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Diffusion and reaction in heterogeneous media plays an important role in a variety of processes 
arising in the physical and biological sciences. The determination of the relaxation times 
T, (n = 1,2,...) and the mean survival time r is considered for diffusion and reaction among 

partially absorbing traps with dimensionless surface rate constant ii. The limits i? = CO and 
R = 0 correspond to the diffusion-controlled case (i.e., perfect absorbers) and reaction- 
controlled case (i.e., perfect reflectors), respectively. Rigorous lower bounds on the principal 
(or largest) relaxation time 7’, and mean survival time 7 for arbitrary 7i are derived in terms of 
the pore size distribution P(S). Here P(S)& is the probability that a randomly chosen point in 
the pore region lies at a distance S and S + dS from the nearest point on the pore-trap 
interface. The aforementioned moments and hence the bounds on T, and r are evaluated for 
distributions of interpenetrable spherical traps. The length scales (6) and (S’)“‘, under 
certain conditions, can yield useful information about the times TI and 7, underscoring the 
importance of experimentally measuring or theoretically determining the pore size distribution 
P( 8). Moreover, rigorous relations between the relaxation times T,, and the mean survival 
time are proved. One states that r is a certain weighted sum over the T,, , while another bounds 
r from above and below in terms of the principal relaxation time T, . Consequences of these 
relationships are examined for diffusion interior and exterior to distributions of spheres. 
Finally, we note the connection between the times TI and T and the fluid permeability for flow 
through porous media, in light of a previously proved theorem, and nuclear magnetic 
resonance (NMR) relaxation in fluid-saturated porous media. 

I. INTRODUCTION 
Transport problems involving simultaneous diffusion 

and reaction in heterogeneous media abound in physical and 
biological sciences (see, e.g., the review article of Weiss’ and 
references therein). Examples are found in such widely dif- 
ferent processes as heterogeneous catalysis, cell metabolism, 
diffusion of molecules in DNA, migration of atoms and de- 
fects in solids, colloid or crystal growth, and the decay of 
nuclear magnetism in fluid-saturated porous media. 

We consider the problem of diffusion and reaction 
among partially absorbing “traps” in which the concentra- 
tion field of the reactants c( r,t) at position r exterior to the 
traps and time t is generally governed by the equation 

space. Note that for infinite surface reaction (K = CO 1, the 
process is diffusion controlled and the Dirichlet boundary 
condition applies, i.e., the traps are perfect absorbers. In the 
opposite extreme of vanishing surface reaction (K = 0), the 
Neumann boundary condition holds, i.e., the traps are per- 
fect reflectors. Without loss of generality, we set the bulk 
rate constant equal to zero since the solution of Eq. ( 1.1) 
with K~ #O is simply related to the one with K~ = 0 (see Sec. 

II). 
In this paper, we shall study Eq. ( 1.1) with condition 

( 1.2) for two different cases: 
(i) the time-dependent solution with K~ = G = 0; 
(ii) and the steady-state solution with ~~ = 0. 

%DAc-K c+G 
at 

B 9 (1.1) 

with the boundary condition at the fluid-trap (or pore-sol- 
id) interface given by 

D a’ 
an+Kc=o 

(1.2) 

and initial conditions. Here D is the diffusion coefficient of 
the reactant, ~~ is a bulk rate constant, K is a surface rate 
constant, G  is a generation rate per unit volume trap-free 
volume, and n is the unit outward normal from the pore 

The quantities of central interest are the relaxation times T,, , 
n = 1,2,... (or eigenvalues) of problem (i) and the mean 
survival time r of a Brownian particle of problem (ii). The 
times T, and Q- are linked intimately to characteristic length 
scales of the pore region. Whereas the principal relaxation 
time T, is governed by diffusion occurring in the largest 
cavities (pores) in the system, the mean survival time 7 is 
determined by the “average pore size.” The key fundamental 
question is “what precisely is the relationship between the 
pore statistics and these time scales?” It should be mentioned 
that there is recent interest in both T, and r in connection 
with the nuclear magnetic resonance (NMR) response of 
fluid-saturated porous media,2V3 where c(r,t) in this prob- 
lem represents the nuclear magnetization. 
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( 1) The derivation of rigorous lower bounds on both r, 
and r in terms of lower-order moments (6) and (a*) of the 
“pore size distribution” P(S) for surface rate constants K in 
the range 0 <K< 00. Here P(s)& is the probability that a 
randomly chosen point in the pore region lies at a distance 6 
and 6 + da from the nearest point on the pore-solid inter- 
face. 

(2) The calculation of the moments of (8) and (6’) for 
distributions of interpenetrable spherical traps and hence 
the evaluation of the aforementioned bounds on T, and r for 
such microgeometries. Under certain conditions, the length 
scales (6) and (S*) “* can yield useful information about the 
times T, and r, thus underscoring the importance of experi- 
mentally measuring or theoretically determining the pore 
size distribution P( 6). 

(3) Establishment of the rigorous relations between the 
relaxation times T,, and mean survival time r. One relation 
states that r is simply a weighted sum over T,, , while another 
relation bounds r from above and below in terms of the prin- 
cipal relaxation time T, . 

(4) Application of the results of Eq. (3) for diffusion 
interior and exterior to distributions of spheres. 

(5) In light of a recent theorem,4 we note the connec- 
tion between the times T, and r and the fluid permeability 
for flow through the same porous medium and NMR relaxa- 
tion in fluid-saturated porous media. 

