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We derive a cluster expansion for the effective dielectric constant €* of a dispersion of equal-sized 
spheres distributed with arbitrary degree of impenetrability. The degree of impenetrability is 
characterized by some parameter A whose value varies between zero (in the case of randomly 
centered spheres, i.e., fully penetrable spheres) and unity (in the instance of totally impenetrable 
spheres). This generalizes the results of Felderhof, Ford, and Cohen who obtain a cluster 
expansion for €* for the specific case of a dispersion of totally impenetrable spheres, i.e., the 
instance A = 1. We describe the physical significance of the contributions to the average 
polarization of the two-phase system which arise from inclusion-overlap effects. Using these 
results, we obtain a density expansion for €*, which is exact through second order in the number 
density p, and give the physical interpretations of all of the cluster integrals that arise here. The 
use of a certain family of equilibrium sphere distributions is suggested in order to systematically 
study the effects of details of the microstructure on €* through second order inp. We show, 
furthermore, that the second-order term can be written as a sum of the contribution from a 
reference system of totally impenetrable spheres and an excess contribution, which only involves 
effects due to overlap of pairs of inclusions. We also obtain an expansion for €* which is exact 
through second order in <P2' where <P2 is the sphere volume fraction. We evaluate, for concreteness, 
some of the integrals that arise in this study, for arbitrary A, in the permeable-sphere model and in 
the penetrable concentric-shell model introduced in this study. 

I. INTRODUCTION 

The theoretical determination of effective properties of 
two-phase random materials is an outstanding problem in 
science. It was Maxwell! and Einstein2 who obtained the 
effective electrical conductivity and viscosity of a dilute sus­
pension of spheres, respectively, by making use of the solu­
tion of the appropriate boundary-value problem for a single 
inclusion in an infinite matrix. Brown3 was the first to show 
the precise dependence of the bulk property on its micro­
structure by obtaining a perturbation expansion for the ef­
fective dielectric constant €* of any two-phase random com­
posite in terms of absolutely convergent integrals that 
involve n-point correlation functions. (The n-point correla­
tion functions give the probability of finding n points in one 
of the phases.4-6) Ramshaw 7 has recently obtained a wide 
variety of series representations for €* using general pertur­
bation expansions of response kernels. For media composed 
of inclusions of dielectric constant €2 statistically distributed 
throughout a matrix of dielectric constant €!, Finkel'berg8 

obtained a cluster expansion for €* in terms of absolutely 
convergent integrals that involve n-particle probability den­
sity functions defined in the text. The work is formal in na­
ture and very few details are provided. In another study he 
gives an explicit expression for the second-order term in €*. 9 

JeffreyJO found and evaluated the same second-order term 
for dispersions ofimpenetrable spherical inclusions but used 
a method due to Batchelor!! to make the integral involved 
here absolutely convergent. By extending Batchelor's tech­
nique to bypass conditionally convergent integrals to higher­
order terms, Jeffrey12 later obtained €* for suspensions of 
impenetrable spheres to all orders. Felderhof, Ford, and Co­
hen 13 have obtained a cluster expansion for €* of dispersions 

of nonoverlapping spherical inclusions using the procedure 
employed by Finkel'berg, but provide explicit expressions 
for the nth-order terms. They also elegantly prove that for 
such a dispersion the cluster integrals of any order are abso­
lutely convergent, which implies that €* is well defined and 
independent of the shape of the sample in the limit of a large 
system. 

The advantage of the technique first outlined by 
Brown,3 for the perturbation expansion, and by Finkel'­
berg,8 for the cluster expansion, is that it provides a systema­
tic procedure to pass to the infinite-volume limit without 
shape-dependent integrals appearing in the expression for 
€*. The basic procedure for either expansion technique may 
be briefly summarized as follows. One first considers a large 
but finite sample of arbitrary shape in an arbitrary applied 
field Eo(r). The average polarization (P) is then expressed as 
a formal operator acting on the applied field Eo(r). The for­
mal operator, an ensemble averaged quantity, is then ex­
panded either in a perturbation or cluster expansion. As is 
well known from macroscopic electrostatics, however, rela­
tions between average fields and Eo are dependent upon the 
shape of the sample and, hence, the integrals involved here 
must necessarily be conditionally convergent. Accordingly, 
one then seeks the appropriate series expression for Eo in 
terms of the average electric field (E). Using this expression, 
the applied field Eo is eliminated in favor of (E) in the 
expression for (P) mentioned above. This resulting relation 
between (P) and (E) is localized, i.e., independent of the 
shape of the sample and, therefore, involves absolutely con­
vergent integrals. One may now pass to the limit of an infi­
nite volume without any ambiguity and obtain, from this 
localized relation, the particular expansion for €* of statisti­
cally homogeneous media. 
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This is the first in a series of papers on the bulk proper­
ties of two-phase disordered media. In this article we obtain 
a cluster expansion for E* of statistically homogeneous and 
isotropic two-phase medium composed of N identical mutu­
ally penetrable spheres of radius R and dielectric constant E2, 

statistically distributed throughout a matrix of dielectric 
constant E I' The degree of impenetrability of the spheres is 
characterized by some parameter A. whose value varies 
between zero (in the case where the sphere centers are ran­
domly centered and thus completely uncorrelated, i.e., "ful­
ly penetrable spheres") and unity (in the instance of totally 
impenetrable spheres). Sphere distributions involving inter­
mediate values of A. are easy to define. The permeable-sphere 
(PS) model proposed by Blum, Salacuse, and Stell 14 is an 
example of such a model. Here spherical inclusions of radius 
R are assumed to be noninteracting when non intersecting 
(i.e., when r> 2R, where r is the distance between sphere 
centers), with the probability of intersecting given by a radial 
distribution function that is 1 - A., 0<;:;,1.<;:; 1, independent ofr, 
whenever r < 2R. Another example is a model we shall refer 
to as the penetrable concentric-shell (PCS) model in which 
spheres of radius R are statistically distributed in space sub­
ject only to the condition of a mutually impenetrable core 
region ofradiusA.R, 0<;:;,1.<;:; 1. Each sphere ofradiusR may be 
thought of as being composed of an impenetrable core of 
radius A.R, encompassed by a fully penetrable concentric 
shell of thickness (1 - A. )R. Although the first example as­
sumes a condition of thermal equilibrium, along with the 
aforementioned constraints, neither the second example nor 
the general results ofthis paper assume that the sphere distri­
bution is constrained to be one of thermal equilibrium. The 
PCS model is a special case of the more general concentric­
shell model described in the Appendix. In the latter model, A. 
is some finite real number which may be greater than unity. 
Chiew and Glande 5 have used the PS model to study the 
percolation behavior of three-dimensional fluid systems. To 
our knowledge, the easily conceived concentric-shell model, 
however, has never been introduced in the study of random 
media. 

