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It is shown that the trapping of finite-sized spherical Brownian particles of radius /3R in a 
system of interpenetrable spherical traps of radius R is isomorphic to the trapping of “point” 
Brownian particles (p = 0) in a particular system of interpenetrable spherical traps of radius 
( 1 + p> R. This isomorphism in conjunction with previous trapping-rate data for fl= 0 is 
employed to compute the trapping rate for the case /? = l/4 in a system of hard spherical traps 
as a function of trap volume fraction. The effect of increasing the size of the Brownian particles 
is to increase the trapping rate relative to the instance of point Brownian particles. 

I. INTRODUCTION 
The transport of particles in porous media which are of 

the order of the size of the pores is of importance in a variety 
of chemical and physical applications. l-5 Some examples in- 
clude separation or catalytic processes in zeolites, reverse 
osmosis membrane separation, and gel size-exclusion chro- 
matography. Diffusion measurements in porous media, in 
particular, can serve as a tool in characterizing the pore 
structure over a range of molecular and macroscopic length 
scales.6 Transport of finite-sized particles in porous media is 
hindered (relative to an unbounded system) due, in part, to 
the fact that the finite-sized particle is excluded from a frac- 
tion of the pore volume. Recently, Sahimi and Jue4 related 
the effective diffusivity of macromolecules for a lattice mod- 
el of porous media to the size of the molecules and the mean 
pore size. 

The problem of diffusion-controlled reactions among 
perfectly absorbing, static traps is still attracting the atten- 
tion of researchers, even though it has been around for 75 
years.7 A key macroscopic quantity here is the trapping rate 
k which is equal to the inverse of the average survival time of 
a Brownian particle. Virtually all previous studies consider 
“point” Brownian particles, i.e., particles with zero radius. 
Considerable attention has been paid to correcting the di- 
lute-limit Smoluchowski result for k of continuum (off-lat- 
tice) models at arbitrary trap concentrations, i.e., when 
competition between traps cannot be neglected.8-‘3 To our 
knowledge, determination of the trapping rate k when the 
diffusing particles have nonzero radii relative to the traps has 
not been considered for continuum models at arbitrary trap 
volume fractions. It is expected that because of exclusion- 
volume effects, the finite-sized Brownian particles will not 
survive as long as point particles and hence the former 
should possess a higher trapping rate. 

The purpose of this note is to determine the trapping 
rate k among a random distribution of identical spherical 
traps of radius R at number density p when the diffusing 
particles are spheres with radius ,3R, &O. It is shown that 
once the solution for the trapping rate is known for the case 
of point Brownian particles (B = 0), one can then obtain the 
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corresponding result for the finite-sized case (arbitrary p). 
This isomorphism combined with the trapping rate data of 
Lee et al. I3 for p = 0 in a system of interpenetrable traps is 
used to compute k for P = l/4 in a system of hard spherical 
traps as a function of trap volume fraction. 

II. TRAPPING OF FINITE-SIZED BROWNIAN 
PARTICLES 

The trapping rate k(B) associated with a random distri- 
bution of identical spherical traps of radius R at number 
density p in which there are diffusing spherical particles of 
radius BR can be determined from k ( 0) for a particular sys- 
tem of interpenetrable spheres by exploiting a simple obser- 
vation. To introduce this observation, consider the diffusion 
of a tracer particle of radius b in the space exterior to a sys- 
tem of hard spherical inclusions of radius a with number 
density p. (As will become apparent, the ensuing argument 
is not restricted to hard inclusions and hence applies to par- 
tially penetrable or overlapping inclusions.) Because of ex- 
clusion-volume effects, the fraction of volume available to 
the center of the tracer particle of radius b for b > 0 is less 
than the porosity (i.e., the fraction of volume available to a 
point tracer). The key observation is that the process with 
b>O is isomorphic to the diffusion of a point tracer in the 
space exterior to inclusions of radius a + b (centered at the 
same positions the original inclusions of radius a) at number 
densityp possessing a hard core of radius a, surrounded by a 
perfectly concentric shell of thickness b. The latter descrip- 
tion is precisely the penetrable-concentric shell (PCS) mod- 
el introduced previously by the author to study the effect of 
“connectedness” of the particle phase on the effective con- 
ductivity of such a suspension.‘4 The dimensionless ratio 

a E=- 
a+b 

(1) 

is referred to as the “impenetrability” parameter or index 
since it is a relative measure of the size of the hard core. The 
values E = 0 and E = 1 corresponding to “fully penetrable” 
and “totally impenetrable” spheres, respectively. The frac- 
tion of volume available to the center of the tracer particle 
4, (p,a + b) is equal to the volume fraction available to a 
point tracer in the PCS model. Therefore, the fraction of 
volume unavailable to a tracer particle & (p,a + b) is simply 
given by 
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4&w + b) = 1 - &@,a + b). (2) 
When b = 0, the volume fraction of the hard cores is simply 
given by 

Mp,a) =p $ a3 
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within the framework of the Percus-Yevick and Camahan- 
Starling approximations, respectively, for systems of hard 
spherical inclusions. These results were compared to scaled- 
particle approximations’7 and computer-simulation experi- 
ments.” It was foundi that the Camahan-Starling expres- 
sions generally gave excellent and the best agreement with 
data (Percus-Yevick relations giving the next best agree- 
ment) : 

and 4, @,a) is then just the standard porosity of the system. 
Now &(p,a + b) is greater than q$(p,a), but is less than 
@r( a + 6) 3/3 because the concentric shells of thickness b 
may overlap, i.e., 

P F a3<4Ap,a + b) <p -$(a + b)3. 