II. PORE SIZE DISTRIBUTION, LENGTH SCALES, AND 
TIME SCALES 
A. Definition of fundamental quantities 

The random porous medium is a domain of space 
Y( o)ER3 (where the realization w is taken from some prob- 
ability space s1) of volume V which is composed of two re- 
gions: the void (pore) region Y, (w) through which fluid is 
transported of volume fraction (porosity) 4, and a solid- 
phase region YZ (w) of volume fraction e5*. Let Vi be the 
volume of region Yi, V = Vi + V, be the total system vol- 
ume, aY(w) be the surface between Y, and Z;-, , and S be 
the total surface area of the interface dY. The characteristic 
function of the pore region is defined by 

I(r,w) = 
i 

1, rETI (~1 
0, r@-,(@) - 

The pore size distribution’ P(S) is defined in such a way 
that P(S)& is the probability that a randomly chosen point 
in the pore region V, (w) lies at a distance between S and 
S + da from the nearest point on the pore-solid interface 
JY. P(S) normalizes to unity, i.e., 

s 
co P(S)dS = 1. (2.5) 

0 

At the extreme values of pore size, we have 

P(0) = f and P( CO ) = 0, 
I 

(2.6) 

where a/+6, is the inter-facial area per unit pore volume V, . It 
is useful to define the cumulative distribution function as 

F(S) = 
s 

= P(r)dr. (2.7) 
6 

F( 6) is the fraction of pore space which has a pore diameter 
larger than 6. Clearly, 

P(O)=1 and F(W) =O. (2.8) 
The moments of P( 6) defined as 

(6”) = l- G”P(S)d6 (2.9) 

are of central interest in this study. Integrating Eq. (2.9) by 
parts and using Eq. (2.7) gives the alternative representa- 
tion of the moments in terms of the cumulative pore size 
distribution 

(8”) = n l- Sn-‘F(S)d& (2.10) 

One of the transport problems examined in the ensuing 
section is that of diffusion among traps in which we are inter- 
ested in computing the mean survival time and relaxation 
time. Letting D be the diffusion coefficient of the fluid, we 
define for such processes two time scales as follows: 

t,A%, 
D 

t, =(sz). 
D 

(2.11) 

(2.1) 

The characteristic function of the pore-solid interface is de- 
fined by 

M(r,o) = IVI(r,o)l. (2.2) 

It is shown in Sec. III that ts is a measure of the mean surviv- 
al time of a Brownian particle among traps with arbitrary 
surface reaction. Similarly, t, is a measure of the relaxation 
time associated with the smallest eigenvalue (i.e., the domi- 
nant relaxation time) for unsteady diffusion amongperfectly 
absorbing traps (i.e., traps with infinite surface reaction). 
For traps with arbitrary surface reaction, the dominant re- 
laxation time depends on both t, and t, . 

For statistically homogeneous media, the ensemble averages 
(indicated with angular brackets) of Eqs. (2. I ) and (2.2) 
yield 

& = (I) = lim $, (2.3) v,.v-co 

B. Calculations of the pore size distribution and 
moments for transport exterior to random beds of 
Identical spheres 

S a=(M)= lim -, s,v-co V 
(2.4) 

which are the porosity and specific surface (interface area 
per unit system volume v), respectively. 

For porous media of general morphology, the theoreti- 
cal determination of the pore size distribution is quite com- 
plex. Indeed, the calculation of P( S) for the simple model of 
flow around a random bed of mutually impenetrable identi- 
cal spheres is nontrivial6 Here we shall apply the recent 
theoretical results of Torquato, Lu, and Rubinstein6*’ for the 
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so-called “nearest-neighbor” distribution functions to ob- 
tain P( 6) for random distributions of identical interpenetra- 
ble spheres of radius a which comprise phase 2 or the solid 
phase. Using this information, we then compute the first and 
second moments (S) and (6*) for such systems as a function 
of the solid volume fraction &. 

The quantities P(S) and F(S) are actually trivially re- 
lated to the “void” nearest-neighbor distribution function 
H, (r) and void exclusion probability E, (r), respectively, 
studied by Torquato et al. for systems of spherical inclu- 
sions. H, and E, are related by 

(2.13) 

E, (r) is the probability of finding a spherical region of radi- 
us r (centered at some arbitrary point) empty of centers of 
the inclusions of radius u. This is equivalent to the probabili- 
ty of inserting a “test” particle of radius b = r - a (at some 
arbitrary position) in the system of spheres of radius a. 
H, (r)dr is the probability that the center of the nearest in- 
clusion of radius a is at a distance between r and r + dr from 
the center of the test particle of radius b = r - a. Note that 

H,(u) =(T, E”(u) =41, H,(w) =E,(do) =O. 
(2.14) 

Recognizing that b corresponds to Sin the present paper and 
employing the aforementioned definitions for the statistical 
quantities, we have 

H,(S+a) 
P(S) = . , 

E,(S+a) 
F(S) = I . 

(2.15) 

(2.16) 

The moments defined by Eq. (2.9) for this model are also 
given by 

(8’) =fP (r-u)“H,(r)dr, (2.17) 
I a 

or 

(6”) = $J= (r-a)“-‘E,(r)dr. (2.18) 
I 0 

Torquato et al. derived exact integral representations of 
H, (r) and E, (r) for identical spheres that interact with an 
arbitrary potential in terms of n-body distribution functions. 
However, because the higher-order n-body distribution 
functions are not known for arbitrary potential, an exact 
evaluation of H, and E, is generally not possible. For the 
case of mutually totally impenetrable spheres at number 
density p, these authors obtained the following approxima- 
tions for H, and E, that were in excellent agreement with 
computer simulations:’ 

Eu(x) = (1 - ?;l)exp[ - v(8ex3 + 12fx” + 24gx + h)], 

x>j (2.19) 

H,(x) = 5 (a* +fx +g)E,(x), x>$ (2.20) 

where 

e= Cl+71 

(1 -vj3 ’ 

f = _ r1(3 + 7) 
2( 1 - 7#‘)3 ’ 

g= q2 
2( 1 - v)3 ’ 

(2.21) 

(2.22) 

(2.23) 

h= 
- 9772 + 77j- 2 

2(1--17)3 ’ 

x=L. 
2u 

Here 

(2.24) 

(2.25) 

Il=p+u” (2.26) 

is a reduced density that for impenetrable spheres is identical 
to the sphere volume fraction 4*. For interpenetrable 
spheres, 7 # &. 

