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Conventional upper and lower bounds on the effective conductivity a, of two-phase 
composite media diverge from one another in the infinite-contrast limits (a = a or 0). We 
have derived a generally nontrivial upper bound on o, for suspensions of identical 
spheres when the spheres are superconducting, i.e., the upper bound does not necessarily 
become infinite in the limit a+ 03. Similarly, a generally nontrivial lower bound on a, is 
derived for the aforementioned suspension when the spheres are perfect insulators, i.e., 
the lower bound does not necessarily vanish in the limit a-0. The bounds are computed for 
two models: simple cubic arrays and random arrays of spheres. 

I. INTRODUCTlON 

Virtually all previously derived rigorous upper and 
lower bounds on the effective conductivity o, of two-phase 
composites, such as the well-known Hashin-Shtrikman’ 
and higher-order Beran and Milton3 bounds, diverge from 
one another in the limits of infinite contrast (a = CO and 
0). For example, such conventional upper bounds tend to 
infinity when a = a,/~, -. CO and lower bounds vanish in 
the limit a+O, where oi is the conductivity of phase i. The 
corresponding reciprocal bounds in each of these instances 
(i.e., lower bounds when a = CO and upper bounds when 
a = 0) remain finite and, as noted by Torquato,4 can still 
yield good estimates of the effective conductivity, depend- 
ing on whether the system is below or above the percola- 
tion threshold. This observation has been borne out by 
recent computer-simulation experiments for the effective 
conductivity.5 Thus, the aim of this paper is to begin a 
program to improve upon conventional upper bounds 
when phase 2 is superconducting relative to phase 1 
(a = CO ) and conventional lower bounds when phase 2 is 
perfectly insulating relative to phase 1 (a = 0). 

The aforementioned bounds apply to general isotropic 
media and incorporate limited statistical information on 
the composite. The upper bounds go to infinity when 
a+ M) because they take into account realizations in which 
phase 2 is continuously connected, even if phase 2 is dis- 
connected in the actual microgeometry. Similarly, conven- 
tional lower bounds vanish when a-t0 because they take 
into account realizations in which phase 1 is continuously 
connected. Therefore, in order to avoid such behavior, one 
must devise bounds which contain specific information 
prohibiting connected realization from occurring when the 
relevant phase is below its percolation threshold. One way 
of accomplishing this for the case of suspensions of identi- 
cal spheres, the geometry focused on in this study, is by 

employing “security-spheres” trial fields in variational 
principles. Keller, Rubenfeld, and Molyneux6 were the first 
to use the security-spheres approach to derive bounds on 
the effective viscosity of a suspension. Security-spheres 
bounds were subsequently derived for the trapping con- 
stant7 and fluid permeability’ of porous media. Security- 
spheres conductivity bounds have heretofore not been for- 
mulated. 

The purpose of this paper is to derive security-sphere 
bounds for the effective conductivity of high-contrast sus- 
pensions of identical spheres. It will be shown that the 
security-spheres upper bound (in contrast to the Hashin- 
Shtrikman upper bound, for example) does not necessarily 
become infinite in the limit of superconducting spheres 
(a = CO ). Similarly, the security-spheres lower bound does 
not necessarily vanish in the limit of perfectly insulating 
spheres (a = 0). 

We recently learned of bounds on a, derived by Brunos 
which, in the spirit of the security-spheres bounds devel- 
oped in the present study, give nontrivial bounds in the 
infinite-contrast limits. For reasons described in Sec. III, 
his upper bound for a = co and lower bound for a = 0 are 
sharper than the corresponding security-spheres bounds 
when the particles are “well spaced from one another,” 
such as in a periodic array of spheres. On the other hand, 
the same security-spheres bounds can be appreciably 
sharper than Bruno’s corresponding bounds when the par- 
ticles are not well spaced from one another, such as ran- 
dom arrays of spheres over a wide volume-fraction range. 
By the phrase “well spaced from one another” we mean 
that the fluctuations in the mean nearest-neighbor dis- 
tances between particles are small. Henceforth, we will 
simply refer to such an array as “well spaced.” Note that 
by this definition, a periodic array at close packing is well 
spaced. 