Therefore, employing the aforementioned isomor- 
phism, one can obtain the trapping rate for Brownian parti- 
cles of radius b in a system of hard spherical traps of radius a, 
k [ 4z (p,a);b] , from the corresponding result for point parti- 
cles in the PCS model from the relation 

k [42(p,a);b I = k [#2(p,a + bW1. (5) 
As shall be shown, this relation is not restricted to the case of 
hard inclusions as used in the above argument. The trapping 
rate in the PCS model has been computed by Lee et al.” 
using Monte Carlo simulations, but these authors did not 
make use of the isomorphism described here to compute the 
k for finite-sized Brownian particles. In what follows, the 
data of Lee et al. are employed in this way. However, in order 
to do so, one must first obtain the appropriate expression for 
the volume fraction I,& in the isomorphic PCS model. 

In order to accomplish this task, we will apply the recent 
results of Torquato et al. I5 for the so-called “nearest-neigh- 
bor” distribution functions16 E, (r) and H, (r) for a random 
system of identical spherical inclusions of radius a at number 
densityp and employ the aforementioned isomorphism. The 
“exclusion” probability function 

8% 09 E,(r) = -___ 
Jr 

is equal to the probability that a spherical cavity (centered at 
some arbitrary point) is empty of inclusion centers. H, (r)dr 
is the probability that at an arbitrary point in the system the 
center of the nearest inclusion lies at a distance r and r + dr. 
Now E, (r) can be reinterpreted as the fraction of volume 
available to a “test” particle of radius b = r - a when insert- 
ed into a system of spherical inclusions of radius a at number 
density p, and thus is equal to e5i (p,a + 6). 

, 

Similarly, the nearest-neighbor probability density 
H, (r) can be interpreted as the surface (per unit volume) 
available to a test particle of radius b = r - a, denoted by 
s(p,a + b). The quantity s(p,a) is then simply the specific 
surface (surface area per unit volume) of the inclusion-pore 
interface. 

where we have used the fact that x = e/2, E being the impen- 
etrability parameter given by Eq. ( 1) . 

More generally, consider the insertion of a test particle 
of radius PR into a system of interpenetrable spheres of radi- 
us R having hard cores of radiusRR surrounded by perfectly 
penetrable concentric shells of thickness ( 1 - /z) R. This is 
isomorphic to the insertion of a test particle of radius 
b = ( 1 - /2 f p) R into a system of hard spherical inclusions 
of radius a = AR. Therefore, for the general interpenetrable- 
inclusion case, one has 

Torquato et aLI5 obtained, among other results, exact 
integral representations of E, ( r) and H, ( r) in terms of the 
n-body distribution functions which statistically character- 
ize the structure of the system. However, since the higher- 
order distribution functions are generally never known, an 
exact evaluation of E, (r) and H, (r) is not possible in two 
and higher dimensions. Accordingly, Torquato et al. derived 
two different sets of accurate expressions for the quantities 

where 

a 

E=lSp’ 
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E,(x,q) = (I- v)exp[ - v(8ex3 + 12fx2 + 24gx + h)l, 
1 

e- , 
2 

(7) 

H,(x,q) = 127l -E,(x,q)l)t xr+, (8) 
a 

where 

x=L, 
2a 

(9) 

r]=p%a3, 
3 

e(v) = cl+111 
(1 - VI3 ’ 

(11) 

f(v) = - 7j(3 + 77) 
2(1-17)3 ’ 

(12) 

g(7) = ?I2 
2(1-793 

h(T) = 
-9~*+7~--2 

2(1-$3 * 
(14) 

Relations (7) and (8) in conjunction with the isomor- 
phism described above are now employed to obtain the vol- 
ume fraction and specific surface available to a test particle 
of radius b in a system of hard spherical inclusions of radius a 
at number density p. Thus, in terms of dimensionless inde- 
pendent variables, we have 

, 

(18) 

(19) 
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47/R 3 y=p-----. 
3 

(20) 

