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Abstract. A two-dimensional model of a two-phase solid which undergoes a reaction at 
its surface is used to study the fragmentation of reactive materials in which the marphalagi- 
CBI hindering of fragment release is considered. Scaling concepts of cluster percolation 
theory are used to evaluate Monte Carlo data generated from a Simulation of the hindered 
fragmentation process. By defining a hierarchy of fragmentation objects, different scaling 
exponents arc computed for each of these objects as measured by the number of sub-objects 
they contain. In addition, it appears that each of the different measures of object size 
exhibits optimum scaling at a different critical reactive-phase m a s  fraction; simulation 
data indicate that the critical mass fractions follow a trend consistent with expected physical 
behaviour of the system. In addition, the critical mass fractions reported correspond to 
‘virtual’ criticalities, i.e. the critical points cannot result in actual divergences in size, but 
rather are properties of the scaling fundion. 

1. Introductiou 

The phenomenon of particle fragmentation and its effects on the degradation of porous 
carbon solids has been given considerable attention in recent years (Chirone el a1 1982, 
Kerstein and Niksa 1985, Sundback et ol 1985, Kerstein and Edwards 1987). The 
overa!! rate of pyrolysis, combustion or gasification of such sgbgtancer can he sig- 
nificantly affected by the sudden release of discrete solid particles from the original 
‘parent’ particle, i.e. the fragmentation of the solid. The ability to describe and predict 
the fragmentation behaviour of a material is therefore of considerable importance in 
evaluation of the total degradation process. The mechanisms of fragment formation 
are dependent upon factors internal to the solid, such as morphology and composition 
of constituent phases, as well as external factors such as the mechanical stress and the 
thermochemical environment to which the solid is exposed. Despite these complica- 
tions, significant predictions of fragmentation behaviour have been made based on 
purely geometrical considerations (Kerstein and Niksa 1985). However, basic aspects 
of fragmentation in porous reactive solids have not yet been addressed, one of which 
is the effect of morphological or steric hindering. 

Previous models of the fragmentation process (Kerstein and Niksa 1983, Mekjian 
1990, DeAngelis and Mekjian 1989) have been limited to the case of simple fragmenta- 
tion, in which a fragment newly separated from the original particle is immediately 
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released to the surrounding environment. In general, a fragment may not find a free 
path to the ambient surroundings immediately upon its creation. The case may be such 
that the newly formed fragment, although physically disconnected from the parent, is 
prevented from being released due to the spatial configuration of the parent particle; 
such a fragment is said to be sterically hindered. The shape of the parent may be such 
that the release of not only one, but several fragments are hindered simultaneously. 
The subsequent degradation of a single critical bond may result in the release of a 
‘burst’ of several fragments of various sizes to the surroundings, behaviour which has 
been observed in experimental studies of dissolution of porous solids (Mills and 
Kerstein 1990). Models of fragmentation in which hindering is neglected will in general 
not produce bursts of more than two fragments; consideration of hindering can therefore 
result in behaviour which is significantly different from that observed in simple- 
fragmentation models. 

At the most basic level, the process of fragmentation is the transition of a solid 
from a connected state (i.e. a single particle) to a disconnected state in which several 
particles have evolved from the original parent particle. The principles and methods 
of percolation theory have been developed specifically to quantify the state of con- 
nectedness of irregular objects and systems (Stauffer 1979, 1985, Deutscher et al 1983, 
Essam 1980); it is natural then to employ these principles in evaluating the fragmenta- 
tion process. 

The current study applies the principles of percolation theory to evaluate hindered 
fragmentation, using Monte Carlo methods to simulate the behaviour of a 
heterogeneous solid material which undergoes a reaction at its surface. The 
heterogeneity of the material is due to non-reactive inclusions randomly distributed 
throughout a continuous reactive matrix; the reaction occurs only on the surface of 
the reactive material. As the reaction proceeds, the surface morphology becomes 
increasingly complex, resulting in the creation of fragments and the eventual release 
of those fragments in bursts. Our objective is to qualitatively describe the relationship 
between the volume (or mass) fraction @ I  of the reactive phase and the distributions 
of both the numbers and mass of released fragments, considering the morphological 
hindering and release of separated fragments. The results show that the objects 
generated during the fragmentation process do indeed obey the scaling ‘laws’ of 
percolation theory (Stauffer 1985). Approximate values of the parameters resulting in 
the best scaling behaviour are obtained. However, accurate determination of the scaling 
exponents is outside the scope of the present paper. 