a)On leave of absence from the Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 276957910 until 
3 1 May 1990. 
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II. NEW CONDUCTlVlTY BOUNDS B. Security-spheres upper bound 

consider constructinga trial gradient field 6 for a dis- 
tribution of N identical spheres of radius a of conductivity 
a2 in a matrix of conductivity crl. Let the distance between 
the ith sphere and its nearest neighbor be denoted by 2bi 
such that bi > a, Vi. A trial field EEA [where A is given by 
(4)] is chosen as follows: For every sphere i centered at 
position ri we consider the domain composed of the sphere 
and a concentric G‘security” sphere of radius iii. In that 
domain we solve 

A. General variational principles 

The random medium is generally a domain of space 
V(w) ER3 (where the realization w is taken from some 
probability space a> of volume V, which is composed of 
two regions: the phase-l region Vi of volume fraction $i 
and conductivity Vi and the phase-2 region I’, of volume 
fraction & and conductivity a,. The characteristic function 
of phase i is defined by 

P(x) = I 
1, xE Vi(@), 
0 otherwise. (1) 

Thus, the local conductivity a(x) is given by 

a(x) = aJ(‘)(x) f aJ’2’(x). (2) 

For macroscopically isotropic two-phase media with effec- 
tive conductivity o,, we shall make use of two variational 
principles: minimum potential energy and minimum com- 
plementary potential energy.2t’0 

I. Minimum potential energy 

The effective conductivity is bounded from above ac- 
cording to the following relation: 

<&.i$ 
a,< (E).(E) 9 ffE^-, (3) 

A={6!;VX% =Oin%33,(~)=(E)}. (4) 
Here A is the $ass of admissible or trial gradient fields %. 
The quantity E is the actual field which for the electrical 
and thermal problems represent the electric field and the 
negative of the temperature gradient, respectively. Angular 
brackets denote an ensemble average. The irrotational con- 
dition in (4) implies the existence of a potential which 
must be continuous across the two-phase interface. 

2. Minimum complementary potential energy 

The effective conductivity is bounded from below ac- 
cording to the following expression: 

(J).(J) ob> (a.-i$*E, v?-9 (5) 

B={$;V.$ =OinLR3,(3)= (J)). (6) 
Here, B is the class of admissible or trial flux fields 2. The 
quantity J is the actual flux field which for the electrical 
and thermal problems represent the electrical current and 
heat flux, respectively. The solenoidal condition of (6) im- 
plies that the normal tlux must be continuous across the 
two-phase interface. 

In what follows, we shall invoke the ergodic hypothesis 
and thus will equate the ensemble average of a function f 
with the volume average in the infinite-volume limit, i.e., 

fdV. (7) 

Aui( x) ~0, for O< 1 x - rij <bi, (8) 

ujfiniteat Ix--rjl =0, (9) 

ui and U:’ continuous at Ix - ril =a, (10) 

Uj= - (EoIbcosOjat lx-ril=;b+ (11) 

Here; A is the Laplacian operator, Ut3 is the normal flux 
associated with the potential ai, 8 is the polar angle asso- 
ciated with the radial distance Ix - ril, and Ec is applieg 
field equal to the actual average field (E) . The trial field E 
is chosen so. that 

.i2 (X) = - VUja (12) 

in the security sphere, and 

E (xl = E&4, (13) 

exterior to the security spheres. 
The solution of the boundary-value problem (8)-( 11) 

is given in Appendix A. Using this solution and ( 13)) it is 
straightforward to show that 

1 ‘**-v, 

7 v, s 
aE. E dVzv alEo.Eo 

= d& (14) 

where 

(15) 

is the volume fraction of the spheres of radius a (with 
p = N/V being the number density) and V. is the volume 
exterior to the security spheres. Similarly, letting V, denote 
the space interior to the security spheres, we have 

1 

7 v, .I- 
cA2.G dr=d,; i h(/l,), 

i-l 
(16) 

where 

9a2;16+al[((Y+2)2;16+2(CL- l)W](/P- 1) 
h(a)= .. [(a+2M3+ (I---a>12 
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Combination of the variational bound (3) and relations 
( 14)) ( 16), and ( 17) finally yields the security-spheres 
upper bound: ; w-r. -Tri -_*I i 

. . . :: 

z<l i&ii $ finik)lz .’ -,__’ [ .l_ :( 19) 
i 1 

where 
+ :.*2:-r< - 

j 
3(o + 2)(a.XZl)k6.Z-3(a .+93 

f ihd = 
+ ~. I I 

[((r +.2)/23 c (1 -a>12 ‘“-i .’ (20).. 

