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The Lagrangian transport of a passive scalar in a class of incompressible, random stationary 
velocity fields, termed “random-vortex” models, is studied. These fields generally consist of 
random distributions of finite-sized elementary vortices in space with zero mean velocity in the 
presence of molecular diffusion D. The effects of vortex density, vortex strength, and sign of 
the vorticity on the Lagrangian history of a fluid particle [i.e., mean-square displacement ti(t) 
and velocity autocorrelation function 5@‘(t) ] on the specific random-vortex models which 
possess identical energy spectra but different higher-order statistics for a P&let number of 100 
are investigated. This is done by a combination of Monte Carlo simulations of the Langevin 
equations and analysis. It is found that the Lagrangian autocorrelation H(t) and the mean- 
square displacement d(t) can be significantly different as the density of the vortices increases 
and when there are long-range correlations in the sign of the vorticity. A simple theory based 
on a model for 3?( t) agrees strikingly well with the present simulations. It is found that D * 
increases with vortex density, suggesting that Gaussian fields are maximally dissipative among 
a wide class of vortex flows with given energy spectra. 

I. INTRODUCTION 
The problem of passive transport of a scalar in a random 

Eulerian velocity field has a rich history, beginning with the 
pioneering paper of Taylor.’ The problem consists of study- 
ing from a statistical viewpoint the evolution of marked fluid 
particles advected by a prescribed random velocity field in 
the presence of molecular diffusion with diffusivity D. Im- 
portant applications of this problem occur in flow in porous 
media,2.3 Lagrangian chaos,4 turbulent fl~w,~ etc. For in- 
compressible velocity fields (the subject of this paper), the 
effective diffusivity D * is always larger than D and, in in- 
stances of convection-dominated flows, can be very large 
(e.g., atmospheric turbulence). Over 20 years ago, Kraich- 
nan’ and Saffman,’ among others, studied various aspects 
of this problem. Kraichnan studied, in particular, Gaussian 
velocity fields, both time independent and time dependent, 
with prescribed energy spectra and carried out numerical 
experiments with D = 0 for such models for the first time.6 
A comprehensive survey of this passive advection problem 
can be found in Monin and Yaglom.5 More recently, using 
the theory of multiscale expansions, or homogenization, the 
problem was investigated by Papanicolaou et aI.’ and oth- 
ers.‘*” 

A primary issue is to determine the Lagrangian proper- 
ties of the tracer particle in terms of the given velocity statis- 
tics. In principle, this determination can be made by solving 
a Langevin equation for the motion of particles but, in prac- 

*) Permanent address: Department of Mechanical and Aerospace Engineer- 
ing, North Carolina State University, Raleigh, North Carolina 27695 
7910. 

tice, this is mathematically intractable due to the complexity 
of the velocity field. Much of the previous work on disper- 
sion due to random velocity fields has concentrated on 
Gaussian statistics. While Gaussian statistics are important, 
it is of value to study transport by more realistic non-Gaus- 
sian velocity fields, given that, except in the Gaussian case, 
knowledge of the energy spectrum (or, equivalently, Euler- 
ian two-point velocity statistics) is, of itself, insufficient to 
determine fully the velocity. In particular, velocity fields 
with the same energy spectrum can have completely differ- 
ent streamline patterns and thus the Lagrangian histories 
will differ. 

This paper represents an initial effort in a general pro- 
gram of understanding dispersion in complex chaotic flows, 
such as those that arise in flow in porous media and Ray- 
leigh-Binard convection near the transition to chaos, by 
studying random models with a physical space description. 
To begin with, and for simplicity of analysis and computa- 
tions, we consider “frozen” or time-independent model 
fields in the spirit of Kraichnan and others. Although the 
importance of time-independent models has been recognized 
in the study of “Lagrangian turbulence” for some time, here- 
tofore there have been few random models of passive advec- 
tion which have been computationally tractable. 

Here we introduce a class of velocity fields that we term 
“random-vortex” models to study the effects of higher-order 
statistics on Lagrangian transport. Essentially this class of 
models consists of a random distribution of “elementary” 
vortices in space. These vortices are generally allowed to 
overlap, and thus by superposition of the vortex velocity 
fields generate complex flow ‘patterns. Random-vortex mod- 
els are a useful analytical and computational device to study 
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non-Gaussian fields. Such velocity fields serve, for instance, 
as models for the Darcy velocity in a porous medium con- 
taining a random distribution of momentum sources, as pro- 
posed for a related model by Koch and Brady.3 One can thus 
study the effects of varying the density of vortices, vortex 
strength, and sign of the vorticity, while keeping the energy 
spectrum fixed. A wide class of energy spectra can be imple- 
mented by choosing appropriate elementary vortices. 

As a first step in this direction, we study two-dimension- 
al incompressible velocity fields containing a very simple 
vortex element, namely, identical vortices of finite size with 
solid-body rotation. For this model we are able to carry out 
Monte Carlo calculations of the mean square displacement 
d(t) of a tracer as a function oft as well as the Lagrangian 
autocorrelation function .8(t) and the effective diffusivity 
D * for finite but very large P&let number Pe (Pe = 100). 
Since the P&let number is finite, we know the system is dif- 
fusive, i.e., neither trapping nor superdiffusion occurs at 
very large times.” (In a future study, we will treat the case 
Pe = 03 for this model.) In the computations, we vary the 
vortex density and orientations, while keeping the energy 
spectrum fixed; this results in different streamline patterns 
for the flows and in different Lagrangian histories. We devel- 
op a simple theory to explain these differences based on a 
model for the Lagrangian velocity autocorrelation function 
5?(t). The theory agrees strikingly well with the simula- 
tions. The analysis proposes that the differences observed in 
the Lagrangian histories result from the likelihood of parti- 
cles taking large advective “jumps” along relatively large 
“eddies” formed by the overlapping vortices. 

Another interesting random model is the one proposed 
by Isichenko et al. ’ 2 who study a superposition of stationary 
plane waves with randomly distributed wave vectors, as well 
as models based on randomly placed vortices. These authors 
study analytically the behavior of the effective diffusion co- 
efficient in the limit Pe- CO (steady-state problem), while 
we study primarily the Lagrangian history and D * at finite 
but large Pe (dynamical problem). The study of the depend- 
ence of D * on Pe as Pe+ CO by computational methods, al- 
beit important, is beyond the scope of this paper. 