Allowing the spheres to overlap introduces interesting 
microstructural features into the problem which would be 
absent if the spheres were totally impenetrable to one an­
other (i.e., for A. = 1). Chiew and Glandt,16 e.g., have ob­
served that in the case of fully penetrable spheres, A. = 0, if 
the volume fraction of particle phase (phase 2) <P2 is less than 
volume fraction at the percolation threshold of the region of 
space occupied by particles, <p~, then the spheres are dis­
persed throughout a continuous matrix phase. When <P2 is 
such that <P f <;:;<P2 < <P ~, where <P ~ is the <P2 at the percolation 
threshold of the region of space which is the complement of 
the particle space (i.e., the matrix space), the "dispersion" is 
actually a bicontinuous medium. For still higher <Pz, i.e., <P ~ 
< <Pz <;:; 1, the matrix phase becomes the dispersed phase and 
the particle phase is the only continuous phase. A dispersion 
of fully penetrable spheres is a nontrivial model of a two­
phase random medium and it has been employed with suc­
cess, by Weissberg,17 Weissberg and Prager,t8 DeVera and 
Strieder, 19 and Torquato and StellzO to rigorously bound var­
ious effective properties of two-phase disordered materials. 

In Sec. II we describe the basic equations for the ran­
dom medium problem. In Sec. III we describe, in some de­
tail, the physical significance of the contributions to the 
average polarization of the system which arise from inclu­
sion-overlap effects. Using the cluster expansion method 
first outlined by Finkel 'berg, R we derive a cluster expansion 
for the effective dielectric constant of a statistically homo­
geneous and isotropic dispersion of N mutually penetrable 
spheres. In doing so, we adopt much of the notation used in 
the more comprehensive treatment of the problem by Fel­
derhof, Ford, and Cohen. 13 In Sec. IV we obtain an expan­
sion for E* which is exact though second order in p, where p 
is the number density, and give physical interpretations of all 
of the cluster integrals that arise there. Following Stell's gen­
eral suggestions that the models of statistical mechanics be 
exploited in considering composite media,21 we suggest, in 
Sec. V, the .use of a certain family of equilibrium sphere dis­
tributions in order to systematically study the effects of de­
tails of the microstructure on E*, through second order inp. 
Here we also show that the second-order term can be written 
as a sum of the contribution from a reference system of total­
ly impenetrable spheres and an excess contribution, which 
only involves effects due to overlap of pairs of inclusions. We 
evaluate, for concreteness, one of the cluster integrals in­
volved here, for arbitrary A., in the PS and PCS models. Last­
ly, in Sec. VI we give a general expression for E* through 
second-order in <P2' Here we evaluate the sphere volume frac­
tion <P2 exactly, through the order p2 and for arbitrary A., in 
the PS and PCS mdoels. 

II. BASIC EQUATIONS 

The random medium is a domain of space D of volume 
Vwhich is composed of two regions: a matrix phaseD I with 
volume fraction <PI and dielectric constant EI, and a particle 
phase D2 with volume fraction <P2 and dielectric constant Ez· 
It follows that the local dielectric constant at position r is 
given by 

E(r) = E/(l)(r) + Ez/
(2)(r) 

= E, + (E2 - EI)/IZ)(r), (2.1) 

where 

. {I, if rD; /(1)(r)= 
0, otherwise. 

(2.2) 

For N overlapping spheres of radius R centered at 
r"r2, ... ,rN( = rN) it has been shown that4 

N 

/(2)(r;rN) = 1 - IT [1 - mix;)] 
i= 1 

N N 

= I mix;) - I m(x;)m(xj ) 
i= 1 i<j 

N 

+ I m(x;)m(Xj)m(Xk) - ... , (2.3a) 
i<j<k 

where 

and 

{
I, if r<R 

m(r) = 0, if r>R 

(2.3b) 

(2.4) 
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Xj = /r-rji. 

The nth sum in Eq. (2.3b) is over all distinguishable n-tuplets 
of particles and thus contains N!I(N - n)!n! terms. It arises 
because n-tuplets of spheres may happen to simultaneously 
overlap. Clearly, the first sum is the contribution to 1(2) neg­
lecting overlap of the inclusions, whereas, the remaining 
sums account for the possibility of overlap of the spheres. 
The local governing field equations are given by Maxwell's 
electrostatic equations 

V • D = 41T0', 

VXE=O, 

D=EE, 

(2.5a) 

(2.5b) 

(2.5c) 

where D is the dielectric displacement, E is the electric field, 
o==(V'E tEo)/41T is the given charge density, and Eo is the 
applied electric field which is the solution ofthe Eqs. (2.5a)­
(2.5e) with E = E t • The electric field E(r;rN) is the solution of 
the same equations when N overlapping spheres are added to 
reference medium (or matrix) such that E is given by Eq. (2.1). 

The averaged field relations are given by 

V·(D) = 41T0', 

VX(E) =0, 

(D) = E(E), 

(2.6a) 

(2.6b) 

(2.6c) 

where angular brackets denote an ensemble average (defined 
below) and E* is the effective dielectric constant. By writing 
Eq. (2.6c) we have assumed the existence of E*, the quantity 
we desire to determine. Ifwe define the induced polarization 
as 

(2.7) 

we have the alternative relation between the average polar­
ization and the average electric field. 

(2.8) 

In arriving at Eq. (2.8) we have used Eqs. (2.1), (2.5c), (2.6c), 
and (2.7). 

The solution of Eqs. (2.5a)-(2.5c) in the presence of in­
clusions may be formally expressed as 

E(r;rN) = I dr'K(r,r';rN)·Eo(r') 

or, in a more condensed notation, 

E(rN) = K(rN).Eo. 

The polarization is then expressed as 

P(rN) = x(rN)K(rN)'Eo, 

where 

X(~) = (l/41T)[E(rN) - Ell 

= (l/41T)[E2 - El]1(2)(~) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

is the relative dielectric susceptibility. It is clear that both X 
and P vanish inside the matrix. 