The concept of a random bed of spheres becomes very 
general if the spheres are allowed to overlap or interpenetrate 
one another to some degree. A useful interpenetrable-sphere 
model is the so-called penetrable-concentric-shell (PCS) or 
cherry-pit model9 in which each sphere of radius a is com- 
posed of a hard core of diameter Ru, encompassed by a per- 
fectly penetrable concentric shell of thickness ( 1 - Au), 
O=+l.< 1. The extreme limits of the impenetrubifitypurumeter 
A, ;1= 0 and R = 1, correspond to the cases offullypenetru- 
ble (i.e., spatially uncorrelated or Poisson distributed 
centers) and totally impenetrable spheres, respectively. The 
cherry-pit model enables one to vary the “connectedness” of 
the particle phase by varying ;1; e.g., for/z = 0 and /z = 1, the 
particle phase percolation thresholds, respectively, corre- 
spond to & -0.3 (Ref. 10) and 4; -0.64 (Ref. 11). As ob- 
served by Torquato et al., the quantities H,(x) and E, (x) 
for arbitrary ;1 can be obtained from the corresponding 
quantities for/z = 1 [i.e., Eqs. (2.19) and (2.20) ] by simply 
replacing a (on the right-hand side of the relations) with ilu. 
For example, carrying out this substitution and taking the 
limit A+ 0, give the appropriate simple results for fully pene- 
trable spheres 

E,(x) = exp( - 877x3), x>O, (2.27) 

H,(x) = * exp( - 877x’), x>O. (2.28) 
U 

Note from Eq. (2.14) and the relations above, we have the 
well-known results 

E,(1/2) =6r = 1 -d2 =exp( -T), 
H,(1/2) =u= $W4. 

(2.29) 

(2.30) 

In Fig. 1, we plot the dimensionless pore size distribu- 
tion P(S) in the PCS model for ;1= 0, 0.8, and 1, and an 
inclusion volume fraction #2 = 0.5 using relations (2.15) 
and (2.20) for spheres of unit diameter (i.e., 2u = 1) , Figure 
2 shows corresponding plots for the cumlative pore size dis- 
tribution F(S) . 

Relations (2.17)-( 2.20) enable us to compute the mo- 
ments (fin) for spheres in the cherry-pit model at various 
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TABLE I. Lower-order moments for diffusion exterior to idential spheri- 
cal traps in the penetrable concentric shell or “cherry-pit” model (Ref. 9). 
Here the impenetrability parameter R = 0 (i.e., fully penetrable spheres). 

$2 (6) (62) (8 - 
a a2 W 

0.1 1.018 1.395 1.346 
0.2 0.6558 0.6098 1.418 
0.3 0.4857 0.3472 1.472 
0.4 0.3803 0.2196 1.518 
0.5 0.3058 0.1458 1.559 
0.6 0.2484 0.0987 1.600 
0.7 0.2011 0.0663 1.639 
0.8 0.1594 0.0427 1.681 
0.9 0.1183 0.0242 1.729 

0.4 

6/2a 
0.6 0.8 

the variance decrease at fixed volume fraction q5* as expect- 
ed. 

FIG. 1. The pore size distribution P(6) vs the dimensionless distance 6/2a 
for distributions of spheres of radius a in the penetrable-concentric-shell or 
cherry-pit model (Ref. 9) for three different values of the impenetrability 
parameter R (A = 0,0.8, and 1). The pore region is the space exterior to the 
spheres. Here the porosity 4, is equal to the trap volume function 4, = 0.5. 

sphere volume fractions eS2. Tables I-III give the first two 
moments as functions of 42 for ;1 = 0,0.8, and 1, respective- 
ly. The last column in each of the tables gives the respective 
ratio (6*)/(a)* = tR/tS which is simply related to the di- 
mensionless variance 

(S2) - w* _ (S2) 1. 

w* w* 

C. Pore size distribution and moments for transport 
interior to disconnected spherical pores 

For the simple microgeometry consisting of nonover- 
lapping (i.e., disconnected) spherical pores of radius a, the 
pore size distribution is given by 

I 3(a-@* , *<u 
P(S) = u3 (2.31) 

10, S>U 
This expression combined with Eq. (2.9) yields the mo- 
ments as 

(6”) = 6~” 
(n+l)(n+2)(n+3) ’ 

(2.32) 

As exclusion-volume effects increase (i.e., as the degree of 
impenetrability il increases), the moments (6) and (S*) and 

Ill. BASIC EQUATIONS AND BOUNDS FOR THE 
RELAXATION AND SURVIVAL TIMES 
A. Basic equations 
7. Relaxation problem 

The relaxation times associated with the decay of phys- 
ical quantities such as concentration field and nuclear mag- 
netization are related intimately to the characteristic length 
scales of the pore region. Let c(r,t) generally denote the 
physical quantity of interest at local position r and time t. It 

TABLE II. The same as in Table I except for/z = 0.8. 

0.4 

6/2a 
0.6 0.8 

FIG. 2. The same as in Fig. 1, except for the cumulative distribution func- 
tion F(6). 

0.1 0.9661 1.255 1.343 
0.2 0.5957 0.501 6 1.414 
0.3 0.4200 0.258 5 1.465 
0.4 0.3136 0.148 2 1.507 
0.5 0.2390 0.088 3 1.546 
0.6 0.1830 0.052 3 1.559 
0.7 0.1383 0.03 1 0 1.621 
0.8 0.1011 0.017 0 1.663 
0.9 0.0670 0.007 72 1.720 
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TABLE III. The same as in Table I except for R = 1 (i.e., totally impen- 
etrable spheres). 

(B) 
a2 

(s2) 
w 

0.1 0.9228 1.139 1.338 
0.2 0.5407 0.4084 1.397 
0.3 0.3624 0.1887 1.436 
0.4 0.2543 0.0948 1.466 
0.5 0.1803 0.0484 1.489 
0.6 0.1259 0.0239 1.508 

obeys the following time-dependent diffusion equation in the 
JXte, but large pore region: 

e= Dhc in Y 19 (3.1) 
at 

c(r,O) = co in Y,, (3.2) 

DK+tcc=O on 8V 
27% 

, (3.3) 

where K is the surface rate constant (having dimensions of 
length/time), A is the Laplacian operator, and n is the unit 
outward normal from the pore region. Note that we could 
have included a bulk reaction term K~C on the left-hand side 
of Eq. (3.1)) but since the solution c( r,t) of such a situation 
multiplied by exp(K, t) gives the corresponding solution 
with K~ = 0, we do not include bulk reaction. 

The solution of Eqs. (3.1)-( 3.3) can be given as an ex- 
pansion in orthonormal eigenfunctions {$, ): 

7i) 1 (diffusion controlled), 
Fg 1 (reaction controlled), (3.13) 

where I is a characteristic pore length scale which may be 
taken to (8) or (S ’ 1’2. In the diffusion-controlled regime, ) 
the diil’using species takes a long time to diffuse to the pore- 
solid interface relative to the characteristic time associated 
with the surface reaction, i.e., the process is governed by 
diffusion. In the reaction-controlled regime, the characteris- 
tic time associated with surface reaction is large compared 
with the diffusion time to the pore-solid interface. 