The quantities E, and H, are given by relations (7) and (8), 
respectively. Note for totally impenetrable or hard inclu- 
sions (il = l), E = l/( I+ /3), and Eqs. (17) and (18) be- 
come identical to Eqs. ( 15) and ( 16), respectively. Expres- 
sions ( 17) and ( 18) are new within the framework of the 
Carnahan-Starling approximations (7) and ( 8)) respective- 
ly. Rikvold and Stell, I9 however, were the first to approxi- 
mate 4, (q,RJ?) and s( v&3) using the scaled-particle ap- 
proximations of Reiss et al.” Observe that rl/z 3 [where v is 
now given by Eq. (20) ] represents the volume fraction occu- 
pied by the hard cores. The largest attainable value of rl/z 3 is 
given by the close-packing value for the microstructure un- 
der consideration. The largest close-packing value for $ 3 is 
G/;/6 c= 0.740, corresponding to face-centered-cubic close 
packing of the hard cores. A value of rl/z 3 equal to 0.64 corre- 
sponds approximately to the random-close-packing value.15 

For point test particles (p = O;E = ;1), relations ( 17) 
and ( 18) yield, respectively, the porosity and specific sur- 
face as 

Lee et al. actually computed k(P = 0) for three differ- 
ent values of the impenetrability index; il = 0, 0.8, and 1. 
Denoting this trapping rate simply by k(il,O), we note in 
passing that given the trapping rate for hard traps k( l,O), 
one can obtain the corresponding result for traps with im- 
penetrability index R at the same trap volume fraction by the 
approximate simple scaling relation 

#,(wW ) = Eu(& ,rl;l’), (21) 

S(%A,O) = H”(& J7A 3). (22) -- 
In the extreme limits of fully penetrable (/z = 0) and totally 
impenetrable (il = 1) spheres, Eqs. (2 1) and (22) give ex- 
act results, i.e., 

h=exp( -711, s=$q75,, for il=O, (23) 

4r=l--, s=f77, far/2=1. (24) 

If the test particles of radius flR and the interpenetrable 
inclusions of radius R are regarded to be the Brownian parti- 
cles and traps, respectively, then Eq. (5) for the trapping 
rate can be recast as 

k [h(~jl,O);P 1 = k [4Aw8);01. (25) 
To summarize, if the trapping rate associated with the diffu- 
sion of point particles in a system of interpenetrable, identi- 
cal traps with radius ( 1 + B)R, impenetrability index 
E = /z /( 1 + p), and trap volume fraction & (r],e,p) [the 
right-hand side of Eq. (25) ] is known, then the trapping rate 
associated with the diffusion of finite-sized particles of radi- 
us PR in a system of interpenetrable, identical traps with 
radius R, impenetrability index il, and trap volume fraction 
4, (v&O) [the left-hand side of Eq. (25) ] is also known. 

Ill. CALCULATION OF THE TRAPPING RATE OF FINITE- 
SIZED BROWNIAN PARTICLES 

It is desired to calculate the trapping rate for the diffu- 
sion of particles of radius R /4 in a system of totally impen- 
etrable traps (A = 1) of radius R as function of the trap 
volume fraction &. This is accomplished by utilizing the 
results of the previous section and the trapping-rate simula- 
tion data of Lee et aLI3 for the diffusion of point particles in a 
system of traps in the PCS model with /z = 0.8. For this 

special case, relation ( 25 ) becomes 

k [qUq,W;O.251 =k ~4,(~,0.&0.25k01. (26) 
This result combined with Eq. (21) and the data of Ref. 13 
yield the trapping rate for p = l/4 in a system of hard traps 
as a function of the volume function of the hard traps 
rj2 (7, 1 ,O) and is summarized in Fig. 1. Included in the figure 
is the corresponding result for point Brownian particles 
(fl= 0). Here 

k, = 3+2 
(1 +B2R2 

(27) 

is the dilute-limit Smoluchowski result for interpenetrable 
spherical traps of radius ( 1 + 8) R and @2 is the associated 
trap volume fraction. Not surprisingly, since finite-sized 
Brownian particles do not survive as long as point Brownian 
particles, on the average, the trapping rate for fl= l/4 is 
larger than for fi = 0 at fixed 42. 
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(28) 

Here s( 1) and s(A) are the specific surfaces of PCS systems 
for il = 1 and arbitrary /2, respectively, at the same trap vol- 
ume I$~ and a (/z ) is an exponent which depends only on ;1 
(i.e., it is independent of 4,); aI: 19/4 for /z = 0.8 and 
a = 13/4 for A = 0. The simple scaling relation (28) was not 
given in the paper by Lee et al, 

As a final remark, we note that the isomorphism de- 
scribed here is also being applied to study the effective diffu- 

FIG. 1. The scaled trapping rate k/k, as a function of the trap volume frac- 
tion & for point (p = 0) and finite-sized (p = l/4) Brownian particles in a 
system of hard traps of radius R. Here fi is the ratio of the radius of the 
Brownian particle to the radius of a trap. 
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sion coefficient of finite-sized Brownian particles in a bed of 
inter-penetrable spheres.20 Here hindered diffusion due to 
exclusion-volume effects results in a lower effective diffusion 
coefficient relative to the case of point Brownian particles. 
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