The formation of isolated fragments due to the propagation of a reaction interface 
into a medium is reminiscent of invasion percolation (Nickel and Wilkinson 1983, 
Wilkinson and Willemsen 1983, Willemsen 1984). As in the present problem, the 
process of disconnection in invasion percolation is a local phenomenon that is only 
indirectly related to the global state of connectedness of the phase of the infinite 
medium through which the interface propagates. In both invasion percolation and the 
present problem, the aspect of greatest interest is the statistical characterization of the 
objects that are disconnected from the parent medium as a result of interface motion. 
Furthermore, confinement of system evolution to a propagating interface renders both 
problems inherently dynamic. 

The fragmentation problem introduces other aspects not found in typical applica- 
tions of percolation theory. Probability distributions characterizing ‘burst’ events can 
be parametrized in terms of a hierarchy of objects and sub-objects (which will be 
defined below). Here we mention only the two most obvious units of measurement: 
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( a )  the total mass release per burst and ( b )  the number of fragments per burst; note 
that we can further examine the mass distribution of individual fragments within the 
bursts. A further difference is that, in the fragmentation problem, fragments may be 
heterogeneous in composition as opposed to the homogeneous clusters ordinarily 
evaluated in percolation problems; given a heterogeneous parent material composed 
of reactive and non-reactive elements (phases), fragments of this parent may contain 
either or both of the phases following separation. 

The origin of the hierarchy of objects can be illustrated by comparing the 
phenomenon of hindering to directed percolation (Kinzel1983, Williams and Macken- 
zie 1984). In particular, consider a two-dimensional lattice percolation problem in 
which the medium has been fragmented by randomly removing a fraction 4 > 4‘ of 
sites, where 4‘ is the ordinary (non-directed) static percolation threshold. Designate 
any given pair of fragments as non-hindering only if some directed path (i.e. a path 
not allowed to reverse itself in a specified coordinate direction) through the vacant 
sites separates the fragments; otherwise the fragments are mutually hindering. (This 
criterion is not quite the same as the hindrance criterion in our fragmentation model.) 
Assume that 4 > where + d  > 4‘ is the percolation threshold for directed paths. It 
is evident that one thus obtains a three-level hierarchy of objects: lattice sites, fragments 
and mutually hindering groups of fragments. The geometrical properties of hierarchies 
arising in static problems of this type are themselves of interest, but have not been 
studied to our knowledge. The hindered percolation process considered here has both 
a hierarchical nature, reflecting a direction-dependent hindrance criterion, and a 
dynamical nature, reflecting the limitation of site removal to the evolving surface. The 
objective is to capture both aspects in a formulation that is a simple paradigm of the 
physical process of fragmentation in reacting solids. 

In the following section, the model system and simulation procedure are described, 
as well as the hierarchy of fragmentation objects. In  section 3, we discuss some basic 
percolation concepts and their application to the fragmentation problem. Section 4 
presents results of the simulation and the scaling behaviour of the system. Finally, in 
section 5 ,  we make concluding remarks. 

2. Simulation model and procedure 

A simple two-dimensional lattice model of a heterogeneous solid is employed to study 
the effects of hindering. A square lattice of side length L i s  tessellated into square cells 
of unit area, of which a given area fraction b2 are randomly selected to be non-reactive 
cells, the remaining fraction 4, = 1 - 42 designated as reactive. In order to simulate a 
semi-infinite solid, the initial L x L configuration is periodically repeated in both x 
directions; extension of the model in the positive-y direction will be discussed below. 
The lower edge of the lattice is designated to be y = 0, and represents the initial solid 
surface, Two cells are defined to be connected if they share at least one common side 
and are not connected across corners. Cells correspond to units of mass; in the current 
study the area fractions 4, and +2 are equivalent to their respective mass fractions. 

Beginning from this initial configuration, simulation of the surface reaction proceeds 
as follows. A cell on the initiai surface y .=  0 is randomly chosen, and if reactive is 
removed from the system, resulting in a new surface configuration. Reactive cells 
bordering the new surface are now eligible for removal. As this ‘reaction’ process is 
repeated, the complexity of the surface shape increases, leading to the generation of 
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fragments. A fragment is defined as a set of one or more connected cells which are 
disconnected from the original parent solid. A fragment is considered to be unhindered 
and free to be released if each cell within the fragment has a free path away from the 
original lattice in the negative-y direction, i.e. below each cell of the fragment there 
must he no cells belonging to either the main solid or any other hindered fragment. 
The release criterion is motivated by an experimental configuration (Kerstein and 
Niksa 1985, Mills and Kerstein 1990) in which fragments evolve from the lower face 
of a reacting horizontal slab, falling vertically due to gravity unless they are hindered 
(i.e. their path is blocked) either by a portion of the parent slab or by other hindered 
fragments. For example, figure 1 shows three fragments disconnected from the main 
solid, only one of which is free to be released (fragment 1); note that fragment 3 is 
hindered only by fragment 2, which is in turn hindered by the parent solid. Fragments 
which have been released are considered to be removed from the problem; further 
possible degradation and fragmentation of released fragments are outside the scope 
of- the present study. 