,.,_ 8..,.7 
Since our primary interest will be in cases in which the 
contrast is infinite (a = CO or 0), it is useful to note that 

313 
fGLd=~, 

- 3a3 
‘-. ; 

f bw> = 2a3+ 1: 

Using the law. of large numbers, we have-from (19) that 
._ /. 

2,,1 +hd 
‘m 

J 
1 f(x;a)H(x)dx, (23) 

i %., . 
where H is the nearest-neighbor distribution function and 
d=2a is just the sphere diameter. The quantity H(r)dr is 
the probability that, given any sphere of diameter d’at the 
origin, the center of the nearest neighbor lies atLa distance’ 
between r and r + dr. In (23), x=r/d is a dimensionless 
distance. The nearest-neighbor distribution function H(r) 
has recently been computed by Torquato, Lu, -and Rubin- 
stein” for random distribution of hard spheres to all orders 
of &. Note’ that H(r) .has ,dimensions’ of inverse length, 

The function f (x,a> has a simple pole at-x = 1 for 
superconducting spheres (a = CO >. Thus, the upper bound 
(23) remains finite when a = ~4 provided that H(x) vm- 
ishes as (x - 1)s at x =,I, where fl>O. (In the subse- 
quent section, we shall consider microgeometries for which 
the upper bound remains finite when a + CO. ) This behav- 
ior for a = CO is to be contrasted with conventional 
bounds,le3 such as the well-known Hashin-Shtrikman3 up- 
per bound: 

ff@ 
( 1 

au+ 241(1 - a)/(1 + 2a>] - z 
1 -&(l --a)/(1 +2a) ’ (24) 

al HS 
which always diverges to infinity as a + M) . 

C. Security-spheres lower bqund 

We now consider constructing a trial flux field 2 for a 
distribution of N identical spheres. of radius a of conduc- 
tivity a,? in a matrix of conductivity crl. Again, 2bi is the 
distance bekween the ith sphere and its nearest neighbor. A- 
trial field JEB [where B is given by (6)] is chosen as 
follows: For every sphere i centered at position rip we con- 
sider the domain’.composed of the sphere and-a concentric’ 
security sphere of radius bi. In that domain we solve 

hoi(x) ~0, for b< 1 x - ri] <bi, (25) 

Ujfiniteat IX-rfJ=O, (26) 

Ui and F’r) continuous at ] x -i Pi] =a, 

$= - ]EO]cosOat lx---rilb. -~.’ 
i 

I (27) 

(28) 

Here, v(ni) is the normal tlux associated with the trial po- 
tential L)i and yis Ix - ri]. S!mmation notation is not 
implied in (28). The trial flux J is chosen such that 

$= - 
I 

gzVtii,-‘- Oc;]x-rri] <a, 
arV&, a< 1 x - rjl <b/s (29) - 

in ith security sphere, and 

d = utEe, (30) 

exterior to the security spheres. 
The solution of the boundary-value problem -(25)- 

(28) is given in Appendix B. Employing this solution and 
(30)) it is easily shown (by the same methods of Sec. II B) 
that inequality ($)--yields 

z;++&d j-y g(x,a)H(x)dx) -I; (31) 

where 

g(2;a) 5 
3(a+2)(1--)x6--(a--- 1)‘~~ - 

[(a+2)x3+2((r:- 1>12 * 
(32) 

Note that 

(33) 

(34) 

Thus,, lower bound- (31) yields a nonzero result for’ per- 
fectly- insulating spheres a = 0 provided that H(x)- van- 
ishes as (x - l)O atx -1, where p > 0. This is contrast to 
conventional lower bounds such asp the Hashin-Shtrikman 
lower bound, which, for a’< 1, is also generally given by 
(24) and always vanishes when a = 0. 