2. Survival problem 

A different but related diffusion problem is the one asso- 
ciated with steady-state diffusion of reactants among static 
traps with a prescribed rate of production of the reactants 
per unit pore volume G(x) ._The trapping constant y arising 
in the relation G(x) = yDC(x) for statistically homoge- 
neous media has been expressed by Rubinstein and Tor- 
quato” (using the method of homogenization) in terms of a 

dr,t) _ 
co 

g a,e-f’T”$” (I-), 
n=l 

where 
A$,, = -A,$,, in P”,, (3.5) 

-+K,?),=o On w, 
an 

T,, =L. 
D4 

(3.4) 
certain scaled concentration field [where c(x) is a mean 
concentration field]. The trapping constant is given by 

y= (u> -‘, (3.14) 
where u solves 

Au= -1 in W,, (3.15) 
u=O 0n dY. (3.16) 

(3.7) As before, angular brackets denote an ensemble average. Er- 
godicity enables us to equate ensemble and volume averages 
so that 
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Ultimately, we will pass to the limit VI --) CO, V- CO. 
At long times, the smallest eigenvalueil, dominates and 

therefore the principal relaxation time T, shall be of central 
interest. The precise dependence of T, on the pore geometry 
is generally very complex. It is useful to introduce the dimen- 
sionless surface rate constant 

KI 
z=- 

D 
(3.12) 

and distinguish between two extreme regimes 

T,, are the relaxation times. The initial condition and 
Eq. (3.4) yield (u) = F2m tf u(r)dr. 

Y’, 
(3.17) 

The eigenfunctions 9, are orthonormal such that 1 v, T’, s vh @)A (r)dr = S,,, 
so that 

1 
a, =- 

s v, 7’, 
1c,, (r)dr, 

The trapping constant is trivially related to the average sur- 
vival time 7 of a Brownian particle by the relation4 

1 ,J-=- 
Y4lD 

(3.18) 

and therefore use of Eq. (3.16) yields 

.d!!l. (3.19) 
(3.10) 410 

Upon examination of derivation of Eq. (3.16) [or, equiv- 
alently, Eq. (3.19) ] in Ref. 12, it is seen that expression 
(3.19) still holds for the more general boundary condition 
(3.3) at the pore-solid interface, i.e., u in Eq. (3.19) also 
solves 

Au = - 1, in Y,, (3.20) 

J. Chem. Phys., Vol. 95, No. 9,1 November 1991 

where V, = c$, V is the total pore volume. Because the set of 
eigenfunctions is complete, we also have 

2 az=l. 
It=1 

(3.11) 
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D&+Ku=~, on d.Y. 
an 

(3.21) 

Of course in the case of Eq, (3.20), the mean survival time r 
depends not only on D, but on K. 

In the case of the diffusion-controlled limit (7i = 00 ), 
variational principles have recently been derived to bound r 
from below and above. l2 Moreover, accurate computer sim- 
ulations of T in this limit for distributions of identical inter- 
penetrable spheres,” interpenetrable spheres with a polydis- 
pensivity in size,14 and interpenetrable oriented spheroids15 
have been obtained using efficient random-walk techniques. 
B. Bounds on the relaxation and survival times in terms 
of moments of the pore size distribution p(6) 

For diffusion-controlled processes (K = CO ), Prageri6 
obtained in the early 1960s simple lower bounds on the mean 
survival time r and the relaxation time T, in terms of the 
characteristic time scales ts and t, , respectively, defined in 
Sec. II. Here we generalize these results for situations in 
which the surface reaction rate K is finite by employing the 
appropriate variational principles. 
1. Lower bound on principal relaxation time 

The first eigenvalue /2, = (T,D)-’ [cf. (3.5)] is 
bounded from above by the relation 

(T,D) -’ 

< 
(1/~3S7~,V~**V~*dr + (K/DV)J~~~(J~*)*~S 

(l/v)Sz-, ($*)*dr 
, 

(3.22) 
I 

where 

where @* is a trial eigenfunction and dS indicates a surface 
integration over the pore-solid interface. This variational 
bound is derived in Appendix B. Now consider a trial eigen- 
function of the form 

g*(r) = G(6), (3.23) 

where S(r), as in Sec. II, is the minimum distance to the 
pore-solid interface and G(6) is some nonstochastic func- 
tion of 6. We emphasize, however, that 6 is a random func- 
tion of r since it varies from point to point in a stochastic 
fashion. Substitution of Eq. (3.23) into Eq. (3.22) yields, in 
the infinite-volume limit, 

(T D> _ ,< S;W/d6)2W)d6 + (~u/Dqb, >G'(O) 
I 

I;G2(S)P(S)dc5 
(3.24) 

To begin with, we choose 
G(S) = a*S + b *, (3.25) 

where a* and b * are constants to be optimized. Observe that 
6 vanishes at the interface and therefore the constant b * is 
the only contribution at the interface. Without loss of gener- 
ality, a* is set equal to unity. Substitution of Eq. (3.25) and 
optimizing b * gives a lower bound on T, = l/DA, : 

T ) (S2) + WW, + b: 
’ D[l+(m/Dq$)b:,] ’ 

b = [1-(~~@+)(~*)] +~[1-(Ka/D~,)(62)]2+(4~a/D~,)(S)2 
* 

%dDq$ ) (6) 

Here u is the specific surface and a/#, is the interfacialsur- 
face area per unit pore uolume. Note that the bound (3.26) 
depends on the first and second moments of P( S) . For fast 
diffusion, bound (3.26) has the asymptotic form 

T, > +I 1 2(2(@2 - (6’)) 
D 

G<ll). 
K(T 

(3.28) 

In the slow diffusion regime, Eq. (3.26) yields the asympto- 
tic expression 

(3.29) 

Note that in the limit ii+ CO, relation (3.29) recovers the 
diffusion-controlled limit result of Prager16 which is just the 
characteristic time t, given by Eq. (2.12). Not surprisingly, 
finite surface reaction leads to larger relaxation times rela- 
tive to the diffusion-controlled limit. 

For transport interior to nonoverlapping spherical 
pores of radius a, the moments are known exactly from Eq. 
(2.32) and therefore Eqs. (3.28) and (3.29) yield, respec- 
tively, 

(3.26) 

(3.27) 

I 
T,>;+ 

T, a- & +gK (al). 