The rest of the paper is organized as follows. In Sec. II, 
we briefly describe some pertinent theoretical results con- 
cerning passive advection. In Sec. III, the general class of 
random-vortex models is discussed and the Eulerian n-point 
velocity correlation functions are calculated. In Sec. IV, we 
describe the simulation procedure to study Lagrangian sta- 
tistics. We present results for two specific random-vortex 
models in two dimensions: one for which all the vortices are 
spinning in the same direction and another where the sign of 
the vorticity is assigned randomly. In Sec. V, we analyze the 
results by proposing a simple relation between the autocor- 
relation function .5?(t) and distribution of eddy sizes. Final- 
ly, in Sec. VI, we make concluding remarks. 

II. GENERAL THEORY 

We are interested in the time evolution of scalars satisfy- 
ing the advection-diffusion equation in d-dimensional space 
CR d, 

saw> - + u(x)*VC(x,t) = DV*C(x,t), 
dt 

(1) 

where u(x) is an incompressible, time-independent velocity 
field and D is a molecular dispersion coefficient. We shall 
assume that the velocity field u(x) is statistically homoge- 
neous and isotropic, and satisfies 

VW(X) = 0, 
(u(x)) =o, (lu(x)~2)~v2<co. (2) 

Here angular brackets denote ensemble averaging. The sca- 
lar C( x,t) can be thought of as representing the concentra- 
tion at time t of a suspension of particles, with initial concen- 
tration C( x,t = 0), evolving according to the Langevin-type 
equation’ 

JX(x,t) 
dt 

= u(X(x,t)) + mN(t), (3) 

where N(t) is a d-dimensional, delta-correlated Gaussian 
white noise that is statistically independent of the velocity 
field u(x). If C, (x) = C(x,t = 0) denotes the initial value 
of the solution of (l), this solution can be represented at 
later times as an expectation value (denoted by the operator 
E{ }) over particle trajectories. Namely, we have 

C(x,t) = E%&Cc,tH~. (4) 
Two useful quantities in the study of the dynamics of 

Eqs. ( 1) or (3) are the mean-square displacement: 

d(t) = (E{lWW I*)>, (5) 
and the Lagrangian velocity autocorrelation function: 

9’(t) = (E{u(X(x,t)~u(x)})/(l~(x)l~). (6) 
Because u(x) is statistically homogeneous, the right-hand 
sides of Eqs. (5) and (6) are independent of the starting 
point x, and d(t) and J??(t) are purely functions of time. 
The incompressibility and unbiasedness of the field u(x) im- 
ply that (see, for instance, Monin and Yaglom5 ), for all 
t > 0, c?(t) and 5?(t) are related by the equation 

s 

f 
d(t) =2dDt+2V2 (t - s)ST(s)ds (7) 

0 

or, 

-p(t) = 2V29(f). (8) 

The advection/diffusion of particles by a random field is 
in general an extremely complex process which results from 
advective motions along the streamlines of u(x) combined 
with diffusion across streamlines. At large times, the overall 
behavior is determined by the dynamical structure of the 
flow field, the dissipation, and the interplay between advec- 
tion and diffusion. A standard measure of the relative effects 
of advection and diffusion in the long-time limit is the P&let 
number, defined by 

Pe2 = 
s 

L (IdW) 12>, 
R” \{o} D21k12 

(9) 

where dG( k) is the spectral measure (having dimensions of 
velocity) associated with the random field u(x),~ i.e., dii(k) 
is a random measure on d-dimensional space with the origin 
excluded (denoted by R d \{O}), such that 
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rr2 r+m 

u(x) = c elk” dG(k), (10) 
JR"%.(O) 

with 

k-dC(k) = 0, (dii(k)) = 0, (dC(k) ediQk’)) = 0, 
(11) 

for all k# k’ in R ’ \ CO>. It follows from ( 10) and ( 11) that 
the Eulerian two-point velocity autocorrelation function is 
given in terms of dB (k) , by 

R 

aB 
(x _  y) = k7(X)‘U,3(Y)) 

V’ 

1 =----- 
s v2 R” tot 

e  “““-“‘(jdti(k)l”), (12) 

i.e., R(x) is the Fourier transform of the measure 
( ldfi (k) ] 2)/ V 2. Using this relation and elementary proper- 
ties of the Fourier transform, it follows from (9) that 

V2 
s 2rD2 R" 

R,, (x)loglxldx, if d  = 2, 

Pe2 = 
V2 

s 
R,,(x) dx 

(13) 

41~0~ R-‘T ’ 
if d= 3. 

It has been shown by several authors’-” that if 
Pe < + w , the behavior of the system for long times is diffu- 
sive, i.e., there exists D * such that 

lim[o2(t)/t] = 2dD*. 
f- z (14) 

In this paper we will be concerned only with flows for which 
the P&let number (9) is finite and hence ( 14) holds for 
some D *, the efictiue d@iisivity (or dispersion coefficient ) 
of the system. Integrating (7) by parts yields the alternative 
relation 

D*zD+$ 
s 

+* 
&(s)ds, (15) 

0 

where the integral can easily be shown to be positive; thus we 
have D * > D. Hence if Pe < + CO, the system settles into a 
diffusive regime at long times, in which particles evolve ac- 
cording to an apparently homogeneous random walk with 
diffusivity D *. While at very short times we have 
d (1) = V 2t 2 + o( t ‘) , the behavior of the mean-square dis- 
placement at intermediate times is determined by the 
streamline patterns and the amplitude of the velocity along 
streamlines. For instance, if advection along closed stream- 
lines occurs with sufficiently high probability over a certain 
time interval, O<t<t, the mean-square displacement can 
scale with time like c?(t) a  t a with a < 1 over this interval. 
The behavior of c?( t) at intermediate times is, in general, 
determined by the fluctuations of the Lagrangian autocorre- 
lation function S(f), with large fluctuations resulting in the 
occurrence of long transient behavior. One can obtain a 
coarse statistical measure of such transients by considering a 
formal asymptotic expansion of a2 ( t), for large t, to the next 
leading order, i.e., 

o-vt1 -=D*t+& +0(l), 
2d 

in which 

(16) 

so= -‘;i- 
J  

M(s)ds. (17) 
0 

In general, S,, may not exist, i.e., the first moment of S?(t) 

may diverge. For instance it is possible that 

a?(t) -=D*t+ct*+o(l), 
2d 

(18) 

where 0 <a < 1, which is a function that still satisfies Eq. 
( 14). Nevertheless, if A’(t) decays sufficiently fast, So will 
exist, in which case we refer to it as the intercept. This con- 
stant can be either positive or negative according to the La- 
grangian properties of the flow and the size of the molecular 
diffusion coefficient, D. If 6, is positive the Lagrangian ve- 
locity autocorrelation must take appreciable negative val- 
ues. This constitutes a signature of “trapping” of Lagrangian 
particles in closed eddies. Thus, the value of S, should be 
influenced to some extent by the streamline structure, a  
point to which we shall return in the discussion ofthe Monte 
Carlo simulations. 