Ill. CALCULATION OF THE SECURITY-SPHERES 
BOUNDS 

In this section we compute the security-spheres bounds 
on a, for two models: simple cubic and random arrays of 
spheres of radius a. We focus our attention on cases of 
infinite contrast (ti = CO or 0). Our results shall be com- 
pared to the well-known Hashin-Shtrikman (HS) bounds 
and to bounds very recently derived by Bruno.’ 

: _ 
A. Simple-cubic-array results 

Consider a situ~ion in which the spheres are centered 
on a lattice of minimum spacing dil. The nearest-neighbor’ 
distribution function is then given by 

dH(%) =6(x -A), (35) 

where S(x) is a Dirac delta function. Thus, upper and 
lower bounds (23) and (31), respectively, become 
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(36) 
i _. 

and 
-~ 

$41 +&g(a,~)l-l, (37) 

where f (/2,cr) and g(/Z,a) are given by (20) and (32), 
respectively. For a simple cubic array, the dimensionless 
distance A is related to the sphere volume fraction by 

Not surprisingly, both (36) and (37) are exact through the 
first order in (b2. * 

1. Superconducting spheres 

For the case of superconducting spheres (a! =.-&I ), the 
security-spheres bounds (36) and (37) yield 

a3 
~~l+Vqp--yp 5 

z> ( 
a3 -1 

1--3QTg * 1 

(39) 

(ftO> 

Note that the upper bound, unlike conventional, upper 
bounds, becomes infinite only when the spheres touch (i.e., 
A = l), as exactly is the case. The HS bounds in this in- 
stance are, for d2 > 0, given by 

1+ 242 
z>-- 

l-42 * 
(42) 

Thus, while the HS lower bound (42) is generally sharper 
than (40), the HS upper bound (41) is clearly generally 
weaker than the security-spheres upper bound (39). To 
explain the reasons for such behavior, it is useful to recall 
the composite-sphere assemblages that are realized by the 
HS bounds. The HS upper bound for a > 1 corresponds to 
“composite” spheres consisting of a core .of conductivity 
CT~, surrounded by a concentric shell of conductivity, with 
the relative amount of each phase determined solely by the 
volume fraction &. The composite spheres fill all space, 
implying a distribution in their size ranging to the infini- 
tesimally small. The HS lower bound for a > 1 corresponds 
to the same geometry, but with phase 1 interchanged with 
phase 2. Therefore, for $2 > 0, the conducting phase corre- 
sponding to the HS upper bound is always connected and 
for a = CO always percolates. The security-spheres upper 
bound (39)) on the other hand, incorporates information 
that there must always be a security shell around each 
sphere and therefore remains finite unless the spheres 
touch. In contrast, the security-spheres trial field for the 
lower bound (40) provides a generally poor estimate of the 
energy exterior to the spheres relative to the HS lower- 
bound geometry. In summary, among the aforementioned 
two sets of bounds for conducting spheres (a> 1 >, one 

or ’ 
0 0.2 0.4 0.6 0.0 

$2 

FIG. 1. The scaled effective conductivity UJO, for superconducting 
(a = m ) simple cubic arrays of spheres. Dashed line is the HS lower 
bound (Ref. l), dotted line represents exact data (Ref. 12), and the solid 
line is the security-spheres upper bound (39). 

should employ the security-spheres upper bound and the 
HS lower bound. In Fig. 1 we plot for a = 00 these bounds 
along-with the exact solution for simple cubic arrays.12 

2. Perfectly insulating spheres 
In the instance of perfectly insulating spheres (a = 0), 

the security-sphere bounds (36) and (37) give 

:,I -342 
a3 

2a3+ 1' 

. (44) 

Observe that the lower bound, unlike conventional lower 
bounds, vanishes only when the spheres touch (i.e., 
/z = 1) . The HS bounds for CY = 0 and & > 0 are given by 

-. 
$1’ 

- 
z< 1 + 49/2 ’ 

30. 

