (using many diffusion 

In our simulations, we have taken S, = 0.0001 and 
S, = 0.01. We considered 100 to 200 equilibrium realiza- 
tions and 100 random walks per realization, and have let the 
dimensionless total mean square displacement X ‘/R 2 vary 
from 2 to 10, depending on the value ofp. Our calculations 
were carried out on a VAX station 3 100 and on a CRAY Y- 
MP. 
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TABLE I. Comparison of the scaled effective diffusion coefficient De/D for 
point Brownian particles for different values of the impenetrability param- 
eter 1 in the PCS or cherry-pit model. The cases/z = 0.8 and R = 0.9 were 
computed in the present work. The limits R = 0 and /z = 1 correspond to 
fully penetrable and totally impenetrable spheres, respectively, and were 
computed earlier by us (Refs. 8 and 9). 

Particle volume Scaled effective diffusion coefficient, D,/D 

fraction, q$ A=0 A = 0.8 A = 0.9 ,x=1 

0.1 0.855 0.856 0.856 ..* 

0.2 0.714 0.718 . . . 0.124 
0.3 0.593 0.596 0.598 ... 

0.4 0.461 0.463 . . . 0.491 
0.5 0.346 0.359 0.368 1.. 

0.6 0.248 0.257 . . . 0.287 
0.1 0.160 0.167 0.178 .*. 

0.8 0.076 0.092 . . . . . . 

0.9 0.022 0.027 

V. RESULTS AND DISCUSSION 

Our simulation data are compared to the best available 
rigorous three-point upper bound due to Beran,” which, for 
the effective diffusion coefficient D, in the diffusion problem 
considered, is given by 

+, - 575ld2 

(3-A -252) ’ (25) 

Here c2 is a three-point parameter involving the multidi- 
mensional integral over a three-point correlation function 
that we discuss below. Note that the corresponding lower 
bound vanishes for diffusion past obstacles. 

The three-point parameter 5; for spheres in the PCS 
model was computed in the extreme limits A = 0” and 
A = 1,r9 but heretofore has not been computed for interme- 
diate values 0 <A < 1. Torquato6 has observed that the low- 

‘i 
I\ PCS, hw0.8 

1 

FIG. 3. Comparison of the simulation data for the scaled effective diffusion 
coefficient D/D for a point particle (with fl= 0) in porous media com- 
posed of spheres in the PCS or cherry-pit model with an impenetrability 
parameter A= 0.9 to the corresponding three-point upper bound (25). 

volume-fraction expansions of g2 provides very good esti- 
mates over the wide range of #2 even with only the linear 
term (i.e., c2 = constant .42 ) for a wide class of statistically 
isotropic suspensions of spheres. We will exploit this obser- 
vation and compute c2 through first order in d2 as a function 
of A for large A. Using the method of Torquato,” we find 
that c2 through first order in d2 for large A is given by 

f2 = c429 

where 
(26) 

c =$- lO(1 -A3) -9(1 -A4) ++(l -A6) 

+ 3a 
8(1-t 2/212 

-$ln(l +W). 

When A = 1, Eq. (26) recovers the exact relation2’ 
c2 = [5/12 - 3 ln(3/16) 34, -0.210 684,. 

Table I shows the simulation data for the scaled effective 
diffusion coefficient De/D for point particles in porous me- 
dia composed of spheres in the PCS model for A = 0.8 and 

TABLE II. The scaled effective diffusion coefficient DJD for Brownian 
particles of radius R /4 in porous media composed of hard spherical obsta- 
cles of radius R. 

Particle volume Scaled effective diffusion 
fraction, q$ coefficient, D,/D 

0.05 1 
0.102 
0.154 
0.205 
0.256 

$2 0.307 
0.358 

FIG. 2. Comparison of the simulation data for the scaled effective diffusion 
coefficient De/D for a point particle (with p = 0) in porous media com- 
posed of spheres in the PCS or cherry-pit model with an impenetrability 
parameter /z = 0.8 to the corresponding three-point upper bound (25). 