III. RANDOM-VORTEX MODELS OF ADVECTION 
A. A class of new models 

The Eulerian velocity u(x), which appears in the advec- 
tion-diffusion equation ( 1  ), is a prescribed stationary ran- 
dom field satisfying incompressibility and whose mean is 
zero. In two dimensions, it is useful to introduce a stream- 
function \v (x), defined through the relation 

u(x) = JV’P(x), (19) 
where 

J=(-; i)* (20) 

Combination of ( 1) and (8) yields, after some algebra, the 
relation between the P&let number and streamfunction: 

Pe’ = (i/D’) [ (F’(x)) - (ul(x))‘]. (21) 
We  describe here a class of random-vortex models of 

advection. For purposes of generality, consider the following 
two-dimensional flow fields in space A of area A consisting of 
the superposition of Nidentical circular “vortices” of radius 
a whose position rN= (r , ,..., r,,,} are distributed throughout 
the space A according to the n-body probability density 
function P,Y (rN) (defined below): 

.v 
W(x) = C E,S(x - r;), 

i: t 
(22) 

where ti is the individual vortex streamfunction with com- 
pact support on the circle of radius a, i.e., 

&lx--r,[)=O, IX-r,f>a, Vi, 
and the random variable 

C-23) 

e,= t-1 (24) 
specifies the sign of the vorticity. The choice (23) implies 
that vllf x) = 0 exterior to the space occupied by the vortices 
and ensures (as shall be shown below) that \I, is continuous 
across the perimeter of the vortices. The velocity field corre- 
sponding to (19), (22), and (23) is then given by 
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U(X) = i E,v(x - r,), 
r=l 

(25) 

where the velocity associated with the ith vortex is given by 

v(x - ri) = 
JV$(x-r,), Ix-riI<a, 

0, Ix - rj 1 > a. (26) 

The overall flow field u (which is a superposition of the vor- 
tices) can be quite complex depending upon the topology of 
the clusters of vortices. We shall return to this point shortly. 
The class of models described above can easily be general- 
ized to include vortices with a polydispersivity in size, i.e., 
characterized by a continuous size distribution. This gener- 
alization would permit the study of long-range spatial corre- 
lations in the advective field, a question that has attracted 
much attention in connection with the phenomena of long 
transients and anomalous diffusion.,3-‘6 It is only for simpli- 
city and as a first step that we treat identical (monodis- 
persed) vortices here. The case of polydispersed vortices will 
be the subject of a future paper. Notice also that random- 
vortex models are not limited to two dimensions, i.e., such 
models can be used to generate three-dimensional flows as 
well. 

Using (2 1) and (22) we can compute an explicit expres- 
sion for the P&let number of the random-vortex model. The 
quantity P,v (r”) dr” gives the probability that vortex 1 is in 
dr, about r, , vortex 2 is in dr, about r2 ,..., and vortex Nis in 
dr, about r,r and normalizes to unity. The ensemble average 
of any many-body function F( r”‘) is given by 

(F(r”)) = s F(rN)PN (@‘)dr”‘. (27) 

It is convenient to introduce the “generic” n-vortex proba- 
bility density defined by 

pn (rN) = N! 
(N-n)! s 

P,(rN)drN-“, (28) 

where dr” - ‘E dr, + , . * .dr,. Here, pn (r”) characterizes 
the probability of finding any n < N vortices with configura- 
tion r”. Since we will be considering stationary (homoge- 
neous) random fields, it is implicit that the “thermodynamic 
limit” is taken, i.e., N- CO, A + CO, in such a way that 
p = N/A, the number density, is a fixed, finite constant. For 
statistically homogeneous systems, the pn (r”) are transla- 
tionally invariant and it is convenient to introduce the n- 
body distribution function g,, defined by 

8, (r12 ,... ,rln 1 =pn (r12 ,... ,rln VP”, (29) 

wherep, (r, ) = p, Vi. For “fully penetrable” (i.e., spatially 
uncorrelated or Poisson distributed) vortices, the g, are 
especially simple: 

g,(r ,2, . . . . r,,,) = 1, Vr,. (30) 

For general interaction potentials between vortices, the g, 
are more complex, but such situations are not considered 
here. 

Use of (2 1) and (27)-( 29) yields the following explicit 
relation for random vortex models: 
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Pe’=-& p @(x-r,)dr, +p* 
(I 

X 
ss- 

EI E2 $Cx - r, )$(x - r, )g, (rlr )dr, dr, 

-P2 ?I $(x - r, )dr, Zr $(x - r2 )dr, 
> 

. (31) 

Overbars over the E, indicate orientation averaging; general- 
ly such correlations are functions of position. It is thus seen 
that the P&let number for this class of flow fields depends 
upon the vortex streamfunction, the statistics of the circula- 
tion directions, and the microgeometry of the vortices 
through the number density p and the pair correlation 
gz (r12 )* 

If the orientations of the vortices are randomly and inde- 
pendently distributed, (3 1) becomes 

Pe’=$ @(x-r,)dr, I 

=~[@Cx-r,)drl, (32) 

where 

q = pra2 (33) 

is a reduced density. Note that 77 is equal to the volume frac- 
tion of vortices C$ only in the case of totally impenetrable 
vortices. Ifthe vortices can overlap to any degree, then v < 4. 

If the vortices have positive orientation only, then (3 1) 
yields 

Pe”=s p @(x-r,)dr, +p* 
(I 

X $(x - rl 1$(x - r2 ) [g, (r,= 1 

For the case of Poisson distributed vortices, 
(34) becomes 

Pe2 = AJ@(x-r,)dr,, 

- l]dr, dr, 
> 

. 

(34) 
(30) holds and 

(35) 

which is identical to the random-orientation result (32). 
Let us now be more specific about the particular ran- 

dom-vortex model we wish to study. To begin, consider vor- 
tices with simple solid-body rotation. Letting ut, and v, be 
the tangential and radial components of v (with u, = 0), we 
have 

ue(r) = I U,(r/a), rca, 

0, r>a 
(36) 

or 

d(r) = I 
(U,/2a)(? -a*), r<a, 

(37) I., 
10, r>a. 