The particles are distributed throughout the matrix ac­
cording to the probability density P (rN), where P (rN )drN is 
the probability of simultaneously finding the center of parti­
cle 1 in the volume dr I and r I' the center of particle 2 in the 
volume dr2 about r2, ••• , and the center of particle N in the 
volume drN about rN. Here drN=drl· .. drz. When conven-

ient, we write the arguments off unctions as 1 ,2, ... and differ­
entials asd 1, d 2, ... , rather than r l, rz ... anddrl,drz, ... ,respec­
tively. The degree of impenetrability of the particles is char­
acterized by some parameter A. whose value varies between 
zero, in the case of fully penetrable spheres and unity, in the 
case of totally impenetrable spheres. The probability density 
P(rN

) implicitly depends upon A.. It is assumed that P(rN
) 

normalizes to unity and is invariant to interchange of the 
particles. The reduced n-particle probability density P (rN) is 
given by 

P(rn) = r·Jd(n + 1) ... dNP(rN
). (2.13) 

We let 

p(rn) = [N!/(N _ n)!]P(rn). (2.14) 

Therefore, p(rn)drn is the probability that the center of exact­
ly one (unspecified) particle is in the volume dr l about r l, the 
center of exactly one other (unspecified) particle is in drz, etc. 
In the Appendix, we show there is a simple relationship 
between p(rn;..i) and p(rn;l) for isotropic distributions of 
spheres in the concentric-shell model. 

III. GENERAL CLUSTER EXPANSION PROCEDURE 

Let F(~) be any function of the coordinates of the N 
mutually penetrable spheres. Then it is rigorously true that 

N N 

F(rN) = F(0) + L F(i) + L F(i,j) 
i= 1 i<,f 

N 

+ L F(i,j,k)+ ... +F(I, ... ,N). (3.1) 
i<j<k 

The physical meaning of the cluster functions F (rn) is as fol­
lows: F (0) is the contribution to F in the absence of inclu­
sions, F (1) is the additional contribution to Fwhen an inclu­
sion with position I is added to the system, and, in general, 
F(rn) is the contribution to F, not included in the previous 
n - 1 terms, when inclusions with positions 1, ... ,N are added 
to the system. Note that the nth sum in Eq. (3.1) is over all 
distinguishable s-tuplets of particles and thus contains N!/ 
(N - n)!n! terms. Equations (3.1) defines the cluster func­
tions F associated with the many-body function F. In still 
shorter notation we have 

F(2") = L F(1), (3.2) 
.~cy 

where 1 is a set of inclusion labels and the sum is over all 
subsets of 1. It is clear that the inverse of this rule is 

F(2")= L (-W- MF(1), (3.3) 
.~Cy 

where Land M are the number oflabeis in 2" and 1, re­
spectively. 

The average electric field in the two-phase system is 
given by 

(E) = J-.J d~P(rN)K(~)·Eo· (3.4) 

Here we have used Eq. (2.10). Substitution of Eq.(3.t) into 
Eq. (3.4) with F = K and use of Eq. (2.14) gives 
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(3.5) 

Clearly, K is the cluster operator associated with the formal 
operator K. Note that when n = 0, p(0)=1 and K(0) = U, 
where 0 denotes the empty set and U is the unit dyadic, i.e., 
the first term in series (3.5) is precisely Eo. 

The average polarization in the presence of the inclu­
sions is given by 

(P) = J-.J drnp(rN)x(rN)K(rN)·Eo· (3.6) 

Here we have used Eq. (2.11). Before obtaining the cluster 
expansion of (P) it is useful to first reexpress Eq. (3.6) by 
expanding the relative dielectric susceptibility, appearing in 
Eq. (3.6), in terms of the characteristic function /(2) [Eq. 
(2.3b)]. We have, for the first few terms, that 

(P) = N J-.J drNP(rN)XI(I)K(rN)'Eo 

- N(~!- 1) J-.J drNP(rN)X2(1,2)K(rN)'Eo 

+ N(N - ;/(N - 2) J-.J drNP(rN)X3(1,2,3) 

xK(rN)·Eo -···, (3.7) 

where 

(€ €) n 
Xn(rn) = 2 - 1 II mix;). 

417" i=1 
(3.8) 

In general, we have 
N 

(P) = I 
n=l 

where 

(3.10) 

Note that in the nth term of(3.9), the labels I, ... ,n are singled 
out. The factor XI(I)K(rN)'Eo' appearing inside the first inte­
gral ofEq. (3.7) or Eq. (3.9) is the polarization induced in an 
inclusion centered at r I' in a field Eo, for a particular configu­
ration of the remainingN - I penetrable spheres. Excluding 
the factor N, the first integral is the average polarization 
induced in a single inclusion of the system neglecting any 
overlap with this reference sphere. The first term of Eq. 
(3.10), therefore, is the contribution to (P) neglecting inclu­
sion-overlap effects. 

Clearly, this term is the only contribution to (P) if the 
spheres are totally impenetrable to one another (i.e., A = I), 
since the quantity X n (rn)p (rn) is identically zero for all n > 2, 
for such a distribution. The first term ofEq. (3.7) is the only 
contribution to (P) that Felderhof, Ford, and Cohen l3 need­
ed to consider. The remaining terms in Eq. (3.7) provide the 
corrections to (P) when average effects due to overlap of the 
spheres must be considered. The factor X2(1,2)K(rN).Eo, ap­
pearing inside the second integral ofEq. (3.7), is the polariza­
tion induced in the volume of overlap between an inclusion 
centered at r l and another inclusion centered at r2, in a field 
Eo, for a particular configuration of the remaining N - 2 
penetrable spheres. Since the spheres may overlap, in gen­
eral, we must subtract from the first term of Eq. (3.7) the 

contribution of (P) due to the overlap volume between all 
distinguishable pairs of spheres. Apart from the minus sign, 
this contribution is precisely the second term ofEq. (3.7). We 
must now add the contribution to the average polarization 
coming from the overlap volume between all distinguishable 
triplets of spheres, i.e., we must add the third term of Eq. 
(3.7). This line of reasoning may be extended to give the phys­
ical significance of the general nth term ofEq. (3.9). 