(45) 

(46) 

Although the HS upper bound (45) is generally better 
than (43), the HS lower bound vanishes in contrast to the 
security-spheres lower bound (44). The reasons for this 
behavior are similar to the explanations given above for the 
superconducting case and hence are not given here. Thus, 
among these bounds for insulating spheres (a(l), one 
should use the HS upper bound and the security spheres 
lower bound. In Fig. 2 we depict for CY = 0 these bounds 
along with the exact solution.‘2 

Brunog has very recently derived bounds on a, for par- 
ticulate composites which are related to but not the same 
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OL . I 
0 0.2 0.4 0.6 0.8 1 

$2 

FIG. 2. The scaled effective conductivity oJo, for perfectly insulating 
(o = 0) simple cubic ~arrays of spheres. Dashed line is the HS upper 
bound (Ref. l), dotted represents exact data (Ref. 12), and the solid line 
is the security-spheres lower bound (44). 

as the security-spheres bounds. Besides the security- 
spheres bounds, the former represents the only other 
bounds which remain nontrivial in the limit of infinite con- 
trast. Bruno uses the elegant complex variable method to 
obtain bounds on CT~ which depend on the particle volume 
fraction &, particle shapes, and a quantity q equal to the 
minimum, for all particles in the composite, of the ratio of 
the particle diameter to the sum of the diameter and the 
distance to the nearest neighbor. For a simple cubic lattice 
of equisized spheres, q is precisely equal to /1- ‘. For ran- 
dom systems of identical spheres, the nearest-neighbor in- 
terparticles distances will vary (i.e., the system is generally 
not well spaced in the sense defined in the Introduction), 
and hence q for many such ensembles will not be a good 
descriptor of the microstructure. Bruno’s upper bound, in 
the case of a) 1, will be relatively sharp, provided that the 
microstructure is well described by a single parameter q 
(e.g., a lattice of spheres). The same bounds will not be 
sharp for microgeometries in which the spheres are not all 
“well spaced” (e.g., random systems in general). Bruno’s 
lower bound for a > 1 and upper bound for a < 1 coincide 
with the corresponding HS bounds. Lower bounds for 
a > 1 and upper bounds for a < 1, which improve upon the 
corresponding HS bounds, have been computed for sphere 
distributions, however.14 In other words, our main interest 
is in the improvement of conventional upper bounds for 
a+ 1 and conventional lower bounds for a( 1. 

In Table I we compare, for a simple cubic array, the 
security-spheres upper bound (40) with Bruno’s corre- 
sponding result for superconducting particles (a = CO ) 
and the security-spheres lower bound (44) with Bruno’s 
corresponding. bound for perfectly insulating particles 
(a = 0). As indicated above, Bruno’s bounds are sharper 

TABLE I. Bounds on the scaled effective conductivity o/o, for simple 
cubic arrays in the superconducting (a = CO ) and perfectly insulating 
(a = 0) limits. S, and B, denote the security-spheres upper bound (39) 
and Bruno’s upper bound, respectively. S, and BL denote the security- 
spheres lower bound (44) and Bruno’s lower bound, respectively. 

a=00 Cc==0 
42 su BU SL BL 

0.1 1.37 * 1.35 0.844 .0.855 
0.2 1.97 1.86- 0.673 0.716 
0.3 3.11 2.80 0.487. 0.567 
0.4 6.08 5.21 0.282 0.385 
0.5 34.28 28.00 0.057 0.101 

for this model. As shall be shown ,in the following subsec- 
tion, this is often not the case for random arrays. 

EL Random-array results 

In order to evaluate the security-spheres bounds (23) 
and (31), one needs to have the nearest-neighbor distribu- 
tion function H(r) for random arrays of spheres. This was 
recently given by Torquato and co-workers” for the case of 
identical particles of diameter d and spheres volume frac- 
tion &, and in dimensionless form is given by 

i 
0, x< 1, 

dHk42) = h(x;/& xy 1, (47) 

where 

h(W?&)=2442(~0 + CIX + czx*)exp{ - &[8c,(x3 - 1) 

+ 12cr(x2 - 1 j + 24co(x - 1)]}, (48) 

4; 
co=2( 1 - (b2)” 

- 42(3 + 42) 
c1= 2(1 -cj2)3 ’ 

1 + 42 
c2=(1 --Cj#* (49) 

Relation (47) has been tested against computer-simulation 
results” and was found to be very accurate up to about 
42 = 0.6, corresponding to a volume fraction near the ran- 
dom close-packing value. (The random close-packing vol- 
ume fraction has been determined to range from c$~ = 0.61 
to 0.66.r6) Substitution of (47) into (23) in the limit 
a+ CO yields the trivial upper bound aJar< CO since 
H(x) $0 at x = 1. Similarly, the combination of (47) and 
(31) gives the trivial lower bound uJur>O in the limit 
a-0. 