Here r is a radial distance measured with respect to the vor- 
tex center. Observe that such a model possesses the peculiar 
feature of a discontinuous velocity at the vortex perimeter. It 
would have been more desirable to have chosen vortices with 
a smooth velocity decaying rapidly at infinity. In the present 
computation we have chosen vortices with compact support 
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as a device to keep track of the relation between the vortex 
density and the underlying streamline structure, which then 
depends on the shape and size of random clusters of vortices, 
a question that has been extensively studied in continuum 
percolation theory. Physically, any smoothly and rapidly de- 
caying vortex has an effective finite radial extent, since the 
P&let number is finite, and hence the qualitative features 
associated with variations of vortex density are the same 
whether the vortex is compactly supported or not. This simi- 
larity breaks down as Pe- CO, but so does the general hydro- 
dynamics. The discontinuity of the velocity field is mitigated 
by the presence of dissipation (D #O). In our simulations 
(see Sec. IV), we were careful to employ a sufficiently fine 
space-time resolution to avoid numerical error from under- 
resolving the motion near the vortex edges, as well as the 
motion within vortices. Jump discontinuities of the velocity 
field do not affect substantially the long-time/large-scale be- 
havior and have been used by other authors to facilitate the 
calculations.,4~,5 

As noted earlier, even simple vortex flows, can yield 
complicated flow patterns. If the vortices overlap to any de- 
gree, then the topology of the streamlines can be very com- 
plex. Owing to large-scale structures (Le., large connected 
clusters of vortices), large-scale convective motions can ex- 
ist, resulting in enhanced long-time transport. In this paper 
we shall focus our attention on two specific cases of random- 
vortex models that we will refer to as model I and model II. 
Both models consist of Poisson distributed vortices with sol- 
id-body rotation as given by (37). In model I the orientation 
of the vortices is randomly and independently distributed, 
whereas in model II all the vortices have positive orientation, 
say clockwise. From the discussion above it is clear that both 
models possess the same P&let number given generally by 
(32) or (35). Substitution of (37) into either of these rela- 
tions gives 

Pe = (U,a/2D)m. (38) 
Here 7;1[ ( 33 ) ] is related to the volume fraction of vortices by 

$= 1 -exp( -7). (39) 

In Fig. 1 we depict a realization of Poisson distributed 
circles at a reduced density v = 0.4 (#=0.33), which is well 
below the percolation-threshold value Q y 1.14.” The clus- 
ter sizes are not large, as expected. Although the streamline 
topology can already be nontrivial at this density, the 
streamlines will always be closed curves forming small iso- 
lated islands. Figures 2 and 3 show Poisson distributed cir- 
cles at 7 = 1.6 (4~OX), 17 = 2.3 (4~0.9), densities well 
above the threshold value. At such densities, the streamlines 
are still closed curves but their topology becomes increasing- 
ly complex as 77 increases. 

6. Eulerian velocity correlation functions for random- 
vortex models 

Here we obtain explicit expressions for the n-point Eu- 
lerian velocity correlation functions in terms of the vortex 
velocities and the n-body distribution functionsg,. We begin 
by considering the two-point and four-point functions and 
then generalize to any n. 

FIG. 1. A computer-generated realization of a distribution of overlapping 
circular vortices. Here reduced density of vortices n is 0.4, which corre- 
sponds to an area fraction C$ of approximately 0.3. 

1. Two-point correlation function 

The ensemble average of the product of u(x, ) and 
u(x, ) for general random-vortex models is obtained by a 
combination of (25), (26), (28), and (29), with the result 
that 

(u(x, )*u(x2 1) =ps Fv(x, - r, )*vtx, - r, )dr, 

+P* E,E~V(X, -r,) 

‘V(X, - rz )g, (r12 Mr, dr, 

9 +T 
=d ‘0 b 6 (40) 

1 2 1 2 

FIG. 2. A computer-generated realization of a distribution of overlapping 
circular vortices. Here reduced density of vortices v is 1.6, which corre- 
sponds to an area fraction (b of approximately 0.8. 
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FIG. 3. A computer-generated realization of a distribution of overlapping 
circular vortices. Here reduced density of vortices 7 is 2.3, which corre- 
sponds to an area fraction q5 of approximately 0.9. 

The second line of (40) is the diagrammatic equivalent I8 of 
the first line. This diagrammatic notation is a compact way 
to indicate “cluster” integrals, especially higher-order ones. 

White circles represent unintegrated positions (in this 
case x, and x2 ), while black circles represent integration 
over vortex positions. Associated with each black circle is a 
factor ofp. Here - - - - denotes a v bond and - denotes a 
g, bond. In general, associated with each diagram is an aver- 
age involving certain products of e,, i.e., orientation correla- 
tions. The orientation correlations associated with the dia- - 
grams of (40) are obvious. (Note that < = 1.) A precise 
statement about the particular orientation correlations in- 
volved in general diagrams is given below. 

Now let us consider the evaluation of (40) for the Pois- 
son models I and II. Hereg, = 1 and the two-body diagram 
can be written as a product of singly connected v bonds. Now 
since v is solid-body rotation given by (36), then (v) = 0 
and hence for both models 

(u(x, Mx,)) = 6 Y ‘o * (41) 

1 2 

Unlike the general diagrams, the diagram of (41) does not 
involve orientation correlations. Thus the Eulerian two- 
point correlation function is the same for both models and it 
follows from ( 13) that both models have the same P&let 
number at fixed reduced density 7, a conclusion already 
reached using the P&let number/streamfunction relation 
(21). 