Felderhof et al. have elegantly proven the absolute con­
vergence of the integrals involved in the expression relating 
(P) to (E), for totally impenetrable spheres. Such an 
expression is obtained by obtaining a cluster expansion for 
the first term of Eq. (3.9), i.e., a cluster expansion of the 
many-body operator that we denote by M 1 (rs) = X I (I )K(r'\), 
and eliminating Eo in favor of (E) through use ofEq. (3.5). 
By utilizing information concerning the asymptotic behav­
ior of the cluster operators M I (the cluster operator associat­
ed with M d and K, and the n-particle probability densities 
p(rn), for large separation of the inclusions, they show that 
the general integrand, which arises in the relation between 
(P) and (E), vanishes sufficiently rapidly for widely sepa­
rated configurations of the inclusions, and thus prove the 
absolute convergence of the general integral involved. Al­
lowing the spheres to overlap does not spoil the absolute 
convergence of the integrals involved in the expression relat­
ing (P) to (E) for arbitrary A; an expression that we are 
about to derive. To be sure, note that for n>2, the asymptotic 
behavior of the operator Mn (rN) ofEq. (3.10) (when the con­
dition I r - ril < R is satisfied for all i such that I ,:;;i,;;;,n) for 
widely separated configurations of the inclusions n + 1, ... ,N 
is the same as the corresponding asymptotic behavior of the 
operator considered by Felderhof et al., i.e., M l(rN

). For 
n>2, moreover, Mn (rs) = ° if Ir - ri I >R, for any i such that 
I,:;;i,:;;n. Using such information concerning Mn and given 
the fact that the integrals involved in a cluster expansion of 
(P) in terms of (E) for the specific case A = I are absolutely 
convergent, one may demonstrate the absolute convergence 
of the integrals involved in the corresponding expression for 
the arbitrary A [i.e., Eq. (3.15) give below). We, however, 
shall not explicitly prove this here. 

Instead of obtaining cluster expansions of the individ­
ual terms in Eq. (3.9) in order to obtain the desired relation 
between (P) and (E) for arbitrary A, we employ an equiva­
lent expression for the average polarization, Eq. (3.6), and 
Eqs. (2.14) and (3.1), to find that 

(P) = lit I ~! J-.J drnp(rn)M(rn)·Eo· 13.1l) 

Here M is the cluster operator associated with the formal 
operator x(rN)K(rN) which appears in Eq. (3.6). 

It is useful to write out the cluster operators K(r") and 
M(rn) in terms of the operators K and XK, respectively, for 
n = 0,1, and 2 using Eq. (3.3): 

and 

K(0) = K(0) = U, 

K(l) = K(l) - K(0), 

K(I,2) = K(1,2) - K(l) - K(2) + K(0), 

(3.12a) 

(3.12b) 

(3.l2c) 
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M(0) =0, (3.13a) 

M(l) = X (l)K(l) 

= [(E2 - Ed/41T]m(1)K(1), (3.13b) 

M(l,2) = X (1,2)K(1,2) - X (l)K(l) - X (2)K(2) 

= [(E2 - Ed/41T] I [m(l) + m(2) - m(1)m(2)] 
XK(1,2) - m(l)K(l) - m(2)K(2)J. (3.13c) 

Note that M(0) = 0, since the induced polarization must be 
zero in the absence of inclusions. In Eqs. (3.13b) and (3.13c), 

we have expressed the relative dielectric susceptibility [Eq. 
(2.12)] using the expanded form of the characteristic func­
tion of the particle phase [Eq. (2.3b)]. 

The object now is to eliminate Eo between the series 
(3.5) and (3.11) in order to obtain the desired relation 
between (P) and (E). This is done by sol ving Eq. (3.5) for Eo 
in terms of (E) by successive substitutions and rearranging 
terms according to the number of inclusions involved. This 
new series representation of Eo is then substituted into the 
right-hand side of Eq. (3.11) to yield the desired cluster ex­
pansion. The first few terms of this expansion are 

(P) = f d 1p(1)M(1).(E) + ;J f d1 d2[ p(1,2)M(l,2) - 2p(1)M(1).p(2)K(2)].(E) 

+ ;J f dId 2 d 3[ p(1,2,3)M(1,2,3) - 3p(1,2)M(l,2).p(3)K(3) - 3p(1)M(1).p(2,3)K(2,3) 

+ 6p(1)P(2)p(3)M(1)·K(2).K(3)].(E) + .... (3.14) 

In general, we have the following expression relating (P) to (E) for a dispersion of penetrable spheres: 

(P) = i J,f···fdrnI( - W-Ip(BdM(Bdp(B2)K(Bz) .. ·p(Bk)K(BkHE), 
n ~ I n. IB) ,.....-___________________ _ 

(3.15) 

wherein the nth term the sum };IB) in the integrand is over all ~ion of statistical homogeneity, the quantity (OIQ(rn)IO) ap-
ordered partitions of the labels 1, ... ,n into disjoint subsets. pearing in Eq' (3.16) depends only upon the relative positions 
Here, k = k (B) is the number of subsets in the partition r lj = rj - r l wherej = 2,3, ... ,n. The shape independence of 
(B) = (B IIB2 1···IBk ) with slashes indicating the partitioning the effective dielectric constant is reflected in the absolute 
into disjoint subsets, where B I is the first subset, B2 is the convergence of the integrals in Eq. (3.16). Note that Eq. 
second subset, ... , and B k is the k th subset. Within the inte- (3.16) is not an expansion in powers of density since the p(rn) 
gral involving three inclusions of Eq. (3.14), e.g., the third contained therein are dependent upon density. 
term corresponds to the three partitions (112,3), (211,3), and 
(311,2). The labels within a subset are not ordered, however. 

Relation (3.15) generalizes the corresponding expres­
sion obtained by Felderhof et al. which is valid for the specif­
ic case A = 1, i.e., totally impenetrable spheres. Formally, 
the general functional structure of relation (3.15) is very sim­
ilar to the analogous expression [Ref. 13, Eq. (3.17)] they 
obtained. The former relationship, however, involves contri­
butions to (P) due to overlap effects (embodied in the cluster 
operator M), which obviously do not arise in the latter 
expression. The genesis of these additional terms has been 
explicitly described above. 