0.410 
0.461 
0.512 

0.856 
0.720 
0.600 
0.472 
0.375 
0.280 
0.203 
0.130 
0.083 
0.041 
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TABLE III. The scaled effective diffusion coefficient DJD for Brownian 
particles of radius R /9 in porous media composed of hard spherical obsta- 
cles of radius R. 

Particle volume Sealed effective diffusion 
fraction, & coefficient, D/D 

0.100 0.856 
0.299 0.598 
0.497 0.368 
0.689 0.178 

0.9. Table I also includes the previously obtained simulation 
data for totally impenetrable spheres’ (i.e., PCS spheres 
with R = 1) and the fully penetrable spheres’ (i.e., PCS 
spheres with il = 0) which were originally calculated in the 
context of the conductivity problem. For small sphere vol- 
ume fractions, De/D varies little with the interpenetrability 
parameter R, as would be expected, since overlap of the ob- 
stacles is negligible for 4, & 1. For fixed but large 42, De/D 
increases slightly with increasing il because there is less clus- 
tering of the obstacles as ,l is made large. 

Figures 2 and 3 depict the data for De/D in the PCS 
model for A = 0.8 and 0.9, respectively, along with the corre- 
sponding upper bound (25) which was computed using Eq. 
(26). It can be seen that all the simulation data lie below the 
upper bound. Furthermore, the upper bound itself is shown 
to yield a good estimate to De/D over the whole range of 
volume fractions. This is consistent with the arguments of 
Torquato,” who observed that the upper bound should 
yield a good estimate of De/D provided that the pore phase 
is connected, as is the case for the volume fractions consid- 
ered above for the PCS model. 

Using the isomorphism described in Sec. II in conjunc- 
tion with Eqs. (23) and (24), we can map our PCS results of 
De/D for point-diffusing particles into equivalent results for 
diffusion of finite-sized Brownian particles in porous media 
composed of hard (totally impenetrable) spherical obsta- 
cles. Tables II and III give our simulation data for finite- 
sized Brownian particles of radius R /4 and R /9, respective- 
ly. Figure 4 compares the scaled effective diffusion 
coefficient D,/D for three different sized Brownian particles 
(p = 0, i/9 and l/4) in porous media composed of hard 
spheres of radius R. It is seen that diffusion is considerably 
hindered due to exclusion-volume effects. For example, at 
4, = 0.5, the scaled diffusion coefficient decreases by about 
a factor of 10 when fl goes from zero to l/4. Thus hindered 
diffusion becomes more pronounced at low porosities (i.e., 
high volume fraction of the obstacles), as would be expected. 

We can obtain a simple scaling relation that enables one 
to calculate the effective diffusion coefficient D, [ 42 (R ) ;fi ] 
for finite pgiven the result of D, [ 42 (R);O] for p = 0 in the 
case of hard spherical obstacles of radius R. First, we observe 
that D, for finite p at the volume fraction 4*/( 1 + fl) 3 is 
approximately equal to D, for p = 0 at the volume fraction 
4z in the equivalent PCS system. Second, note from Table I 
that D, for point Brownian particles in the PCS system is 
relatively insensitive to the impenetrability parameter. Thus, 
we find that for the hard-sphere porous medium, the relation 
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FIG. 4. The scaled effective diffusion coefficient 0,/D for porous media 
composed of totally impenetrable (hard) spheres of radius R for three dif- 
ferent sized Brownian particles: /3 = 0, fl= l/9, and B = l/4. Here /3R is 
the radius of the Brownian particles. The cases p = l/9 and fi = l/4 were 
computed in the present work. The instance@ = 0 was evaluated in Ref. 8. 

De[4,/U +B3;s] =D,[4,;0] (28) 
enables one to accurately estimate the effective diffusion co- 
efficient D, [p ] given the result D, [ 01. The results summar- 
ized in Fig. 4 validate relation (28). 
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