(3.30) 

(3.31) 

Comparison of the relation above to the exact asympto- 
tic expansions given in Appendix A reveals that the bounds 
(3.30) and (3.3 1) are extremely sharp. Indeed, in the infi- 
nitely weak surface reaction case, the first term of Eq. (3.30) 
is exact. This is expected since the mean-square displace- 
ment of a Brownian particle (because it is confined to be in a 
pore region characterized by a single size) is well described 
by the lower-order moments of P( S). The bounds of course 
will not be as sharp for connected pore regions, especially 
when there is a wide pore size distribution. Specific calcula- 
tions for transport exterior to distributions of spheres are 
given below. 

We could have chosen a more complex form for G(S). 
For example, let us choose 

G(6) = a*@’ + b *. (3.32) 
Then Eq. (3.24) yields in the diffusion-controlled limit 
(with b * = 0) 
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T > n2(a2n - “> 
1 D (62”) 

(E = co ). (3.33) 

For the class of microgcometries examined in this study, Eq. 
(3.33) is optimum for n = 1 for integer n. We include it here 
since there may be microstructures for which n = 1 is not 
optimal. Moreover, we could have left G(6) arbitrary and 
obtained the optimum G(S) from the resulting Euler-La- 
grange equation as was done by Prager for the case ii = CO. 
This procedure is avoided here because the choice (3.25) 
leads to simple expressions for T1 and Prager found, by us- 
ing it, very little improvement over the simple trial field 6 in 
the diffusion-controlled limit. 

2. Lower bound on survival time 
Rubinstein and Torquato12 derived a variational lower 

bound on the mean survival time r in the diffusion-con- 
trolled limit. We now generalize these lower bounds to treat 
finite surface reaction. The following variational upper 
bound on the inverse mean survival time T- ’ exists 

3. Calculations of bounds on T and T, for transport 
exterior to spheres 

This bound is proved in Appendix B. Here the average of 
trial concentration field v is equal to the actual concentration 
field u that solves Eqs. (3.20) and (3.21), i.e., 

The advantages of bounds such as Eqs. (3.26) and 
(3.39) are their simplicity and the fact that they can be ap- 
plied to arbitrary isotropic microgeometries. For the special 
case of diffusion exterior to spherical traps in the PCS or 
cherry-pit model for R = 0, 0.8, and 1, Tables I-III [and 

v2dS. relations (3.26) and (3.39) ] provide lower bounds on 7 and 

(3.34) T, for this model. In Fig. 3, we compare the lower bound 
( 3.39) on the dimensionless survival time rD /a* (where a is 
a sphere radius) in the diffusion-controlled case 
(ii = KU/D = 00 ) to the simulation data of Lee er a1.13 for 
the cherry-pit model’ in the extreme limits of the impenetra- 
bility parameter R. Comparison to simulation results for r 
shows that the lower bounds on r become relatively sharper 
as the trap volume fraction #2 increases. The reason for this 

(3.36) is that the square of the moment (S) provides an increasing- 
ly better estimate of the actual mean-square displacement of 

(4 = b). (3.35) 
Consider a trial field of the form 

v= (u)J(& 
41 SZJ(W(W~ * 

S. Torquato and M. Avellaneda: Diffusion and reaction 6483 

Comparison of this result to the exact result of Appendix A 
shows that the bound is remarkably sharp for reasons al- 
ready mentioned. 

Before presenting calculations of the bounds on r and 
T1 for diffusion exterior to spheres, it is useful to make an 
interesting and general remark. The variational bound on T1 
[relation (3.24) ] is strikingly similar to the variational 
bound on r [relation (3.37) 1, the major difference being the 
denominator. Now if we let G(S) = J(S), these bounds sug- 
gest that 7 may be generally bounded from above by T1. 
[This is most easily seen by comparing Eqs. (3.29) and 
(3.39) in the diffusion-controlled limit.] This physically in- 
teresting result is proved in the next subsection. 

Insertion of Eq. (3.36) into Eq. (3.34) and passing to the 
infinite-volume limit yields 

(70) - ‘< 
s;(dJ/dS)2P(S)dS + (KO/@, )J’(O) 

[ s;J(W(&d~] 2 ’ 

(3.37) 
Let the deterministic function J be given by 

K=CXJ I 1 A=0 
J(S) = c*S + d *, (3.38) 

where c* and d * are constants to be optimized. Substitution 
of Eq. (3.38) into Eq. (3.37) yields the optimized lower 
bound on r: 

It is noteworthy that Eq. (3.39) is considerably simpler than 
bound (3.26) for the relaxation time (3.26). For i?-, 03, Eq. 
(3.39) reduces to the diffusion-controlled-limit bound ob- 
tained by Prager16 which is just the characteristic time ts 
given by Eq. (2.11). Again, finite K yields a survival time 
which is larger than the one for the diffusion-controlled lim- 

a 
0 0.2 0.4 0.6 0.8 1 

$2 
it. 

For transport inside spherical pores of radius a, Eqs. 
(2.32) and (3.39) give 

FIG. 3. Comparison ofthe lower bound (3.39) on the dimensionless surviv- 
al time rD/a’ in the diffusion-controlled limit (ii = CO ) vs trap volume 
fraction e$ (dotted lines) to the simulation data (solid lines) of Lee et al. 
(Ref. 13) for spherical traps of radius Q in the cherry-pit model (Ref. 9) in 

(3.40) the extreme limits of the impenetrability parameter 1, i.e., A = 0 and A = 1. 
Here ii = Ka/D. 
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1.5 
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1 
A=O.B 

continuous spectrum in the infinite-volume limit. The corre- 
sponding density of states near A, = 0 is known as the “Lif- 
shitz spectrum” in the theory of disordered systems.” The 
associated average survival probability behaves like 
exp[ - constant t 3’5] in three dimensions as t+ ~0.~~9~~ Al- 
though such large pore fluctuations are exceedingly rare, 
they exist with nonzero probability for this Poisson system 
and this is reflected in the fact that the pore size distribution 
P(S) has infinite support. However, such fluctuations do not 
exist in most real porous and heterogeneous media since the 
range of pore sizes is bounded, i.e., P(S) typically possesses 
finite support. Indeed, in a Monte Carlo simulation of T, for 
a Poisson system of spheres, large fluctuations are eliminat- 
ed since one considers a constant number of particles in a 
cubical box (with periodic boundary conditions), each real- 
ization consistent with a value of the volume fraction $2. 
Supposing that P(S) is supported in the interval (O,S, ), i.e., 
every point in the pore space lies at most a distance S, away 
from the interface, it can be shown by a probabilistic renewal 
argument” that the average survival probability decays ex- 
ponentially with time. One concludes from this, using di- 
mensional considerations, that 