C A Miller et a/ 
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4, =0.70. The black and shaded squares represent non-reactive and reactive cells, respec- 
tively. The cells labelled ‘1’ compose an unhindered fragment of two cells in size, which 
is in the process of being released. Fragment ‘2’ is hindered bath by fragment ‘3’ and 
incipient fragment ‘4‘. Fragment 3 is hindered only by fragment 2. I f  the cell labelled ‘x’ 
were to be removed, the newly farmed fragment 4 would be released, as well as the group 
composed of fragments 2 and 3. This burst would contain two groups (of one and two 
fragments. and three and I 1  cells, respectively), three fragments, and 14 cells. 

As noted above, the hindering of fragments can result in bursts of several fragments 
being released at a single time. One of the unique aspects of hindered fragmentation 
is that the size and structure of bursts can be characterized in several different ways, 
according to a hierarchy of objects and sub-objects. The basic objects of interest are 
the re!!$, which may be either re-lc$ive or nofi-reactive; At the next !eve! in the hierarchy 
is the fragment, which is defined as above to be any connected colleciion of one or 
more cells which has become disconnected from the original solid. Fragment size can 
only be described in terms of the number of cells contained in a fragment; a cell is 
then referred to as a suh-object of a fragment. A set of one or more fragments may . 
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form a group, which is a collection of distinct fragments which are mutually hindering 
and must therefore be released together. Groups have as sub-objects both fragments 
and cells, i.e. the size of a group can be characterized by the number of fragments 
within the group or by the number of cells within the group. At the highest level is a 
‘burst’, which is defined as the totality of fragment objects released from the parent 
solid at a given instant. A burst can be characterized in terms of each of the lower-level 
objects: number of groups within a burst, number of fragments within a burst and 
number of cells within a burst. 

An illustration of these objects is presented in figure 1, which shows a representation 
of the original solid and three separated fragments labelled 1, 2 and 3, containing two, 
nine and two cells, respectively. Fragments 2 and 3 are hindered from release by the 
set of cells labelled 4, and by each other; since fragments 2 and 3 cannot separate 
from each other based on the release criterion, they form a two-fragment group. Since 
fragment 1 is not hindered, a burst of one fragment consisting of two cells (constituting 
in this instance a one-fragment group) is in the process of being released. The set of 
cells labelled 4 composes an incipient fragment, which will he released if the reactive 
cell marked ‘x’ is decomposed. If this cell were decomposed, the resulting burst could 
be described in the following ways: two groups, respectively composed oftwo fragments 
(2 and 3) and one fragment (4); three fragments (2, 3 and 4) composed of nine, two 
and three cells, respectively; or fourteen total cells. 

After a chosen surface cell is removed, the entire lattice is scanned to determine 
the effects of that cell’s removal. (Removal from hindered fragments as well as from 
the parent solid is allowed.) The loss of a single reactive cell can result in one of 
several possibilities: (i) no change in the number or state of hindering of pre-existing 
fragments, (ii) the formation of one or two new fragments, (iii) the removal of a cell 
hindering the release of pre-existing fragments, or (iv) a combination of (ii) and (iii) 
above. Following removal of a reactive cell, the system is scanned to determine the 
state of connectedness of each cell. In order to save computation time, the connectivity 
of each new configuration is tested by considering only the cells on the boundary of 
the solid. Each boundary cell is uniquely labelled, and must be either connected to 
the parent solid or be part of a separate fragment (which may be a single-cell fragment). 
A connectivity matrix is formed by checking the connectedness of the boundary cells, 
and any fragments which have been formed are identified using a connectivity matrix 
algorithm (Sevick et al 1988). Once fragments have been identified, each is checked 
to determine its state of hindering, and mutually hindering fragments are labelled as 
groups. Cascade effects must also be considered; for example, if fragment a is hindered 
only by fragment b, but the removal of a reactive boundary cell has resulted in fragment 
b becoming unhindered, then a is also unhindered, and both may be released. 

If any newly-formed or pre-existing fragments are now free to be released, a burst 
occurs and the quantities of interest are tabulated. These include the number of 
fragments in the burst, the total number of cells within those fragments, the size 
distribution of fragments in terms of cells, and the size distribution of bursts in terms 
of both cells and fragments as well as analogous quantities for groups. In addition, 
the time history of each run is recorded by tracking the step number of each burst and 
the various quantities associated with each particular burst. 