2. Four-point correlation function 
Application of relations (25), (26), (28), and (29) 

yields the Eulerian four-point correlation function for the 
general random-vortex model to be 

(u(x, )‘U(X* )‘U(X3 )-(x4 1) 

% “\, -l-I T&--h//t71 
= d60006dodo6bobob 

1234123413241423 

‘d 
q 7 ‘/‘p,+/?-t 
,‘&+A 6 do+ob A 0 d d:, b 

1234213431244123 

+;y;+;yf~+/y;;T\ 000 
1234132423142413 

+;y;+;y&+;Fb * 
142334121234 

(42) 

Here 

and 

E 

designate a g, bond and g, bond, respectively. 
For models I and II, we have 

tub, )‘U(X, )‘U(X, )‘U(X, ,> 
= 

,R / I \ \ /. \\ ’ / 
d’ 6 b “0 

1 2 3 4 

+ (u(x, )‘U(X, ))‘(U(X, )‘U(X‘! 1) 
+ (0, )*u(x3 )b(u(x, )‘U(x$ I> 
+ (0, )‘U(X, ))‘(U(X, )‘U(X, ,>, (43) 

where (u(xi)*u(xj)) is a term of order p given by (41). 
Therefore, models I and II are indistinguishable at the four- 
point level. As before, the one-body diagram of (43) does not 
carry any factor involving orientation correlations and v is 
given by the solid-body rotation (36). The first diagram in 
(43) is a manifestation of the fact that the fields are non- 
Gaussian. 

3. n-point correlation function for any n 

Here we obtain the expression for the n-point Eulerian 
velocity correlation in the general random-vortex model. A 
simple diagram is one in which no pairs of circles are linked 
by more than one bond. Let S, (k) be the sum of simple 
diagrams associated with the unordered partitioning of n 
white labels among k black circles (with corresponding v 
bonds), such that the black circles themselves are connected 
by a g, bond. [For example, S, ( 1) is the first diagram in 
(42) and S, (2) is the sum of all two-body diagrams in 
(42) .] Associated with any diagram of S, (k) is the correla- 
tion function 
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wherep, is the number of white labels attached to a particu- 
lar black circle, 1 sjjcl, where 2 is the total number of sets in 
the partition of the white labels. [For example, the quantity 
E, E, 4 appears in the integrand of the integral associated 

with the penultimate diagram of (42).] Then the n-point 
correlation function is 

(ifJ uw) = $, S,,(k)+ (44) 

In the case of models I and II, all diagrams involving any 
subgraph containing a single black circle connected to only a 
white circle are identically zero because of Poissonian statis- 
tics and (v) = 0. Similarly, all odd-order n-point correlation 
functions are identically zero. Although the two-point and 
four-point correlation functions for models I and II are the 
same, they are dtflerent at the six-point level. For example, 
S, (2) will not be the same among these two models because 
model II will involve orientation correlations which, unlike 
model I, vanish identically. Models I and II therefore will 
generally possess different Lagrangian statistics, such as the 
mean-square displacement $(t) and the velocity autocorre- 
lation function C?(t). 

It is important to observe, however, that the highest- 
order density contribution to the n-point correlation func- 
tion is of the form 

(U(X,)~U(X2)~(U(XJ)~U(X1)~“‘(U(X,-,).U(X,)) 
(and similar terms under permutations of the labels) and 
hence is of orderp”‘2. Thus, in the limit p --+ co, the two mod- 
els in fact become identical and tend to a Gaussian velocity 
field u(x) that is fully specified by the two-point correlation 
(U (x, )*u( x2 ) ). From these considerations we expect that at 
large 7 the effective diffusivities of models I and II should be 
approximately equal to the effective diffusivity of the corre- 
sponding Gaussian system with the same Eulerian statistics. 
However, the differences in the Lagrangian histories ofmod- 
els I and II are expected to be substantial even at high densi- 
ties because of the markedly different streamline structures. 
In particular, the difference in the values of 8, should be 
significant. 

IV. MONTE CARLO SlMULATlON 
For pure diffusion processes in random media without 

advection, efficient first-passage-time techniques have been 
recently developed to compute the mean-square displace- 
ment of a diffusion tracer.lg Here we devise a new algorithm 
that enables one to obtain statistical measures along fluid 
particle trajectories. We present specific results for the 
mean-square displacement and the Lagrangian velocity au- 
tocorrelation function as functions of time. 

A. Simulation procedure 

Obtaining statistical measures from computer simula- 
tions is a two-step process. First, one generates realizations 
of the random velocity field. Second, one samples each real- 
ization for the statistical measure of interest and averages 
over a sufficiently large number of realizations. 

We generated realizations of N Poisson distributed vor- 
tices of radius a f with solid-body rotation specified by (39)] 
by randomly placing the vortex centers in a square cell of 
area L, ‘. The central cell is surrounded by periodic images of 
itself. In model I half the vortices have clockwise orientation 
and the other half have counterclockwise orientation, on 
average. In model II, all of the vortices have clockwise direc- 
tion. We examined three different values of the reduced den- 
sity q: 0.4, 1.6, and 2.3. As noted in Sec. III, 77 = 0.4 is the 
only value studied below the percolation-threshold value of 
qc f= 1.14. 

In order to compute the mean-square displacement and 
Lagrangian autocorrelation function, one must follow fluid 
particles along their trajectories. The initial location x, of a 
fluid particle is chosen randomly in the central cell. In a 
small time interval Ar, the particle will diffuse and advect to 
a point x2 so that the mean-square displacement is 
Ix2 - xr 1”. The quantity [x2 - x, 1’ is related to the diffu- 
sion and advection process as follows: construct a small 
imaginary circle of radius S around x, . Then the mean hit- 
ting time for the walker to first strike the surface of the 
sphere for pure diffusion is given by 

At = 5’/40. (45) 
The displacement due to advection is taken to be 

X, = {[u(x, ) + u(x, + Sfi)]/2)At (46) 
where ii is a unit radial vector. Thus, 

[X2 - XI 12 = s* + x,*x, + 2&X,. (47) 

Thus the total mean-square displacement aZ( t) (aver- 
aged over many walks and realizations) and Lagrangian ve- 
locity autocorrelation function ,“A (t) after time t = n At are, 
respectively, given as 

@vt) =q+,+* -,I”>], (48) 

g(t) = E [ (Ia,+, Pu(x, ))]/E [ (Nx, )I’)], (49) 

where x, + , is the location of the random walker after the n 
step from its initial release. The errors involved in decompos- 
ing the coupled diffusion-advection process into distinct dif- 
fusion and advection steps will be small provided that the 
step size S is taken to be sufficiently small. In this study, we 
tested several different values of S and found that a value 
S = 2.5 X 10 - 3L (roughly equal to 2.5 x 10 - * times a vor- 
tex diameter) yielded results accurate to within three signifi- 
cant figures. This is a very high resolution. Nonetheless, the 
calculation of the Lagrangian autocorrelation is difficult to 
determine with high precision, much more so than d(t), 

In order to test thesimulation method, we computed the 
effective diffusion coefficient D * for a two-dimensional peri- 
odic-layered geometry with layers of thickness L oriented in 
the x direction. Each layer possesses an x-component veloc- 
ity U which periodically alternates in sign in they direction 
(i.e., the transverse direction). Our simulation results for 
this idealized model were in excellent agreement with the 
exact result for the effective diffusivity in the x direction 
D 7, , which is easily shown to be given by 

Il:,/Il= If (U2L2/12D2). (50) 
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FIG. 4. Dimensionless mean-square displacement d( t)/4a’ as a function 
ofadimensionlesstime&(t)l. ,,/4aL for model I at 11 = 0.4 and Pe = 100. 
Thedimensionlesseffective diffusivity D */D, the slope of the tangent line of 
the data at largest time available o’(t) iU = ,,/4a’- 19.5, is calculated to be 
I .35 in this case. 