0 0.2 0.4 0.6 0.8 1 

FIG. 4. Lower bound (3.26) on the dimensionless relaxation time T, D/a* 
vs the trap volume fraction 4, in the cherry-pit model (Ref. 9) for impen- 
etrability parameter 1 = 0, 0.8, and 1 with R = fra/D = m. 

a Brownian particle as +2 is made larger or as the porosity 
+1 = 1 - d2 is made smaller. For example, for ;I = 1 (total- 
ly impenetrable traps), the actual result is about two times as 
large as the bound (3.33) for & = 0.1 and 1.48 times as 
large as the bound for 42 = 0.6. Real porous media are char- 
acterized by small porosities 4, or large solid phase volume 
fractions g2, the regime in which the bounds are relatively 
sharp. 

In Fig. 4, we plot the lower bound (3.26) on the dimen- 
sionless relaxation time T, D /a2 vs the trap volume fraction 
42 in the cherry-pit model for /z = 0, 0.8, and 1 with 
Z = KU/D = a. As in the survival problem, the relaxation 
time T, increases with decreasing impenetrability for the 
fixed volume fraction. 

An important question is the following: in light of the 
fact that we have no simulation results for T, , how sharp are 
the bounds we obtain for T, in the cherry-pit model? To 
begin with, let us consider this query for the fully penetrable- 
sphere case, i.e., Poisson distributed sphere centers with re- 
duced density 7. The principal eigenvalue il, of the Lapla- 
cian operator for such a system of spheres of radius a in a 
cubical box of length L satisfies 

a 2 
A,a - 

0 L 
for L&l, 

or equivalently, 

for L$l. 

The reason for such behavior is that T, is determined by the 
large fluctuations of the ensemble of configurations, corre- 
sponding to the existence of very large pores. This diver- 
gence of T, is in fact accompanied by the appearance of a 

(3.41) 

where c is a constant dependent on the porosity and micro- 
geometry. Unfortunately, the exact value of this constant is 
difficult to determine. For practical purposes, P(S) for the 
Poisson system has finite support. For example, from Fig. 1 
for 4, = #2 = 0.5, S/2a -0.7 for R = 0 (“Poisson” distribu- 
tion) and application of Eq. (3.41) with bounded c and 
So = 1.4a suggests that the lower bound (S2)/D on T, in 
Fig. 4 provides a coarse estimate of T, . Similar arguments 
apply to the cherry-pit model in general even though pore 
size fluctuations will be smaller for a nonzero impenetrabil- 
ity parameter. 

In summary, the lower bound (3.26) on T, will yield a 
reasonable estimate of the relaxation time provided that the 
pore size range is finite. On the other hand, for systems pos- 
sessing very wide fluctuations in pore size, the bound will not 
be sharp and one could argue that the consideration of a 
single relaxation time, based on the smallest eigenvalue, is no 
longer appropriate. However, the bound (3.39) on the mean 
survival time r is a more robust estimator of 7 since it is 
related to the entire spectrum of eigenvalues [see Eq. (4.1) 
below 1. 

Figure 5 shows the lower bound (3.39) on the dimen- 
sionless survival time rD /a2 vs 4, for totally impenetrable 
traps (/z = 1) for several values of the dimensionless surface 
rate constant Z ( co, 0.5,O. 1). Notice that the lower bound on 
r increases with decreasing surface reaction. Clearly, the dif- 
fusing particles survive longer when the surface reaction is 
finite relative to the case il = CO (i.e., diffusion-controlled 
limit) since particles are not always absorbed when they 
strike the surface. The behavior of the bound on T, for finite 
ii is qualitatively similar and hence is not shown graphically. 

It is noteworthy that if the case of fully penetrable traps 
(/z = 0) is considered to be a reference system, then the fol- 
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6 

FIG. 5. Lower bound (3.39) on the dimensionless survival time rD /a2 vs 
4, for totally impenetrable traps (A = 1) for several values of the dimen- 
sionless surface rate constant ii = m/D (E = m , 0.5, and 0.1) . 

actual simulation results of the ratio of mean survival times 
for the case of ;1= 1. The remarkable agreement obtained 
using this scaling relation indicates that lower-order mo- 
ments of P(S) contain useful information about diffusional 
properties of the system. 

IV. RIGOROUS LINK BETWEEN THE RELAXATION 
TIMES AND MEAN SURVIVAL TIME 

The previous section suggests that the mean survival 
time r may be bounded from above by the relaxation time T, 
in general. Here we shall show that this is rigorously true and 
that there is a lower bound on r in terms T, . Indeed r is 
linked to all of the relaxation times (i.e., eigenvalues) . These 
statements are given and proven in the form of two proposi- 
tions. 

lowing approximate scaling for the mean survival time r(jl) 
for a system with impenetrability parameter /z holds quite 
accurately 

r(0) @)Lo -z-e 
a2) (a: 

(3.42) 

Thus Eq. (3.42) enables one to compute r(R) given r(O) 
and the first moments of P( S) for R = 0 and arbitrary ;1. In 
Fig. 6, we plot the right-hand side of Eq. (3.42) along with 

51 I 

“0 0.2 0.4 0.6 

92 

FIG. 6. Comparison of simulation data (solid lines) for the scaled survival 
time r(,4 = O)/r(R = 1) vs trap volume fraction 4, to the ratio 
w:,,/m,, (dotted lines) for the diffusion-controlled limit (ii = Q) ). 
/z = 0 and 1 and correspond to fully penetrable and totally impenetrable 
spheres, respectively, in the cherry-pit model (Ref. 9). 

A. Proposition 1 

For statistically homogeneous porous media of arbtiraty 
topology at porosity c#,, the following relation holds: 

7= 2 a:T,, n=l (4.1) 

where a,, are the pore volume averages of q, given by Eq. 
(3. IO). 

1. Proof 
Consider initially a large, but jinite pore region Y, . 

Taking the Laplace transform of Eqs. (3.1)-( 3.3) yields 
sZ(r,s) = DA?(r,s) + co, in Y1 (4.2) 
D da? 

dn+~2=0, on dY, (4.3) 

where 

I 

m 
Z(r,s) = c( r,t)e - “‘dt. 