Initially, the model is an L x L square, with the bottom edge of the square at y = 0 
and periodic boundaries in both x directions. As the surface reaction propagates, the 
receding surface will eventually reach they  = L layer. At this point, an additional layer 
of cells is added to the system, with each of the L new cells being randomly designated 
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as non-reactive with probability &. Runs at the lower reactive phase mass fractions 
often require trials involving several initial configurations, since the configuration of 
a new layer may be such that a continuous reaction path to larger y values does not exist. 

To eliminate the effects of the initial transient period, statistics are not compiled 
until th.e time history of the fragmentation process, as reflected by burst statistics, 
relaxes to a statistically steady state. The overall procedure is then continued until a 
total of 6250 bursts have occurred, and the results are analysed to estimate the various 
parameters. The runs were made primarily on an IBM RS6000 workstation, and run 
times for the total 6250 bursts at a system size L =  30 ranged from 2 CPU hours at an 
reactive-phase area (mass) fraction 4, = 0.7 to a maximum of 27 CPU hours at 4, = 0.6. 
Additional runs of 3000 bursts were made on a Cray Y-MP to evaluate the effects of 
changing the system size, with an average run time on the Cray of 105 CPU minutes 
for 3000 bursts with a system size of L=40.  

C A Miller et ai 

3. Application of percolation theory to fragmentation 

As noted in the introduction, percolation theory has typically been applied to problems 
in which the connectivity of static clusters is the primary issue. For static percolation 
(Stauffer 1985) it is found that, at the percolation threshold 4' (defined as the mass 
fraction at above which a given phase becomes connected across the lattice), the 
number density Ns of clusters of size S obeys 

Ns a S-' (1) 

where T is a universal constant dependent only upon the dimensionality of the system. 
For the square lattice used here, the site percolation threshold of the ith phase ( i  = 1,2) 
has been found to be +'=0.593 (Stauffer 1985). Note that since $'>OS, there is a 
range 0.407 < 4 < 0.593 of phase mass fractions in which neither phase is percolating. 
Thus, infinite-sized clusters of phase i exist in static (ordinary) percolation problems 
at or above 4' but not otherwise. 

Below the percolation threshold, the number of static percolation clusters of a 
given size is governed by the scaling relation (Stauffer 1979, 1985) 

Ns a S-'f[lh - +TI ""SI (2) 

where the scaling function f is normalized so that f ( O ) =  1 ,  and q5f is the critical 
reactive mass fraction, equivalent to 4' in ordinary static percolation. [Note that at 
4, = +T, relation (2) is identical to  relation (l) .]  As the static percolation threshold is 
approached, the cluster-size distribution at various values of 4, near 4' collapse on 
to a single curve when the data are plotted according to relation (2) (Stauffer 1985); 
such a collapse of the data is an identifying characteristic of percolation scaling. The 
exact form of the scaling function f is not known a priori, and will be approximated 
for hindered fragmentation from the simulation data. 

In the current problem, we are interested in the behaviour of the system as the 
reactive mass fraction nears the critical mass fraction 4?, where 4: for fragmentation 
may not be related to 4' in a simple manner. In particular we seek to determine the 
size distributions of fragmentation objects as a function of 4, and to assess the 
applicability of scaling relationships such as (2) above. Unlike static percolation, in 
which the percolation threshold 4' is the well defined critical point at which the 
disconnected clusters percolate (i.e. become connected across the lattice), the critical 
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reactive mass fraction at which the sizes of the fragmentation objects diverge is not as 
clearly defined. 

3.1. Critical reactive mass fraction 

Typically, the critical mass (volume or area) fraction of percolation processes is 
characterized by the divergence of one of the quantities of interest in the particular 
problem, most frequently the size of a cluster. Considerations other than size can lead 
to different critical points, however, among these being directional constraints. In 
directed percolation problems for instance, the path of connectivity which defines the 
percolating cluster is limited in that only given directions may be chosen (Kinzel 1983, 
Williams and Mackenzie 1984); a common constraint is that the path may only proceed 
in the positive x and y directions. A different example is that of invasion percolation, 
in which the growth of clusters is determined by the path of least resistance as measured 
by randomly assigning resistances to each lattice site (Nickel and Wilkinson 1983, 
Wilkinson and Willemsen 1983, Willemsen 1984). In each of these examples, the 
characteristic criticality is function of not only the lattice geometry, but also the 
constraints of the particular problem. In the current problem, we are interested in the 
critical reactive mass fraction at which the various fragmentation objects diverge in 
size. However, since the size of these objects can be measured in terms of several 
different sub-objects, the different measures of size may lead to different critical mass 
fractions. 