In our simulations for the random-vortex models, we 
employed N = 100, 1000 walks per configuration, 20-500 
realizations (depending on the density of the vortices), and a 
P&let number equal to 100. The value of N = 100 was found 
to be sufficiently large to neglect any system-size effects. 

B. Results 

We carried out long-time studies of the mean-square 
displacement d(t) and determined the effective diffusion 
coefficient D * as defined by relation ( 14). Figure 4 shows for 
model I (random orientations) at 7 = 0.4 the dimensionless 
mean-square displacement c?( t)/4a2 versus the dimension- 
less time 

t* = cat) . D _ d(f) , 
40 "=o a2 4a2 

(51) 
II=0 

where the subscript u = 0 indicates the mean-square dis- 
placement in the absence of advection (pure diffusion). 
HereD*/D= 1.35andS,/a2= 1.61.Thesedata(seeTable 
I) are determined from the tangent line at the largest dimen- 
sionless time reported (t * = 19.5). A log-log plot of the 

TABLE I. Data for the scaled effective diffusivity D */Dand dimensionless 
maximum time rz,, allowed for each random walk trajectory, where 
t* = d(f)l, “/4d. 

tl 
Model I Model II 
D */D D */D t :,, 

0.4 1.35 19.5 
1.6 2.22 2.42 4.9 
2.3 2.26 3.5 

a2(t) 
4a2 

a2wl”,o 
4a2 

FIG. 5. Dimensionless mean-square displacements o’( t)/4a’ as functions 
of a dimensionless time c?(r) Iy ,,/4az for models I and II at r] = 1.6 and 
Pe = 100. The dimensionless effective diffusivities D */D, the slope of the 
tangent line of the data at the largest time available o’( t) iU ,,/4a’-4.9, are 
calculated to be 2.22 for model I and 2.42 for model II in this case. 

mean-square displacement versus time revealed an exponent 
very close to unity, indicating that t * = 19.5 is sufficiently 
large. 

In Fig. 5 we plot the mean-square displacement versus 
time for both models I and II at v = 1.6. For model I, 
D */D = 2.22andS,/a2 = 1.28. FormodelII, D */D = 2.42 

a2(t) 
4a2 

a2(t)l,=, 
4a2 

FIG. 6. Dimensionless mean-square displacement ci( t)/4a* as a function 
ofadimensionless timed(t) IU ,/4a” for model I at 71 = 2.3 and Pe = 100. 
The dimensionless effective diffusivity D */D, the slope of the tangent line of 
the data at largest time available b?(t) Iy _ ,,/4a’-3.5, is calculated to be 
2.26 in this case. 
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‘0 0.05 0.1 0.15 0.2 

t* 

FIG. 7. Lagrangian velocity autocorrelation function i#( r) for model I as a 
function of dimensionless time t* = d(t)[,J4a* at 77 = 1.6 and 
Pe = 100, 

and &,/a2 = 4.30. These parameters were determined in the 
same manner as in Fig. 4. Although the maximum time re- 
ported in this figure is sufficiently large to provide reasona- 
ble estimates of D * for both models and Se for model I, the 
same is not true for the estimate of& for model II. Nonethe- 
less, because of the convexity of c?(t) on the scale of the 
figure, our estimates of D * and So, in general, are upper 
bounds and lower bounds, respectively, on these quantities. 
There are several observations worth noting here. First, as 
one crosses the percolation threshold from 7 = 0.4 to 
q = 1.6, the effective diffusion coefficient increases by about 
a factor of 2. Second, at 7  = 1.6, model II possesses longer 

1.. 9.9,. .s .,a * s s 1.. - 1 

Model II 
9'1.6 

Pad& No.=100 
0.5 - : 

Model II 
9'1.6 

Pad& No.=100 

‘:. ':. 
o o ‘XL 'XL ../--.. ../--.. - - *--’ *--' 

‘u ‘wX 
‘u 'w' ---- ---- 

-0.5 - 

-1 
0 0.05 0.1 0.15 0.2 

t* t* 

FIG. 8. As in Fig. 7, except for model II. 

transients than model I as evidenced by a larger intercept Se. 
Third, the effective diffusion coefficients for models I and II 
are essentially the same. 

Figure 6 depicts the corresponding curve for model I at 
7  = 2.3. Here D */D = 2.26 and So/a2 = 1.04. Note that 
there is very little difference between D * for model I at 
T= 1.6 and v = 2.3. Although our estimate of D * (an upper 
bound) is relatively accurate, the same cannot be said of our 
evaluation of So here (albeit a  lower bound). Nonetheless, 
the results obtained for So give qualitatively correct behav- 
ior. 

In Fig. 7  we depict the Lagrangian velocity autocorrela- 
tion function B(t) for model I at r] = 1.6. Figure 8 shows 
the corresponding quantity for model II at 77 = 1.6. Al- 
though the amplitudes of the oscillations decay to zero more 
slowly in model II than in model I, as one would expect, 
model I has a deeper first minimum (reflecting trapping in 
small eddies) and has its first zero at a  smaller value off. The 
significance of this behavior in ZG’ (t) is discussed in the fol- 
lowing section. 

The simulations were carried out on a CRAY Y-MP 
and all the reported calculations required about 75 CRAY 
hours. 

V. ANALYSIS 
A. Geometry of the random-vortex models and 
streamlines 

Inspection of the simulations shows that the duration of 
the initial transient, in which the average mean-square dis- 
placement d(t) is nondiffusive, is approximately of the or- 
der of ST, ,  where r,-a2/D is the diffusion time. These 
small transients are due to the short-range nature of the ran- 
dom velocities generated by superposition of vortices. 