In order to get nontrivial bounds in the extreme-con- 
trast cases, we coat each sphere of conductivity a2 and 
diameter d with a thin layer of matrix material of conduc- 
tivity (or. Let do be the diameter of these composite spheres 
at the actual inclusion volume fraction 42 = p-d3/6. As far 
as the structure is concerned, we are actually interested in 
random hard spheres of diameter do)d and volume frac- 
tion 
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FIG. 3. Bounds on the scaled effective conductivity uJa, for supercon- FIG. 4. Bounds on the scaled effective conductivity UJU, for perfectly 
ducting (a = CO ) random arrays of spheres characterized by a nearest- insulating (a = 0) random arrays of spheres characterized by a nearest- 
neighbor distribution function given by (51) for several values of the neighbor distribution function given by (51) for several values of the 
dimensionless coating thickness E. Dashed line is the HS lower bound dimensionless coating thickness E. Dashed line is the HS upper bound 
(Ref. I), and the solid lines are the security-spheres upper bound (23). (Ref. l), and the solid lines are the security-spheres lower bound (31). 

(50) 

Thus, the dimensionless nearest neighbor distribution func- 
tion we require is given by 

In Fig. 3 we plot the security-spheres upper bound 
(23) for superconducting random arrays (a = CO ) using 
(5 1) for several values of the dimensionless coating thick- 
ness E defined by 

do-d 
E=7- (52) 

Included in the figure is the HS lower bound. The HS 
upper bound is infinite and hence does not appear. As E is 
made smaller, the upper bound becomes larger at fixed 
volume fraction 42, as expected. Note that the upper and 
lower bounds shown in the figure can be quite tight for 
small to moderate values of 42. For E = 0.1, 42 > 0.5 is not 
possible. 

Figure 4 depicts the security-spheres lower bound (3 1) 
for perfectly insulating random arrays (a = 0) using (5 1) 
for several values of E. The figure includes the HS upper 
bound. The HS lower bound vanishes identically. Not sur- 
prisingly, as E is made smaller, the lower bound decreases 
at fixed 42. Again, the upper and lower bounds can be 
stringent for small to moderate 42. 

0 
0 0.2 0.4 0.6 0.0 1 

$2 

Tables II and III compare for random arrays our up- 
per bounds when a = 00 and lower bounds when a = 0, 
respectively, to the corresponding Bruno bounds for sev- 
eral values of E. For reasons mentioned earlier, our bounds 
are generally significantly better than Bruno’s bounds. For 
E = 0.001 and a = a, the security-spheres upper bound is, 
on average, an order of magnitude smaller than Bruno’s 
upper bound for the range 0<~$~<0.4. The corresponding 
security-spheres lower bound for insulating spheres shows 
similar improvement over the Bruno lower bound. For 
E = 0.01, the security-spheres results‘are generally sharper 
than Bruno’s results, but the improvement is not a great as 
for the smaller value of the coating thickness (E = 0.001) . 
Finally, at the largest coating thickness considered 
(E = 0. 1 ), Bruno’s bounds are sharper than the security- 

TABLE II. Upper bounds on the scaled effective conductivity o/u, for 
superconducting (a = CO ) random arrays of spheres characterized by a 
nearest-neighbor distribution function given by (5 1) . E is the dimension- 
less coating thickness defined by (52). & is the actual inclusion volume 
fraction. SLr and B, denote the security-spheres upper bound (23) and 
Bruno’s upper bound, respectively. For E = 0.1, q$ = 0.6 represents a 
physically unattainable volume fraction. 