As noted above, neither the reactive phase nor the non-reactive phase percolates 
(i.e. is continuous across the sample) in the range 0.407 < 4, <0.593 ( i  = I ,  2) .  For 
4, < 4' = 0.593, the reaction process cannot proceed since the reactive phase is not 
continuous. At 4, = @', an infinite (system-spanning) cluster of reactive cells exists, 
allowing propagation of the reaction process. 

Although this propagation threshold is directly related to static percolation, critical- 
ity associated with the size divergence of fragmentation objects has no obvious relation 
to a static problem. In the previous section, the symbol 4f was introduced to represent 
a generic critical value of 4, corresponding to such a divergence. The value of 4f will 
in general depend on the type of fragmentation object being considered and the type 
of sub-object used to characterize its size. 

For instance, consider the divergence of mean fragment size, defined in the usual 
way. Every connected cluster of non-reactive cells, when eventually released, is entirely 
contained within a single fragment. A fragment may contain more than one non-reactive 
cluster, with reactive cells serving to connect those clusters so as to form a single 
fragment. (It is assured that some reactive cells will survive the removal process and 
be available to form such connections, because reactive cells that are not part of the 
percolating reactive network are never removed.) Therefore the fragment size will 
diverge up to values of 4, as large or higher than the maximum value 1 - 6' for size 
divergence of non-reacting clusters. The maximum value 4: for fragment divergence 
must therefore fall within the range [I  -4', 4'1. The upper bound reflects the fact 
that, for 41>4c, the propagation of the reacting interface along connected paths 
tessellates the plane into finite regions, thus bounding the size of fragments. (The 
significance of criticality at a value of 4, for which the reaction cannot proceed is 
discussed shortly.) 

The lower bound on the critical values 4: governing the divergences of mean group 
size and mean burst size is governed by analogous considerations. For these quantities, 
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however, 6' is not necessarily an upper bound on the critical reactive mass fraction. 
Tessellation of the plane by undirected connected paths does not entirely eliminate 
the directionally-defined hindrances among the finite regions, so criticality for these 
objects may occur above 4'. 

Since bursts are at the highest level of the fragmentation object hierarchy, and have 
as sub-objects all other fragmentation objects, the size as expressed in terms of cells 
will clearly diverge at a reactive mass fraction greater than or equal to the mass fractions 
at which groups and fragments, so expressed, will diverge. Therefore, it is expected 
that the following relation between the critical mass fractions will hold: 

C A Miller et a/  

+ T ( b , c ) ~ 4 : ( g , c ) a 4 : ( f , c )  (3) 

where +:(x, y )  denotes the critical reactive mass fraction of x-type objects when size 
is measured in terms of y-type sub-objects (b ,  g, f and c denote burst, group, fragment 
and cell, respectively). Note that it is possible that some of the critical reactive mass 
fractions in (3) may lie above the percolation threshold +', based on the discussion 
of the previous paragraph. We also note that the critical reactive mass fraction 4 T ( b , f )  
for bursts with size expressed in terms of fragments should be less than or equal to 
+r(b ,  E ) ,  following the same arguments given above. Therefore it is expected that as 
one measures bursts in terms of increasingly smaller sub-objects, the following relation 
will hold: 

In summary, the critical reactive mass fraction +T(x, y) may be different for each 
pair (x, y )  and, if such differences exist, they are expected to obey relations (3) and 
(4). In addition, if any critical mass fraction +f(x, y)  appears to be less than +', then 
for that case we have the interesting phenomenon of 'virtual' criticality, i.e. criticality 
that cannot manifest itself as a literal divergence since the model reaction does not 
propagate for 4, S +', but arises as a property of the scaling function. Thus the critical 
reactive phase mass fraction is a further variable which must be determined, in addition 
to the scaling exponents T and U arising in (2). 

4. Results 

As noted above, simulation data were gathered over a total of 6250 bursts for a number 
of variables. Recorded at each burst were the size of the burst in terms of its respective 
sub-objects, the size of each group in terms of fragments and cells, and the size of 
each fragment as measured in cells. These objects and their respective units of measure 
will be denoted as the size S(x, y )  of a type-x object in terms of the number of type-y 
sub-objects that it contains, and Ns(sv) as the number density of type-x objects of 
'y-size' S(x, y ) .  Note that these quantities refer to ensemble averages over all bursts. 

Figure 2 presents simulation data for the mean burst and fragment sizes in terms 
of cells S(b,  c )  and S ( f ,  c ) ,  respectively, and the mean burst size in terms of fragments 
S ( b , f ) ,  as a function of the reactive mass fraction &. As expected, the values of 
S(b,  c) are significantly higher than S ( f ,  c )  at a given mass fraction, with the difference 
increasing as the reactive mass fraction is decreased. If hindering were not considered, 
i.e. a fragment was released immediately upon generation, the two lines would be 
almost identical. In the square lattice model considered here, the removal of a single 
reactive cell when hindering is neglected could result in the release of no more than 
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Figure 3. Size distribution of the size of fragments in terms of cells, S( j ;  c )  for different 
values of reactive mass fraction +,. For S ( J  e)<64, the slope of the line is i= 1.4. 