0 

Setting s = 0 in Eqs. (4.2) and (4.3) gives 

A?(r,O) = - $, in Y,, 

D*+G=O, on dY. 
dn 

Letting 

(4.4) 

(4.5) 

(4.6) 

CO 

in the relations immediately above yields the equations 
Au= - 1, in Y,, (4.8) 

D a’ x+~u=O, on dY, (4.9) 

which are identical to Eqs. (3.20) and (3.21) for the survival 
problem. Therefore, the solution of Eqs. (4.8) and (4.9) can 
be expressed in terms of the eigenfunctions {qR} which solve 
Eqs. (3.5) and (3.6) by taking Laplace transform of Eq. 
(3.4): 

2(r,s> m 1 
-= 2 Qn+%(r) (l,T,)+s’ 

CO tl=l 
(4.10) 
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Setting s = 0 and utilizing Eq. (4.7) yields 
- a,@,(r) 

u(r) = C 
A” . 

(4.11) 
n=l 

It is instructive to examine proposition 2 for the case of 
diffusion interior to spheres of radius a. For the perfectly 
nonabsorbing limit (Ka/D + 0) (see Appendix A ) , 

T, = a: T, = r-a 
3K 

(4.20) 

and hence the bounds in Eq. (4.15) are exact since the lowest 
mode dominates completely. For the perfectly absorbing 
limit (Ka/D-+ OC, ), we have from Appendix A that 

Averaging Eq. (4.11) over the pore space gives 

u(r)dr = ng, F-$-- $, (r)dr 
n 1 

(4.12) 6a2 T * 
ai T, 

a* 
--9 

IT40 I--$ r-E ’ 
(4.21) 

The second line follows from condition (3.10). Passing to 
the limit V, -t to, V-t CO, using Eqs. (3.17) and (3.19) and or from Eq. (4.15) 
the fact that V, = @I V, enables us to rewrite Eq. (4.12) in 
terms of the mean survival time as 

6a2 a* a2 
1740G15DG1720* 

r= -g 
a2 

n= 2 aZ,T,,, 
n=lDa” ?I=* 

which proves the proposition. 

(4.13) 

2. Remark 
The quantity sZ( r,s) on the left-hand side of Eq (4.2) 

can be physically interpreted as a bulk reaction term, with s 
playing the role of a bulk rate constant. In Sec. IV, it will be 
useful to introduce a Laplace-variable-dependent mean sur- 
vival time 

+) _ Ww)) , 
co4 

(4.14) 

implying the existence of a frequency-dependent mean sur- 
vival time. Note 7( 0) is just the standard steady-state orstat- 
ic mean survival time defined above. 

B. Proposition 2 
For any statistically homogeneous porous medium with 

porosity $1, the mean survival time r is bounded from above 
and below in terms of the principal relaxation time T, as 
follows: 

afT, (r<T,, (4.15) 
where a, isgiven by Eq. (3. lo), the pore volume average of the 
jirst eigenfunction *, . 

1. Proof 

k<D& r. (5.2) 
Thus knowing the mean survival time exactly, one can 
bound the fluid permeability and vice versa. The equality of 
Eq. (5.1) is achieved for one of the eigenvalues for transport 
in parallel channels of arbitrary cross-sectional shape. For 
porous media with low porosity and significant tortousity, 
bound (5.2) is not sharp essentially because r, unlike k, is 
relatively insensitive to the presence of “narrow throats.” 
Relation (5.2) motivated Wilkinson, Johnson, and 
Schwartz3 very recently to reexamine the problem of nu- 
clear magnetic resonance (NMR) relaxation in fluid-satu- 
rated porous media by focusing attention on r instead of the 
relaxation times T,, . 

Since the eigenvalues are positive and /2, <iii ( T, > Ti 1 
- for i# 1, then 

2 aZ,T,,< 2 af,T, (4.16) 
n=l tl=l 

and proposition 1 yields the upper bound 
r<T,. (4.17) 

Moreover, proposition 1 in conjunction with the inequality 

2 a”, T,, >a: Tl (4.18) 
!I=1 

yields 
r>a: T, . (4.19) 
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In light of the upper bound of proposition 2 [EQ. 
(4.15)], we also have 

k<Dq4 rU<Dq& T, U. (5.2) 
Hence, although Eq. (5.2) provides an upper bound on k in 
terms of T, , it is weaker than Eq. (5.1). 

It is useful to recall our earlier definition (4.14) of the 
frequency-dependent mean survival time 

r(s) _ @(r,s)) 

(4.22) 

The bounds of Eq. (4.22) are reasonably sharp. 
Note that for a general porous medium, bound (4.17) 

can be used to estimate the principal relaxation time T, giv- 
en that r has been measured exactly provided, as discussed 
earlier in Sec. III, that the medium is characterized by a 
finite range of pore sizes. 

V. RELATIONSHIP BETWEEN THE TIMES T, AND ,r TO 
THE FLUID PERMEABILITY 

Torquato4 proved that the mean survival time r for sta- 
tistically anisotropic porous media of arbitrary topology is 
rigorously related to the fluid permeability tensor k arising in 
Darcy’s law for slow viscous flow through the same porous 
medium by the relation 

k<Dt#, rU. (5.1) 
Relation ( 5.1) states that the permeability tensor k minus 
the isotropic tensor 041 rU is negative semidefinite, where U 
is the unit dyadic. In the isotropic case, Eq. ( 5.1) simplifies 
as 

(5.3) 
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Elsewhere” we define the analogous frequency-dependent 
fluid permeability tensor 

k(s) = 4WJ)l , (5.4) 
00 

where V is the Laplace transform in time of the unsteady 
solution of the tensor Stokes equations, Y is the kinematic 
viscosity, and v. is some reference speed. There we will prove 
that 

k(s) <D#, T(s)U. (5.5) 

Note that in the static case (s = 0), we recover Torquato’s 
original result (5.1). The importance of Eq. (5.5) lies in the 
fact that k (s) can be related to the so-called dynamic perme- 
ability 21*22 k (w) which is the constant of proportionality in 
the dynamic form of Darcy’s law when the porous medium is 
subjected to an oscillatory pressure gradient wjth frequency 
w. The precise relationship between k (s) and k (w ) and the 
consequences of such a relation will be described in Ref. 20. 
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APPENDIX A: RELAXATION AND SURVIVAL TIMES 
FOR TRANSPORT INTERIOR TO DISCONNECTED 
SPHERICAL PORES 

It is useful to obtain the relaxation time T, and mean 
survival time 7 for the simple case of transport interior to 
spherical pores of radius a since such results provide some 
physical insight into the behavior of these times for more 
complex geometries. 