E = 0.001 E = 0.01 EZO.1 

42 su BU su Bll su BU 

0.1 2.937 70.1 2.26 8.08 1.67 1.88 
0.2 8.800 144.2 5.32 15.7 2.73 2.84 
0.3 20.91 223.8 10.6 23.8 4.03 3.88 
0.4 43.67 309.5 18.6 32.6 5.44 5.02 
0.5 85.32 402.1 30.1 42.2 6.85 6.27 
0.6 161.5 502.5 45.2 52.5 - - 
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TABLE III. Lower bounds on the scaled effective conductivity UC/O, for 
perfectly insulating random arrays of spheres characterized by a nearest- 
neighbor distribution function given by (51). E is the dimensionless coat- 
ing thickness defined by (52). 4s is the actual inclusion volume fraction. 
S, and B, denote the security-spheres lower bound (31) and Bruno’s 
lower bound, respectively. For e = 0.1, 4s = 0.6 represents a physically 
unattainable volume fraction. 

c = 0.001 E = 0.01 e=O.l 

92 SL BL S'L BL SL BL 

0.1 0.508 0.0528 0.616 0.345 0.748 0.772 
0.2 0.204 0.0252 0.318 0.197 0.535 0.610 
0.3 0.091 0.0156 0.174 0.131 0.397 0.488 
0.4 0.045 0.0108 0.103 0.094 0.310 0.393 
0.5 0,024 0.0079 0.065 0.070 0.255 0.317 
0.6 0.012 0.0059 0.044 0.053 - - 

spheres bounds in almost all instances, albeit only slightly 
better. This last observation is not that surprising since the 
system becomes increasingly well spaced and hence less 
“random” as E becomes larger. 

IV. CONCLUSIONS 

We have derived security-spheres bounds on the effec- 
tive conductivity a, for distributions of spheres which do 
not necessarily become trivial in the infinite-contrast limits, 
unlike conventional bounds such as the Hashin-Shtrikman 
bounds. Bruno’ has very recently derived. bounds on o, 
which are related to the security-spheres bounds. These are 
the first set of bounds that can treat the difficult infinite- 
contrast limits and therefore must be regarded as the first 
generation of such bounds. Bruno’s bounds are useful in 
that they depend only upon the parameter q and the vol- 
ume fraction, yielding relatively sharp bounds when the 
particles are well spaced. On the other hand, since they are 
so general, the bounds can be somewhat weak when the 
microstructure is not.well described by a single parameter 
(e.g., random arrays). By construction, the security- 
spheres bounds are relatively weak when the particles are 
well spaced, but can be comparatively sharp [as the result 
of incorporating higher-order information via the nearest- 
neighbor distribution function H(r)] for random arrays. 
For random arrays, the security-spheres bounds are more 
general then Bruno’s bounds in that they not only depend 
on E, but on H(r), which varies from ensemble to ensem- 
ble. Thus, we suggest that a future study combine the 
aforementioned advantageous features for each of these 
bounds to derive even better bounds. 

\I 
XJ-, a<r<;b. 
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AT=@ for O<r<b, (Al) 
T &rite at r=O, t-42) 

T and J, continuous at r=a, (A3) 

T- - IEslbcos8 at r=b. (A4) 

Here, r is the radial distance measured with respect to the 
sphere center, 8 is the corresponding polar angle, and J,, is 
the normal flux. 

This boundary-value problem is easily solved using 
separation of variables with the result that 

(1-o)’ r<ay 

E= 
(a + W3E, (a - 1)a3A3 

(cz+2)i13+(14+(ar+2)/23+(1--a) 
[3(E& f -Eel 

~7, a<r<b. 

C-45) 
Here, ?= r/ 1 r [ is the radial unit vector, /I = b/k, and 
a = u/up 

APPENDIX B: SECURITY-SPHERE BOUNDARY-VALUE 
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We now reconsider the problem of Appendix A with 
the boundary condition (A4) replaced by 

dT 
dr= i jEolcos8, at r=b. 031) 

All other boundary conditions are the same. The solution 
to this problem is given by 

t 
3,13Eo 

(a:+2)/I3+2(a-- 1)’ r<a, 

E=’ 
(a + 2M3E, (a - 1)a3A3 

(a + 2)/2’f2(a: - 1) + ((r: + 2)/23 + 2(a: - 1) 
[3(Eo-2) f -Es] 
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