Figure 4. Size distribution of the size of bursts in terms of cells, 
of reactive mass fraction 4,. For S(b, e )  ~ 6 4 .  the slope of the 

S(b, C )  for different values 
line is 7=1.1. 
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Figure 5. Sire distribution of the size of bursts in terms of fragments, S ( b , / )  for different 
values of reactive m a s  fraction 4, .  For S ( b , / ) < S ,  the slope of the line is r=3.1. 

In figure 4, the number density of bursts of a given size in terms of cells NS(b,r)  is 
plotted against the size S(b ,  c )  for the cases of 4, as above. In this case, the distributions 
for S(b, c) <32 are very close for all values of 4,, and again show the linear behaviour 
in this range. Again the data diverge above this point, with the lower reactive phase 
mass fractions generating significantly more large bursts than the higher values of 4,  , 
as expected. 

The data presented in figures 3 and 4 illustrate two interesting points. At the lowest 
reactive mass fraction plotted (41 = 0.60), the size distributions for both bursts and 
fragments as expressed in cells, S ( b ,  c) and S ( f ;  c), respectively, are quite linear over 
the entire range of sizes when the data are plotted on a log-log scale. This is reasonable 
in light of relations (1) and (Zj; as the difference - 471 decreases, one would expect 
that the size distribution would approach such a linear behaviour. The second point 
is that, for the smaller size ranges (i.e. S < 3 2 ) ,  the data at all values of reactive mass 
fraction tend to follow the same slope as the lowest reactive mass fraction note above. 
Relation ( l ) ,  although true only at the percolation threshold, can then provide a 
relatively accurate relation for the size distribution of the smaller fragmentation objects 
(i.e. S(x, c) < 32, x = b, c) for a wide range of reactive phase mass fraction Adopting 
the notation T ( X ,  y )  to represent the exponent of relation (1) for size distributions of 
objects x in terms of sub-objects y [i.e. T ( b ,  c) would represent the exponent for burst 
sizes in terms of cells S(b ,  c ) ] ,  we find the values of T ( X ,  y )  for the smaller object sizes 
to be as given in table 1. 

Figure 5 presents the number of bursts of a given size in terms of fragments Nscb,,, 

distributions, these data are very similar for the lower sizes, although the divergence 
here occurs at  a much lower size. This is reasonable, since fragments are composed 
of lower-order objects (cells). A burst of 10 fragments will be a much less frequent 
event than a burst of 10 cells, since a significant amount of hindering must take place 

2s B fiiiiciioii of size, agaiii foi :he above iiias fiaifoiis. As iii :he rwo previous 
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Table 1. Values of the exponent 7 i x . y )  for size distributions of various fragmentation 
objects at the smaller Size ranges. Here T(X.Y) is defined by relation ( I ) ,  with subscripts 
denoting the size of the objects x in terms of  sub-objects y. 

for such a large burst of fragments to occur. At a reactive mass fraction 4, = 0.6, for 
example, out of a total of 6250 bursts, 12 bursts of 10 fragments in size occurred as 
compared with 67 bursts of 10 cells in size (i.e. NS(b,f ,=,O= 12 and Ns(b,cl=lo=67). In 
the case of bursts in terms of fragments, the sensitivity of the number density to reactive 
mass fraction begins to appear for bursts of as few as four fragments. 

In the previous section, relation (2) was introduced as the scaling relation for 
reactive mass fractions below the percolation threshold 4'. As has been noted, the 
system must always be above the reactive phase percolation threshold in order for the 
reaction process to propagate. However, if one considers the critical mass fraction of 
(2) to be that at which the quantity of interest (here the size of the fragmentation 
objects) diverges, then as clearly seen in the plots of mean object size the system is 
below the critical mass fraction. Thus it is appropriate to utilize relation (2) or a similar 
relation as the basis for scaling of the fragmentation objects. 