We consider statistically homogeneous and isotropic 
two-phase media and thus take the thermodynamic limit 
(N-oo-, V_ oo , andp = N IV fixed). In order for relation 
(2.8) to hold, Eq. (3.15) must reduce to a local relationship 
between (P) and (E), i.e., the dielectric constant is given by 

41T 00 1 f f E* = EI + - I ,. ... d2 ... dN(OIQ(rn )IO):U, (3.16) 
3 n ~ I n. 

where 

Q(rn) = I( - l)k-Ip(B I)P(B2)···p(Bk)M(Bd 
IB) 

(3.17) 

and 

(3.18) 

The sum in Eq. (3.17) is again over all ordered partitions of 
the labels 1 , ... ,n into disjoint subsets. Because of the assump-

IV. EFFECTIVE DIELECTRIC CONSTANT THROUGH 
ORDERp2 

In order to study the effects of overlap of pairs of 
spheres on E*, we obtain a density expansion of the effective 
dielectric constant E* of a statistically homogeneous disper­
sion of mutually penetrable spheres which is exact through 
order pZ or r/, where 71 =PVI and VI is the volume of a 
spherical inclusion. Ifwe assume that such a dispersion pos­
sesses no long-range order, then in the limit Irj - rj 1-00 for 
all 1 <i <j<n, i.e., as the mutual distances between n inclu­
sions increases without bound, the nobody probability den­
sity p(~) factorizes into pn. We shall assume that the p(rn) 
may be expanded in powers of density and that the leading 
term of the density expansion is of order pn. Consequently, in 
order to obtain E* through order p2, we need only consider 
the first two terms of the sum ofEq. (3.16) and the leading­
order term ofthe density expansion of p( r I,r 2)' which must be 
of the general form p2g0(X) for isotropic media, where 
x = Ir2 - rll· The quantity go(x) is the zero-density limit of 
the pair distribution or radial distribution function. Clearly, 
go(x) is a density-independent function of the relative dis­
tance x whose precise functional form depends upon the 
model of the distribution of spheres and, assuming no long­
range order, must tend to unity as x- 00. Therefore, for a 
statistically homogeneous and isotropic dispersion of mutu­
ally penetrable spheres, Eq. (3.16) gives E* lEI' through order 
712

, to be exactly 

E* lEI = 1 + kl71 + k2712, 

where 

(4.1) 
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5084 S. Torquato: Two-phase disordered media. I 

(4.2) 

and 

k2 = ~ jdX(Olgo(X)M(1,2) - 2M(I).K(2)IO):U. (4.3) 
6EI VI 

Note that evaluation of kl requires the solution of the elec­
trostatic equations (2.5a)-(2.5c) for an isolated sphere (given 
below) since Eq. (4.2) involves the one-body operator M(I). 
Clearly, kl is independent of the degree of penetrability of 
the particles and hence implies, for the models considered 
here, that kl is independent of A.. The contribution to k2 
which involves M(1).K(2) requires only the solution of the 
one-sphere boundary-value problem. The remaining contri­
bution to k2 requires specification of the zero-density limit of 
the radial distribution function g(x) of the model for the dis­
tribution of the penetrable spheres and, due to the presence 
of M( 1,2), the solutions of the boundary-value problems for 
an isolated sphere and two penetrable spheres for all relative 
separations of the spheres, i.e., O<:;;x<:;; 00. Satisfaction of the 
boundary conditions for the two-sphere electrostatic prob­
lem makes the task of determining the electric field a formi­
dable one. The solution for two nonoverlapping spheres, 
however, was obtained long ago.22 By contrast, the solution 
for two overlapping spheres (O<:;;x<:;;2R ), to our knowledge, 
does not exist in the literature. 

Using the arguments given in Sec. III to physically in­
terpret the polarization and the average polarization for the 
general case of overlapping spheres in an applied field Eo, it 
is easy to relate the quantities in Eq. (4.1) to induced dipole 
moments in the inclusions. For example, for a uniform ap­
plied field Eo, the electric field E at the field point r in the 
presence ofa single inclusion at r l, in the expanded notation 
of Eq. (2.9), is 

E(r;I) = jdr'K(r,r';I)Eo 

= {Eo + (fJR 31y3)[ 3(Y·Eo)Y - Eo], 
(1 - (3)Eo 

where 

y= Ir-rll, y=(r-rd/lr-rll 

and 

y>R (4.4) 
y<R, 

In Sec. III, we interpreted the quantity XI(I)K(rN )oEo, which 
is equal to XI(I)E(r;rN

) using the expanded notation (2.9), as 
the polarization induced in an inclusion centered at r l, in a 
field Eo, for a particular configuration of the remaining N-I 
spheres. Therefore, M( 1 )·Eo, which according to Eq. (3.13b) 
is equal to Xl (1 )E(r; 1), is the polarization (the electric dipole 
moment per unit volume) induced in an isolated inclusion at 
r l in an applied field Eo. The dipole moment induced in the 
isolated inclusion, J.l( 1), therefore is obtained by integrating 
the polarization induced within the inclusion, X I (1 )E(r; 1), 
over the volume of the inclusion, i.e., J.l( 1) is given by 
(OIM(I)IO).Eo' Since the polarizability tensor ofa single in­
clusion «(I) is defined through the relation J.l(I) = «(I).Eo, 
we have, upon use ofEq. (4.4), that 

«(I) = (OIM(I)IO) 

=aU, (4.5) 

where a = f3E IR is the scalar polarizability of a sphere. Sub­
stitution ofEq. (4.5) into Eq. (4.2) gives the first-order term to 
be 

(4.6) 

a result first obtained by Maxwell. I Using the arguments of 
Sec. III and the reasoning used above for an isolated inclu­
sion, the interpretation of the terms in the second-order term 
k2 follows in a very straightforward manner, i.e., we have, 
for a uniform applied field Eo: 

(OIM(1,2)IO).Eo = «(1;2)Eo + «(2;I)Eo - «0(I,2)Eo 

- «(I)Eo - «(2)Eo, (4.7) 

and 

(OIM(1).K(2J10).Eo = «(II2)Eo - «(I)Eo· 

Here 

and 

«(i;i) = (OIXI(i)K(iJ)IO); i=/=J, 

«0(1,2) = (OIX2(1,2)K(I,2)IO), 

«(112) = (OIXI(I)K(I). K(2)IO). 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

In arriving at Eqs. (4.7)-(4.11), we have used the relations 
(3.8), (3.12b), (3.13b), and (3.13c). Clearly, for a uniform 
Eo,«(i;i)Eo is the dipole moment induced in a sphere centered 
at r i in the presence of another sphere centered at rj and 
«0(I,2)Eo is the dipole moment induced in the overlap vol­
ume of two spheres, one centered at r I and the other centered 
at r 2 • This latter contribution must be subtracted from the 
first two terms in Eq. (4.7) since the sum 
«(1;2)Eo + «(2;I)Eo, overestimates the total dipole moment 
induced in two spheres in the uniform field E, which we 
denote by «( 1,2)Eo, by an amount exactly equal to «o(I,2)Eo 
whenever the spheres happen to overlap. The quantity 
«(112)Eo is the dipole moment induced in a sphere centered 
at r l for a nonuniform field E(2) = K(2)oEo which results 
from a sphere centered at r2 in a uniform field Eo. 