Quantitatively, this can be ascertained by considering 
the Eulerian two-point correlation function, which, accord- 
ing to (41), is given by 

R,(x-y) ==J+ ua(X-r)UB(y-r)dr. (521 

Sincev(x) =OforJ~[>a,thisshowsthatR~~(x-y) =0 
for fx - yI > 2a. This implies, since (v) = 0, that there can- 
not be, typically, large-scale motions of marked particles due 
to advective motion alone, irrespective of the value of the 
reduced density of eddies, 7. Thus, if we take the “hopping’” 
length associated with diffusion to different “eddies” (see 
discussion below) to be of the order of a, then the transients 
should occur over times of order a2/D. We  remark that the 
situation would be different ifthe vortex radii were distribut- 
ed according to a long-tailed probability density; in such 
cases, large transients associated with strong convective ef- 
fects would be observed. We  do not rule out, in general, the 
possibility that short-range velocity correlations can give 
rise, through cooperative effects, to long transients, but this 
is definitely not the case for models I and II. 

The differences between the flows at different values of 
rl and between models I and II can be explained by examin- 
ing the streamline patterns. For flows having long stream- 
lines, or more precisely, long “channels” of streamlines, par- 
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titles can be advected along such channels for intervals on 
the order of the diffusion time a’/D, and then diffuse into 
another such channel for another period of time, etc. Be- 
cause of the large P&let number, the velocity along such 
channels results in the particle evolving according to a ran- 
dom walk with large steps, relatively to a homogeneous dif- 
fusion with variance 20. Thus, discrepancies in the value of 
7 and in passing from model I to model II can influence the 
particle transport. Notice that model I has typical configura- 
tions consisting of small “islands” of short streamlines for 
densities below the percolation threshold, while much long- 
er but finite streamlines can form with finite probability 
above the threshold. A substantial difference exists between 
models I and II above the threshold because the streamfunc- 
tions of model I oscillate more rapidly than those of model II 
due to the randomness of the l i, and hence lead to shorter 
streamlines. 

6. Representation of the Lagrangian velocity 
correlation in terms of an eddy-frequency distribution 

The enhancement in the long-time diffusivity due to the 
random field is given from ( 15) by 

v* - 
--T-o s 

S? (s)ds, (53) 

where the integral J;S?(s)ds can be interpreted as a mean 
relaxation time of advective motions. In this subsection, we 
propose a simple picture of the Lagrangian transport from 
which we obtain approximate formulas for &’ (t), based on 
the particles alternating between successive, short convec- 
tive motions, and diffusing from one channel of streamlines 
to another. Such channels will be referred to, for simplicity, 
as “eddies.” Thus, by an eddy we mean a “channel” or “rib- 
bon” formed by parallel closed streamlines for which the 
velocity has approximately the same magnitude. The basic 
approximation that is made here consists in assuming that a 
Lagrangian particle becomes essentially uncorrelated as the 
particle exits the eddy, and that this happens, on average, 
after a few diffusion times rD = a2/D. We can then argue 
that the autocorrelation function can be computed by aver- 
aging the contributions to E{u(X( t))u(X(O))} arising from 
particles starting on different eddies over the eddy-frequen- 
cy distribution. 

The simplest kind of eddy that can be found in a ran- 
dom-vortex configuration is an isolated vortex. If we assume 
first that the molecular diffusion D is zero, the particle paths 
(for a vortex centered at x = 0) consist simply of periodic 
circular motions with constant angular velocity: 

x(t) =x(O)cos(U,t/a) -y(O)sin(U,t/a), 
(54) 

y(t) =x(O)sin( U,t/a) +y(O)cos( &t/a), 
where (x( 0), v( 0)) are the coordinates of the starting point. 
To compute the contribution to the velocity autocorrelation, 
we form the inner product 

v(x(~),v(~))*v(x(o),y(O)) 
= (U~/a’) [(x(O))= + ly(O))“lcos( Uot /a) (55) 

and average this function over the initial position of the par- 
ticle. In this way, we obtain the purely oscillatory function 

~v(OID=o =cos(UOt/a), (56) 
which we interpret as the contribution to the autocorrelation 
arising from isolated vortices with D = 0. Given an arbitrary 
eddy, or closed channel of streamlines, and assuming that 
D = 0, the corresponding conditional Lagrangian velocity 
correlation function, given that the particle starts inside the 
eddy, is a periodic function 

~cond(OI~=o = 2 fk cos ka 
k=l 

(57) 

where fk is a sequence of non-negative numbers such that 
2, fk = 1, and w is the “fundamental frequency” corre- 
sponding to periodic motions of particles around the eddy. 
The fundamental frequency w satisfies, from dimensional 
analysis, 

WE UJI,, (58) 
where U, is the velocity amplitude on the eddy and I, is the 
length of a typical streamline within the eddy. 

To incorporate corrections to (57) arising from a non- 
vanishing molecular diffusion, we make the assumption that 
the velocity of a particle becomes uncorrelated with the ini- 
tial velocity once the particle exits the eddy (by molecular 
diffusion) for the first time. This assumption is made for 
mathematical convenience; it is nevertheless consistent with 
the observed simulations which exhibit damping of the non- 
diffusive effects after a period on the order of T,, zaa2/D. This 
leads to an approximate expression for the conditional veloc- 
ity autocorrelation given that the particle starts from a gen- 
real eddy 

Scond (t) = e -mD~9&o”dwID=01 

where wD =D /a2 is the diffusion frequency. Equation (59) 
is consistent with the fact that the “width” of a typical eddy, 
i.e., the length scale for which the velocity fluctuations are 
small, is of the order of a few particle diameters. The contri- 
bution of a given eddy, with conditional correlation function 
(59), to the overall autocorrelation function should be given 
by (59) multiplied by a suitable statistical weight. Taking 
the average over all possible eddies and using ( 59)) we arrive 
at the simple empirical formula 

I 

m 
.9(t)Ee-““’ cos wtf(w)dw, (60) 

0 

where f(w) represents a distribution of eddy frequencies. In 
practice, the use of this last equation is limited by the fact 
that such a distribution can be obtained only in a qualitative 
fashion. However, based on direct inspection of the vortex 
configurations, we know the following. 

For r] = 0.4 in model I, the eddies are approximately 
isolated vortices, so f(w) should be strongly concentrated in 
a neighborhood of w, N V/a, where V = dm is the 
typical velocity. 