If fragmentation is a percolation-type process, it is expected that use of the scaling 
relation (2) will result in plots in which data for all mass fractions lie on a single curve. 
Recasting relation (2) in terms of the fragmentation variables defined above yields 

where T(X, y) and u(x, y )  denote the scaling exponents for sizes of type-x objects as 
expressed in type-y sub-objects, and &x,v ,  is the scaling function; here f is a function 
of the objects x and sub-objects y, as opposed to the static percolation case of relation 
(2). Note also that both N,, , , ,  and S(x,y)  are functions of mass fraction $,. Values 
of T and U were determined by plotting NsS' against ($, -4;)""s [it is understood 
that here N, S, T and U are functions of (x.y)], and determining the third-order 
polynomial which best fit the data points in a least-squares sense. Squares of the errors 
between the value of each data point and the polynomial were then summed for each 
candidate set of values of 47, T and U. The values of $:, T and U which resulted in 
the minimum squared error are used as the best parameters for the two curves. In table 
2, we present a summary of the scaling exponents and critical reactive phase mass 
fractions which yielded the best agreement with ( 5 )  for each of the combinations of 
fragmentation objects. Note that we do  not consider these values to be 'exact'. The 
relatively small number of bursts generated for this study, while providing good data 
with which to evaluate the general behaviour of the fragmentation process, are not 
large enough to yield highly accurate results for the scaling parameters. Nonetheless, 
the values presented in table 2 do  provide valuable information concerning the overall 
behaviour of fragmentation. 
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Table 2. Values of the scaling exponents ~ ( x ,  y ) .  V ( X ,  y )  and critical reactive mass fractions 
6?(x, y )  for different fragmentation objects as expressed in terms of their  constituent 
sub-objects. Here the quantities in parentheses denote the value for objects of type x as 
expressed in sub-objects of type y. The distribution of groups in terms of fragments did 
not yield data which was adequate for scaling. 

(b, e )  0.65 0.36 0.57 
(9, e )  0.79 0.36 0.56 
(/, c)  0.78 0.28 0.53 
( 4 8 )  1.49 0.11 0.41 
( b J )  1.58 0.21 0.58 

Figures 6 and 7 present scaling plots of the fragmentation object size distributions 
for bursts and fragments, respectively, in terms of cells. By plotting Ns~x,, iS(x,  y ) T c r y )  
against (& - +~)""'""'S'(x, y ) ,  the values of the scaling exponents T ( X ,  y )  and u ( x ,  y )  
which provide the hest collapse of the data can he determined. Both data sets show 
relatively good collapse for all values of reactive phase mass fraction +,. For the 
distribution of burst sizes in terms of cells, the values of T ( b ,  c )  = 0.64, u( b, c )  = 0.36 
and +?(b. c )  = 0.57 resulted in the best scaling behaviour. For fragments in terms of 
cells, the best collapse was obtained when ~ ( f ;  c )  = 0.78, u(f; c )  = 0.28 and $r(f; c )  = 
0.53. A comparison of figures 6 and 7 shows the similarity in scaling of both bursts 
and fragments in terms of cells. The best scaling for groups as expressed in cells was 
found to occur for T(g, c )  = 0.79, u ( g ,  c )  = 0.36 and 4 f ( g ,  c )  = 0.56. The scaling plot 
of groups in terms of cells is not presented due to its close similarity to both bursts 

. Q, = 0.0 

A Q, = 0.0 

. 0 ,  = u.0 

e Q, = 0.0B 

~ 0, = 0.70 

~ Q, = 0.88 
Q, = 0.87 

~ Q, = 0.08 

- 

Q 

0 0.5 

* l / O  S(tq - 91 1 
Figure6. Scalingplot ofthe burstsize in termsofeells S(b ,  c).  Herelog,, S(b, C ) ' " ' ' N ~ , ~ , ~ )  
is plotted as a function of [ m ,  - +?(b. c)]""'b"'S(b, c)  as in relation ( 5 ) .  The best collapse 
of the data is for d b ,  e) = 0.36, T( b, c)  = 0.65 and d?( b, c)  = 0.57. 
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6 ,  = 0.0 

“ 6 ,  = 0.7 

-2  
0 0.2 0.4 

l/O S($, - $ 1 )  

Fig”re * ” - - , E _ -  
I. ~canng  pioi of ihe iragmeni site in terms of ceiis S(i,e). Here 

- 4T[L C)]‘~*(’,‘)S(L e )  as in relation log,, S ( 1  c)“””N,,,,, is plotted as a function of 
( 5 ) .  The best collapse of the data is for v[L e )  = 0.28, ~ ( f ,  c )  =0.78 and 4t[i, c)  =0.53. 

and fragments in terms of cells. Comparing the values of scaling variables for bursts 
and groups as expressed in cells shows quantitatively the close relation between the 

close scaling relationship, due to the fact that these two objects as measured in cells 
are almost identical in size; in addition, the size of groups in terms of fragments is 
very close to 1. However, the data for bursts and groups indicate a much closer 
relationship than do fragments and bursts, at least in terms of the scaling behaviour. 