Clearly, the quantities «( 1,2) and «( 112) are polarizabili­
ty tensors which take into account the effects of pairs of 
spheres in a uniform field Eo and, in general, depend upon 
the relative position x and the scalar parameter a. Felderhof, 
Ford, and Cohen23 have expressed k2 [Eq. (4.3)] for totally 
impenetrable spheres, in terms of the induced dipole mo­
ments of the inclusions. Hence, the only term of Eqs. (4.7) 
and (4.8) they did not have to consider is the one involving 
U o, since «~o is identically zero for totally impenetrable 
spheres. 

Employing Eqs. (4.3) and (4.7)-(4.11), we have 

k2 = 21T2 jdx(go(X)[«(1,2) - «(1) - «(2)]:U 
EIV I 

- 2[«(112) - «(I)]:UJ, (4.12) 

where 

«(1,2) = «(1;2) + «(2;1) - «0(1,2) (4.13) 

and where «(i;i) and «0(1,2) are given by Eqs. (4.9) and (4.10), 
respectively. The evaluation of «(1,2), for overlapping parti-
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cles, requires the solution to the boundary-value problem for 
two interpenetrating spheres. This boundary-value problem, 
as aforementioned, does not appear to have been solved. 

v. SECOND-ORDER TERM k2 

A. Sensitivity of k2 to the details of the microstructure 

The determination of the sensitivity of the effective 
property of a composite material to the details of the micro­
structure is an important fundamental question and one for 
which there are relatively few quantitative results. For ex­
ample, the second-order term k2 has been evaluated for a 
very limited number of models of spheres of dielectric con­
stant E2 statistically distributed throughout a matrix of di­
electric constant E1• Firstly, no such results exist for disper­
sions of penetrable spheres. JeffreylO and, later, Felderhof, 
Ford, and Cohen23 evaluated k2 for totally impenetrable 
spheres by obtaining the solution of boundary-value prob­
lem for two totally nonoverlapping spheres and by assuming 
that 

go(x) = H(x - 2R), (5.1) 

where H (r) is the Heaviside step function. (Actually the inte­
grand in Jeffrey's expression for the second-order term is 
different than one obtained by Felderhof, Ford, and Co­
hen,23 but the former authors prove the value of the integral 
is the same.) A dispersion consisting of totally impenetrable 
spheres and possessing a radial distribution function speci­
fied by Eq. (5.1) has been referred to as a "well-stirred" dis­
persion. 1O A go(x) given by Eq. (5.1) is equal to the leading­
order term of the density expansion of the radial distribution 
function of equilibrium distribution of spheres24 and certain 
nonequilibrium distributions, such as random sequential ad­
dition of hard spheres. 25 Chiew and Glandt l6 have noted 
that Eq. (5.1) is not general for totally impenetrable spheres 
and, as an example, they point out that the zero-density limit 
of the radial distribution function is given by 

go(x) =H(x - 2R) + jR8(x - 2R) 

for a dispersion prepared by uniform growth of random 
seeds. McCoy and Beran26 have been the only ones to evalu­
ate k2 for a dispersion of totally impenetrable spheres using 
probability densities other than the one given by Eq. (5.1). 
They follow the approach used by Jeffrey, but, instead of 
using the Batchelor procedure to make the second-order 
conditionally convergent integral an absolutely convergent 
one, McCoy and Beran employ nearest-neighbor distribu­
tions rather than the distribution of all the neighbors go(x), in 
order to avoid convergence problems. Jeffrey27 has noted, 
however, that the use of nearest-neighbor functions in lieu of 
go(x) lead to incorrect results for problems which involve 
longer range interactions than are present in the dielectric 
case (e.g., the sedimentation problem). 

To our knowledge, no one has ever examined the ques­
tion of the sensitivity of k2 and thus of E*, through 0 (7]2), to 
the details of the microstructure by employing various equi­
librium sphere distributions. The obvious advantage in 
studying equilibrium configurations is that the well-estab­
lished techniques and results of equilibrium statistical me­
chanics may be employed, as Stell has observed. 2 

I It is 

known that the zero-density limit of the radial distribution 
function for an equilibrium distribution of spheres is given 
by24 

go(x) = exp [ - cP (x)/kT], (5.2) 

where cP (x) is the interaction potential for pairs of particles, k 
is Boltzmann's constant, and Tis absolute temperature. Spe­
cifically, we suggest that k2 be evaluated for equilibrium 
sphere distributions using the go(x) that results by using the 
following class of pair potentials: 

{
oo, x<2R)., 

cP (x;A) = 
).,cPo(x), x> 2R)." 

(5.3) 

where)" is some real number such that O.;;;k<;k and k is some 
bounded integer such that k> 1. Here cPo is any pair potential 
which may be either due to attractive or repUlsive interparti­
cle forces. The parameter)" multiplies cPo in Eq. (5.3) to en­
sure that cP (x)-+O for all x. When)., < 1 and cPo is nonzero in 
Eq. (5.3), the particles may be regarded as possessing an 
"outer" penetrable core of outer radius R and an "inner" 
impenetrable core of radius ).,R. There are a variety of cPo 
that have been employed in the study of the liquid state that 
we may choose from as reasonable model potentials for ran­
dom two-phase materials. For example, in order to study the 
effects of agglomeration of particles on k2 one could take cPo 
to be the attractive part of the potential of the adhesive­
sphere model proposed by Baxter.28 This model introduces 
attractive interaction which is infinitely short-ranged and 
has been considered by Chiew and Glandt in the study of 
percolation behavior of three-dimensional fluid systems. 15 