For 7 = 1.6 or 2.3 in model I, we expect a more widely 
dispersed eddy-frequency distribution, with range 
wD < w < w,, concentrated below w,. 

For 7 = 1.6 in model II, one expects an even wider dis- 
tribution of eddy frequencies, with the distribution f(w) 
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more weighted toward lower frequencies than in the other Finally, it is natural to define the cutoff frequencies wD, 
three flows. and w, so that 

It is natural to assume that, due to the short-range corre- 
lations of the velocity, and the other assumptions made in 
the derivation of (60), the range of active frequencies is es- 
sentially contained in the interval oD <o<w,. 

Using the approximation (60) we consider the formulas 
for the implied effective diffusivity D * and intercept So, ob- 
tained from ( 15) and ( 17). We obtain, accordingly, 

V2/DwD = c$/c$ = Pe’, 
and (6 1) can be recast as 

(651 

ix=*+ l s m Pe2 g(s)ds 
D -z- 0 l+ Pe* s2 ’ 

(66) 

with g(s) = wJ(w,s). This establishes a connection 
between the eddy-frequency distribution and the Stieltjes 
representation measure derived in Ref. 6. Certain Pad& ap- 
proximants of Stieltjes functions are rigorous upper and Iow- 
er bounds on such functions.’ For example, the [ 1, 1 ] Pad& 
approximant is a lower bound. At low densities, the frequen- 
cy distribution is strongly peaked near the maximum eddy 
frequency o, and hence g(s) -S(s - so ), with so N 1. This 
yields the approximate expression 
D*/D= 1 + ($)[Pe*/(l +s, Pe’)], which has the form 
ofa [ 1,1] Padeapproximant to (5.16), i.e., a lowerbound on 
D */D. Substitution of Pe = 100 and so = 1 yields 
D */D = 1.5, which is in reasonable agreement with 
D */D = 1.35 for 77 = 0.4. Therefore, dilute arrays of ran- 
dom vortices give examples of flows realizing approximately 
the lower bound ( [ 1,l ] Padt approximant ) for D *, supple- 
menting the very idealized models which realized such 
bound, studied by Avellaneda and Majda.’ 

D*+-$ s 
we 

OD f(o)do (61) WD m”, + co= 
and 6, =$ s <oT ~~~;~;~2fodo. (62) 

These formulas bear a close resemblance to the rigorous 
representation of D * and So in terms of integrals over the 
energy spectrum of the random Hamiltonian 
8@ = - DV2 + u(x)*V (see Ref. 20, for example). In fact, 
they correspond to the simple approximation in which the 
spectrum of2Yconsists of the number E, -I- iE2 = wg &- iw, 
with w distributed according to the density f(w). From 
(61), it is clear that the formation of large eddies above the 
percolation threshold and the long-range correlations in the 
sign of the vorticity, translate into the dispersion of eddy 
frequencies, and hence into enhancement of D *. This result 
is supported by the physical intuition of particles performing 
large “jumps” by advection through eddies. From a spectral 
viewpoint, eigenvalues with E, /E2 9 I correspond to “dissi- 
pative” states, whereas eigenvalues with E,/E, 4 1 corre- 
spond to “convective” states. A positive intercept 8, is asso- 
ciated with the predominance of modes for which E2 > E, in 
thespectrum ofX Our empirical formula (62) reflects this, 
and shows why in the random-vortex models the intercept 
8, is always positive. The function (w2 - wi )/(w2 + w$, )2 
appearing in (62) attains a maximum at w = ~~$3, which 
explains why the value of the intercept increases as the eddy- 
frequency distribution shifts away from a sharp peak at 
o, (w, N V/a% wD ) . A positive value of 8, is a result of sig- 
nificant negative autocorrelations due to particles gyrating 
rapidly along eddies of different sizes. An idea of the effects 
of dispersion in the eddy-frequency distribution can be ob- 
tained by substituting forf(o) the “step” functions 

f,,W = [ I/(@, - 00 )] ~(@I, (63) 
where w0 lies between wD and w, and where B?(w) is the 
characteristic function of the interval w. <w<o,. Substitu- 
tion of (63) in (60) yields the function 

9&, = 2e --& 
em, -q) 

sin( (me yoo)t) 

xcos( (a, ;“o)t), 
which oscillates rapidly and decays in time. For instance, at 
t= l/o, we have, for w~<<w~, k%o(l/OD)i 

<2e- ‘wJ(w, - o. ). In general, dispersion in eddy fre- 
quency, results in damped, rapid oscillations of the autocorre- 
lation function S’(t) which enhance D * and 6,. 

Vi. CONCLUSIONS 

We have analyzed the dispersion of a passive scalar in 
non-Gaussian, random, incompressible velocity fields 
formed by aggregates of random vortices. The behavior of 
the mean-square displacement c?(r), the Lagrangian veloc- 
ity autocorrelation 9?(t), and the effective diffusivity D * 
were studied as the vortex density and the vortex orienta- 
tions were varied, while keeping the energy spectrum and the 
P&let number fixed (at a value of 100). The main conclu- 
sions that follow from the numerical simulations and the 
analysis are listed below. 

(i) The effective diffusivity D * increases with the vortex 
density, 

(ii) The effective diffusivities for models I and II at high 
densities are roughly equal. This conclusion agrees with the 
fact that as the vortex density increases, the velocities of 
models I and II converge in distribution to a Gaussian held 
with specified covariance, and therefore, in principle, the 
effective diffusivities should be near the Gaussian value. The 
computations give an idea of the fluctuations in the value of 
D * arising from non-Gaussian statistics. 

(iii) The Lagrangian mean-square displacement func- 
tions ti( t) are increasingly downward convex as the density 
of the vortices increases and as the vortex orientations are 
correlated, reflecting the differences in the models’ stream- 
line structures. By a simple argument, we relate the stream- 
line structure to the Lagrangian history, through a model for 
the Lagrangian velocity autocorrelation function, This argu- 
ment explains qualitatively the differences observed herein. 

(iv) We simulate the Lagrangian velocity autocorrela- 
tion functions for the models above the percolation thresh- 
old and obtain rapidly damped, oscillatory functions. The 
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main features of these functions are explained by our analy- 
sis. 

Based on item (i) above and on the observation of the 
numerical simulations (see Table I), we conjecture that 
Gaussian Jrows maximize the effective d&j%sivity D * among 
the class of random vortex flows with the same two-point cor- 
reIation function. The investigation of this conjecture is left 
to a future work. 
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