In figure 8, scaling results for bursts as measured in number of fragments per burst 
are presented. Clearly the collapse of the data is not nearly as good as that seen in 
the previous figures for objects as measured in terms of cells. Here the best collapse 
was found to occur for 7(b, f) = 1.58, u ( b , f )  =0.21 and @T(b , f )  =0.58. The data for 
bursts in terms of groups showed even poorer collapse than did bursts as expressed 
in fragments. This case resulted in a critical mass fraction @T(b, g) = 0.41, a value 
which seemed excessively low when compared with the previous results. This is a 
further indication that bursts and groups are too closely related for good scaling 
behaviour to be seen. The data for groups in terms of fragments were so closely 
distributed that no scaling was possible; note that the mean group size as measured 
in number of fragments was only slightly higher than 1 for all mass fractions examined. 

An interesting result is that the optimum scaling for the three objects in terms of 
cells obeys relation (3) for the critical mass fractions +f(x, y). However, the estimated 
critical mass fraction for bursts in terms of fragments @?(b. f) does not obey the 
leftmost inequality of relation (4). Due to the relatively small number of bursts 
generated, it is not clear whether this is due to inaccuracies arising from a lack of data 
points or is an actual characteristic of the problem itself. However, since the computed 
value of +T(b, f) =OS8 lies very near the value found for + f ( b ,  c)=O.57, it is clearly 

two &j&Sl It was initia!!y ezp.ct.d that gro”ps 2nd fr.gm..nts would erhibit S”& a 
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Figure 8. Scaling plot of the burst size in terms of fragments S(b,  f). Here 
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relation ( 5 ) .  ? l e  best collapse of the data is for v(b, 1) = 0.21, T(A e)  = 1.58 and +?(A c )  = 
0.58. 
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possible that further generation of data may result in an ordering of critical mass 
fractions as indicated in relation (4). 

Not surprisingly, the best collapse of the data as measured by the sum of the squares 
of the errors was found for bursts in terms of cells S( b, c ) .  This result was expected, 
since S(b, e) is a measure of the highest level objects (bursts) in terms of the lowest 
level sub-objects (cells), providing the largest range of sizes and exhibiting a relatively 
smooth distribution. As one measures objects in terms of sub-objects which are very 
closely related, such as groups in terms of fragments, the scaling breaks down. However, 
results for bursts, groups and fragments in terms of cells all showed relatively good 
scaling behaviour, most clearly in the smaller size ranges. The collapse of the data was 
not as good for the larger object sizes, reflecting the greater amount of scatter in these 
data. 

As in any simulation of an infinite system, the finite size of the model system affects 
the results. As noted above, the model system used here was 30 cell lengths wide, with 
periodic boundaries in both x-directions. To determine the effects of this finite-sized 
system, additional runs of 3000 total bursts were made at the lowest reactive phase 
mass fractions (6, =0.60,0.61 and 0.62) with a system size of 40 cell lengths. In figure 
9 we present the mean size of several fragmentation objects for the two system sizes 
studied. The mean sizes of all objects showed an increase with increasing system size, 
with the largest increases at the lower reactive phase mass fractions. At the lower 
values of +,, the data obtained at L = 3 0  began to decrease, rather than increase as 
would be expected. This trend was not observed for the larger system size, indicating 
that this decrease was due to  finite system size effects rather than a characteristic of 
the fragmentation process itself. 

C A Miller et al 

5. Conclusions 

One aspect of the complex process of fragmentation, namely the hindering of fragments 
from release, has been studied by using a two-dimensional model of a two-phase solid 
which undergoes a reaction at its surface. By employing scaling concepts of cluster 
percolation theory, new and interesting results describing the behaviour of the hindered 
fragmentation process have been obtained. The characterization of fragmentation in 
terms of a hierarchy of objects and their constituent sub-objects has revealed the subtle 
and unique percolation behaviour of the fragmentation process. In particular, the 
indication of different critical reactive mass fractions for different objects as defined 
by their respective sub-objects is unique to the hindered fragmentation process. A 
further interesting result is the indicated existence of 'virtual' critical mass fractions, 
i.e. critical points which cannot be reached due to the physical limitations of the 
problem, but which arise as properties of the scaling function. Although the intent of 
this study was to provide an introduction to the unique aspects of the hindered 
fragmentation problem, estimates of the scaling exponents and the critical mass 
fractions for various fragmentation quantities have been computed. In particular, the 
reported critical mass fractions for the highest level object (bursts) follow a postulated 
trend based on physical reasoning. The reported results have shown that hindered 
fragmentation can be described using percolation scaling concepts, allowing the charac- 
terization of fragmentation objects in terms of several different sub-objects, yielding 
readily interpreted dependencies of average properties on the reactive phase mass 
fraction. 
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