The effects of repulsive interactions (in addition to the infi­
nite repulsive forces which exist when x < 2R)" ), on the other 
hand, could be examined by considering cPo to be a Yukawa­
like potential when x > 2R).,. Such potentials have been used 
extensively in statistical-mechanical investigations of Cou­
lombic systems. 29 Note that ifT-+oo or if cPo = 0 in Eq.(5.3), 
we recover the equilibrium version of the concentric-shell 
model described in the Appendix. The absolute temperature, 
which appears in Eq. (5.2), does not have the same physical 
significance in the random-medium problem as it does in 
liquid state theory. In the context of disordered media, it 
may be looked upon as a parameter which allows us to sys­
tematically control the effect of either attractive or repulsive 
forces, on the microstructure, which act when the distance 
between sphere centers is greater than 2R).,. Note that for the 
models considered here, E* will depend not only upon ifJ2 and 
E21 E I but upon)." T, and the parameters that are embodied in 
cPo. In these series of papers, however, we shall not study the 
effects of k2 of interparticle forces that act when the spheres 
do not intersect one another, but instead, shall focus our 
attention on the sensitivity of k2 to inclusion-overlap effects 
for sphere models in which the range of the impenetrability 
parameter)., is restricted to be 0.;;;).,.;;; 1, (e.g., aforementioned 
permeable-sphere and penetrable concentric-shell models). 

B. Rearrangement of the terms involved in k2 

It is convenient to divide up the integration region of the 
integral kz, given by Eq.(4.3), into two parts, x < 2R and 
x>2R, in order to recast it in the following way: 
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5086 S. Torquato: Two-phase disordered media. I 

k2 = k2 + .Jk2 

where 

and 

k2 =A +B, 
.Jk2 = C+D, 

21T 1 A = --2 dx{go(x)[a(I,2) - 2a(I)]:U 
elV 1 x>2R 

- 2[a(112) - a(I)]:Uj, 

-
41T1 B = --2 dx[a(112) - a(I)]:U, 

elV 1 x<2R 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

Here all), a(112), and a(I,2) are given by relations (4.5), 
(4.11), and (4.13), respectively. 

The quantities on the right-hand side of Eq. (5.4) have 
an especially simple physical significance. The term k2 is the 
contribution to k2 for a reference system of a dispersion of 
totally impenetrable spheres. Note that although the region 
of integration of the integral B is specified to be x < 2R, it 
contributes to k2 even when the spheres are totally impen­
etrable to one another. [This last point is made clear by not­
ing that B originates from the term involving M( I ).K(2) in Eq. 
(4.3) and can be seen there to make a contribution to k2 
whether or not the spheres intersect.] Ifwe consider models 
in whichgo(x) = I whenever x>2R, then k2 is precisely equal 
to the second-order term evaluated by JeffreylO and Felder­
hof, Ford, and Cohen,23 for a dispersion of totally impen­
etrable spheres. From Jeffrey, we find that 

= C 
A - 3[32 L n 

- n~6 (n - 3)2(n-3) ' 
(5.11) 

B = 3[32, (5.12) 

where the coefficients Cn are functions of [3 (and are equiva­
lent to Bn - 3An in Jeffrey's notation). Therefore, for disper­
sions of penetrable spheres characterized by a go(x) equal to 
unity for all x>2R, the reference system is a dispersion of 
totally impenetrable spheres which possesses ago(x) given by 
Eq. (5.1) and a value of k2 given by the sum of Eqs. (5.11) and 
(5.12). 

The quantity .Jk2 is, therefore, the contribution to k2 in 
excess of the contribution from the reference system k2 and, 
hence, accounts for effects due to penetrability of the 
spheres. Note that the excess quantity .Jk2 must tend to zero 
as A._I, since go(x), which appears in the cluster integrals C 
[Eq. (5.9)] andD [Eq. (5.10)] must tend to zero asA.-l for all 
x such that x < 2R. 

The evaluation of the integral D for arbitrary A. is 
straightforward in the permeable-sphere and penetrable 
concentric-shell models. In the PS model the zero-density 
limit of the radial distribution function is given byl4 

(x;A. ) = {I - A., x < 2R 
go 1, x>2R . 

(5.13) 

In the PCS model, the go(x;A. ) is not uniquely given. We 
choose, however, to consider the following expression for 
such a model: 

(
X' 1 ) = {O, x < 2RA. 

go y' 1, x>2RX (5.14) 

From the discussion in Sec. IV, it is clear that Eq. (5.14) 
applies not only to equilibrium configurations of spheres, 
but also to certain nonequilibrium distributions, such as ran­
dom sequential addition. 25 Note that both Eqs. (5.13) and 
(5.14) tend to unity for all x asA.-D (i.e., we recover the fully 
penetrable-sphere case in this limit) and are equal to the zero­
density limit of the radial distribution function for totally 
impenetrable spheres as given by Eq. (5.1). In the PS model 
and in a PCS model characterized by a go(x) given by Eq. 
(5.14), the reference system is the so-called "well-stirred" 
dispersion and, therefore, k2 is the sum of Eqs. (5.11) and 
(5.12). Substituting Eqs. (5.13) and (5.14) into Eq. (5.10) gives 

Dps (A. ) = - 24[3 (1 - A. ) ( 5. 15) 

and 

(5.16) 

where Eqs. (5.13) and (5.14) give the integral D in the PS and 
PCS models, respectively, as specified above. 

The evaluation of the two-body cluster integral C re­
quires knowledge of the polarizability tensor a( 1,2) for 
x < 2R and, thus, the solution of the boundary-value prob­
lem for two interpenetrating spheres. Clearly, whenever 
x < 2R, a( 1,2) may be interpreted to be the polarizability ten­
sor of a single "irregularly shaped" inclusion which is com­
posed of two interpenetrating spheres, one being centered at 
r I and the other being centered at r 2' In the next article in this 
series, we shall obtain an expression for the integral C, for 
arbitrary A. in the permeable-sphere model, which is exact 
through order K3(K=e2/ e I - 1) without making direct use of 
the electrostatic solution for two interpenetrating spheres. 
There we also obtain rigorous upper and lower bounds on C 
and thus on k2' through all orders in K and for arbitrary A., in 
the PS model. 

VI. e* FOR A DISPERSION OF PENETRABLE SPHERES 
THROUGH ORDER (,V~ 

The volume fraction tP2 is a more general parameter of 
dispersions than the number density since the former quanti­
ty remains well-defined for systems in which there are no 
well-defined inclusions. It is useful, therefore, to obtain an 
expansion for e* of statistically homogeneous dispersion of 
N mutually penetrable spheres, in powers of tP2' This is ac­
complished by using the expansion of e* through order r/, 
given by Eq. (4.1), and by eliminating 11 in favor of tP2 in Eq. 
(4.1) using the expression (derived below) which gives 11 ex­
actly through order tP ~ for dispersions of penetrable spheres. 