For the relaxation problem, it is easily shown that the 
eigenfunction [cf. Eq. (3.5) ] is given by 

tCtn (r) = + sin(&r), 

where 

(Al) 

B2 = 2a2(a24 + K) 
n 

3(a2A, +K’-K) ’ 

K=lvK 5 = aG cot(aK), 

and the associated coefficients are 
3B 

a, = 2 sin(&r). 
a3A, 

(A21 

(A3) 

The following are asymptotic expressions for T, = l/DA I : 
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(A5) 

(A6) 

For the survival problem, it is easily shown that the solu- 
tion of Eqs. (3.14) and (3.20) is given by 

+Li+E$ (A7) 

Substitution into Eq. (3.19) exactly yields 

APPENDIX B: DERIVATION OF VARIATIONAL 
PRINCIPLES FOR T, AND T 

We give here a brief, self-contained derivation of the 
variational principles (3.22) and (3.34) for the relaxation 
and mean survival times. We shall assume in this derivation 
that Vrepresents a finite reference cube in the porous medi- 
um and that periodic boundary conditions are satisfied by 
the trial fields on the cube boundaries. This assumption en- 
tails no loss in generality since boundary contributions be- 
come negligible in the limit V- CO. 

1. Variational principle for T, 
Consider first the problem of minimizing the functional 

3, ($*I = 
(I/v)J~ ,V$**V$* dr + WDV)Sap~($*)2dS 

(l/v)s;1.~, ($*12dr 
031) 

over all scalar functions $* defined in 7, . Since the numera- 
tor in Eq. (B 1) is convex, this problem is equivalent to the 
minimization of the modified functional 

($*12dS 

--;1 c (ti*12dr, 
JY, 

(B2) 

where ;1 is a Lagrange multiplier. The first variation of 
F2 ($*) is given by 

sF2 (q*> = $j- V@*-V(S$*)dr + Fvs $*(a$*)& 
P I a?. 

--2/l 
s 

y’ $*CW*)dr (B3) 
1 

for an arbitrary variation Sq*. The minimizer of Eq. (B2) 
[and hence of Eq. (Bl ) ] satisfies SF, (+*) = 0 for all var- 
iations S$*. Considering variations S$* that vanish on the 
pore surface, i.e., S$* (r) = 0 on JY, notice that the middle 
term in Eq. (B3) vanishes. Performing integration by parts 
in the optimality relation SF, ( q* ) = 0, we obtain the equa- 
tion 

- A$* = A$*, (B4) 
so that +* is an eigenfunction with eigenvalue /2. Moreover, 
if one considers arbitrary variations Se* in Eq. (B3) and 
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takes into account the equation satisfied by @*, one finds, 
using integration by parts, that 

s it?!? @$*)dS+; ap,$*(G$*)dS=O, 
a7’ c% s 

(B5) 

which implies that +* satisfies the boundary condition 1 an 
D a$* 

-+K$*=o OII dy. 
dn 

We conclude from this, using the arguments of the previous 
paragraph, that the minimizer satisfies the equations 

[ -Av=@inY 

1 D+---cm=0 on dY’ (B14) 

We deduce from this equation that 
2v - = 24, 
R 

0315) Therefore, $* satisfies Eqs. (3.5) and (3.6) with eigenvalue 
/2. FromEqs. (B3), (B4), and (B6), wecancharacterize the 
Lagrange multiplier/z as the ratio 

A= 
(I/V)J~ ,V$**V$* dr + (K/DY)Jar’ ($*)‘dS 

(l/V.f7 , (ti*j2dr 
(J37) 

On the other hand, the principal eigenvalue il, and eigen- 
function $, of problems (3.5) and (3.6) satisfy 

A, = 
(1/I/)S7.,V$,*V$1 dr + (K/Dv)Sa,,&dS 

( l/v)S, ‘, (& )‘dr 
033) 

From the optimality of 3* for Eq. (Bl ), it follows that 
R (il , . On the other hand il is an eigenvalue and hence2 1 (2. 
We conclude therefore that 

m:Y1($*) =;1=/2, =F,($,) (B9) 

as desired. Consequently, the integral (B 1) is minimized for 
$* = $, and its minimum value is the principal eigenvalue 
A 1’ 

2. Variational principle for T 

Next, we consider the functional 

93(u) =f VPVV dr + x 
s 

v2dS 
VD a~ 

(B10) 

and the problem of minimizing 3, (0) subject to the con- 
straint 1 7 7’, s vdr=c= (u), (Bll) 

where u is the solution of Eqs. (3.20) and (3.21). Since 
F3 (u) is convex, the minimizer of this problem must also 
minimize the functional 

3,(v) =Fs(v> -2; vdr 0312) 

over all functions v defined in Y, , where/z is an appropriate 
Lagrange multiplier. In the previous problem, the trial fields 
are not required to satisfy Eq. (B 11) . The minimizer Z of 
3, (v) is such that 

v* (Sv)dS 

(B13) 

where u is the solution of Eqs. (3.20) and (3.2 1). Averaging 
Eq. (B15) overthevolume, weobtain (2v/;l) = (u) = (v), 
since v satisfies the volume constraint (Bl 1). Therefore 
;1= 2. Substitution of A = 2 and 6v = v in Eq. (B13) yields 

(u> = +J,, Vu-Vu dr + z 
s 

v2dS 
71 DV ar 

= min7, (v*), (B16) u* 

where the minimum is taken over functions where v* satis- 
fies (v*) = (u). Alternatively, from Eq. (3.19), 
(u) = q&D, so that from Eq. (B16) 

b>’ minF,(v*) =-. 
U* r&D 

0317) 

This is the desired variational principle for the mean survival 
time 7. 

Remark 
This last variational principle for r is valid for an arbi- 

trary volume constraint with the trial field v, i.e., for an arbi- 
trary constant c, we have 

Vv*Vvdr+-& 

with v subject to 

(B19) 
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