Using the results of Torquato and Stell,4 it is easy to 
show that tP2' for statistically homogeneous and isotropic 
suspensions of penetrable spheres is, through order 112

, given 
exactly by 

tP2 = 11- i 112
, (6.1) 

where 
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1= _1_ ffdr2 dr3 gO(r23)m(rn!m(r13 ), 
2Vi 

(6.2) 

and where r23 = Ir3 - r 2 1. Here each volume integral is over 
the volume of the sample V. Note that I is equivalent to 
following integral: 

1= _1_ fdr23go(r23)fdrl m(rdm(r13)' (6.3) 
2Vi 

The volume integral over r l is recognized to be a three-di­
mensional convolution integral of the step function m with 
itself and, hence, is equal to the volume common to two 
spheres of radius R whose centers are separated by a distance 
r23, v~nt(r23)' 

We have, therefore, that 

1= -l-fdr go(r) v~nt(r), 
2Vi 

where 

v~nt(r) = 3 4 R 16 R 3 ' 

{

41T R 3[1 _~.:.. + _1 ~] 
0, r>2R. 

Finally, by inverting Eq. (6.1) we have 

"I = ¢2 + I¢ L 

(6.4) 

(6.5) 

(6.6) 

which is exact through order ¢ ~. Note that for the general 
case of dispersions of penetrable spheres we have that ¢2 <. "I, 
since I~O; the equality sign applying to totally impenetrable­
sphere systems. 

Before proceeding to obtain E* through order ¢ ~, we 
evaluate the integral I, in the permeable-sphere and penetra­
ble concentric-shell models, in order to shed some light on its 
geometrical significance. Substituting Eqs. (5.13) and (5.14) 
into Eq. (6.4) we have 

Ips (A ) = [(1 - A )/2] (6.7) 

and 

I pcs (A ) = 4( 1 - A 3) - 1( 1 - A 4) + (1 - A 6), (6.8) 

where Eqs. (6.7) and (6.8) give the integral I in the PS and 
PCS, respectively, as specified in Sec. V. In Table I we com­
pare Ips and/pcs for various values OfA. Equations (6.7) and 
(6.8) are both montonically decreasing functions of A and 
yield the same value at A = Ao, where Ao~0.535. From Ta­
ble I we see that whenever A > Ao, Ips (A ) > I pcs (A ) and that 
whenever A <Ao' Ips (A ) </pcs(A). Referring to Eq. (6.1), 
this implies that 1"12

, the expected overlap volume between 
all distinguishable pairs of spheres,5 is greater in the perme­
able-sphere model whenever A >Ao, with the converse ap­
plying whenever A <Ao. Clearly, for fixed "I and through 
order "12, this implies that ¢ ~s <¢ ~cs whenever A <Ao and 
that ¢ ~s > ¢ ~cs whenever A >Ao, where ¢ ~s and ¢ ~cs are 
the ¢2 associated with the PS and PCS models, respectively. 

Through use ofrelations (4.1), (4.2), (5.4), and (6.1), we 
find that for a statistically homogeneous and isotropic dis­
persion of penetrable spheres, E* lEI through order ¢ ~ is giv­
en exactly by 

E* A 

-= 1 +kl¢2+ [k2+..:1k~]¢;' (6.9) 
El 

(6.10) 

Here kl' k2' C, D, and I are given by Eqs. (4.6), (5.5), (5.9), 
(5.10), and (6.4), respectively. The quantity ..:1k ~ is the sec­
ond-order excess coefficient associated with the expansion of 
E* lEI in powers of ¢2' The first-order coefficients of Eqs. 
(4.1) and (6.9) are identical. Whereas, the contributions to the 
second-order coefficients in these expansions from the refer­
ence system are identical, the excess coefficients of Eqs. (4.1) 
and (6.9) differ by an amount kl/. 

APPENDIX: CONCENTRIC-SHELL MODEL 

In the concentric-shell model, N identical spheres (in 
three dimensions) or disks (in two dimensions) of radius R 
are statistically distributed in space subject only to the con­
straint that each particle possesses an impenetrable core re­
gion of radius AR, where A is any real number such that 
O<.A < k and k is some bounded integer greater than or equal 
to one. Using the notation of Sec. II, this means the N-body 
probability density P must obey the condition 

P("v;A) =0, if Irj-rjl<2RA (AI) 

for any i andj such that i:~:j. ForA < 1, we may think of each 
sphere (disk) of radius R as being composed of an impenetra­
ble core of radius AR surrounded by a fully penetrable con­
centric shell of thickness (1 - A )R. In cases when A > 1, an 
impenetrable concentric shell of thickness (1 - A )R encom­
passes the sphere (disk) of radius R. Note that the concentric­
shell model is not restricted to conditions of thermal equilib­
rium. The only constraints imposed on the sphere 
distribution are those stated explicitly above. 

For the concentric-shell model, assuming statistical ho­
mogeneity and isotropy, the n-particle probability density 
for arbitrary A and reduced TJ,p(rn;TJ,A ), can be related to the 
n-particle probability density for totally impenetrable 
spheres (A = 1), in the following manner: 

p(r 12IR, ... ,r1n IR;TJ,A) =p(r12/AR, ... ,r1n IAR;TJA 3,1). 
(A2) 

For n = 2 and A < 1, e.g., Eq. (A2) states that the two­
particle probability density at the reduced distance r12IR 
and reduced density "I is equal to the two-particle probability 
density, for a system of totally impenetrable spheres, at the 
larger reduced distance r 121 AR and smaller reduced density 

TABLE I. Evaluation of the integral I in the permeable-sphere model [Eq. 
(6.7)] and the penetrabie-concentric-shell model [Eq. (6.8)]. 

A. Ips Ipe, 

0.0 0.50 0.50 
0.1 0.45 0.496 
0.2 0.40 0.475 
0.3 0.35 0.428 
0.4 0.30 0.355 
0.5 0.25 0.266 
0.6 0.20 0.173 
0.7 0.15 0.091 
0.8 0.10 0.033 
0.9 0.05 0.005 
1.0 0.00 0.000 
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1JA. 3. Clearly, as A.-o, we find that the pair of particles be­
come spatially uncorrelated [p(rd----+p2],i.e., we recover the 
P2 for the fully-penetrable-sphere model. 
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