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The effective trapping rate k associated with diffusion-controlled reactions among random 
distributions of spatially correlated and uncorrelated, oriented spheroidal traps of aspect ratio E 
is determined from Brownian motion simulations. Data for k are obtained for prolate cases 
(E = 2, 5, and lo), oblate cases (E = 0.1,0.2, and OS), and spheres (E = 1) over a wide range 
of trap volume fractions (& ) and satisfy recently obtained rigorous lower bounds on k for this 
statistically anisotropic model. The results for the trapping rate for correlated traps always 
bounds from above corresponding results for uncorrelated traps. Generally, the trapping rate 
k, for fixed &, increases with decreasing aspect ratio E, showing a precipitous rise in k as the 
spheroids become disklike. Using a recent theorem due to Torquato [ Phys. Rev. Lett. 64,2644 
( 1990) 1, data for the trapping rate k can be employed to infer information about the fluid 
permeability tensor K associated with slow viscous flow through porous media composed of 
the same arrays of oriented spheroidal particles. 

I. INTRODUCTION 

Diffusion-controlled reactions arise in a host of phe- 
nomena, including heterogeneous catalysis, migration of 
atoms and defects in solids, combustion of liquid droplets, 
polymer chain growth kinetics, colloid or crystal growth, 
precipitation, and fluorescence quenching. A diffusion-con- 
trolled reaction is one in which the time for two bodies to 
diffuse in the same neighborhood is the rate-limiting step, 
the reaction time being negligible in comparison. Often one 
of the reaction partners is large and may be regarded as stat- 
ic. In such situations, therefore, one considers media com- 
posed of static traps (sinks) distributed throughout a region 
containing reactive particles. The reactant diffuses in the 
trap-free region but is instantly absorbed on contact with any 
trap. At steady state, the rate of production of the diffusing 
species is exactly compensated by its removal by the traps. 
At sufficiently low trap densities, such that interactions be- 
tween the traps can be neglected, Smoluchowski’ derived an 
expression for the trapping rate (rate constant) k for spheri- 
cal traps. For arbitrary trap density, there will be a competi- 
tion between traps and the trapping rate will depend upon 
the concentration of traps.2 For spherical traps at high trap 
concentrations, a variety of techniques have been employed 
to obtain the trapping rate k, including effective-medium 
theories,3 survival probability theory,4*5 rigorous bounds,6v7 
and random-walk simulation techniques.4,8-‘0 

Virtually no studies have been carried out to determine 
the trapping rate for statistically anisotropic distributions of 
traps, e.g., oriented ellipsoidal traps. Fredrickson and Shaq- 
feh” have recently examined the special case of distribu- 
tions of slender, aligned rodlike traps at dilute to semidilute 
concentrations. More recently, Torquato and Lade” have 
obtained rigorous lower bounds on the trapping rate for ran- 
dom distributions of oriented spheroidal traps. 

It is important to distinguish between statistical and 
macroscopic anisotropy.’ Statistical anisotropy implies that 
the n-point correlation functions that statistically character- 
ize the microstructure7*i3 do not remain invariant under ro- 
tation. Macroscopic anisotropy refers to anisotropy with re- 
spect to the properties of the heterogeneous system. The 
trapping rate is always macroscopically isotropic even when 
the microstructure is statistically anisotropic. 

This paper reports Brownian-motion simulation results 
for the steady-state trapping rate k associated with diffusion 
in statistically anisotropic microgeometries consisting of ori- 
ented, spheroidal traps of arbitrary aspect ratio E = b /a over 
a wide range of trap volume fractions 4, = 1 - 4, (where 
4, is the porosity). The spheroidal traps are aligned parallel 
to the z axis with length 26 and maximum diameter 2a. We 
consider obtaining k for several prolate cases (E = 2,5, and 
10) and oblate cases (E = 0.1, 0.2, and 0.5). These results 
are compared to data for spheres (E = 1) which we also 
compute. Both instances of overlapping (i.e., spatially un- 
correlated) and nonoverlapping (i.e., spatially correlated) 
spheroidal traps shall be investigated. Thus we seek to probe 
the effects of both statistical anisotropy and spatial correla- 
tion of the traps on the trapping rate. Our simulation data 
will be compared to a rigorous lower bound on k for oriented 
spheroidal traps recently obtained by Torquato and Lade.” 

The trapping rate is simply the inverse of the average 
survival time 7 for diffusing (Brownian) particles which is 
proportional to the total mean square displacement before 
trapping T 2:4,7 

k=i-‘=6D/T*. (1) 

This relationship is valid for statistically anisotropic media. 
Unlike recent random walk algorithms that simulate the de- 
tailed zig-zag motion of the diffusing particle with small, 
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finite step sizes,4*8 the present investigation facilitates the 
calculation by using&t passage time equations as was re- 
cently done by Torquato and Kim” for spherical traps. Tor- 
quato and Kim showed the use of a first passage time algo- 
rithm resulted in an execution time that is at least an order of 
magnitude faster than procedures which simulate the de- 
tailed zig-zag motion of the random walker. 

Given our results for k, we shall also be able to obtain 
estimates for the fluid permeability tensor K associated with 
slow viscous flow through the same microgeometry by ap- 
plying a recent theorem due to Torquato.‘3 He rigorously 
proved that, for arbitrary statistically anisotropic porous 
media of porosity (PI, the fluid permeability tensor K is relat- 
ed to the trapping constant y by the following inequality: 

K<:y- ‘I, (2) 
where I is the identity tensor. Relation (2) states that the 
tensor ( y- ‘I - K) is positive semidefinite. The trapping 
constant is trivially related to the trapping rate as 

k= yd,D. (3) 
Note K and y - ’ both have dimensions of (length) .* 

II. SIMULATION PROCEDURE 

Obtaining the trapping rate k from our computer simu- 
lations is a two-step process. First, one must generate ran- 
dom realizations of the random medium, which in this study 
are distributions of oriented spheroidal traps. Second, em- 
ploying a Brownian motion algorithm, we determine the to- 
tal mean square displacement 7’ and, thus, the trapping rate 
[cf. Es. (l)l. 

Generating equilibrium distributions of spheres (with 
hard cores) using a Metropolis algorithmI is relatively 
straightforward. For nonspherical shapes, such as oriented 
spheroids, the generation of equilibrium configurations is 
considerably more involved. The generation of equilibrium 
realizations of oriented spheroids, however, is substantially 
simplified by exploiting the observation of Lebowitz and 
Perram15 that a scale transformation to coordinates 

Rr (X,Y,Z) = [x,y,(a/b)zl 

converts oriented spheroids of shape 

(4) 

(x2 +y2)/a2 +2/b’= 1 (5) 
into spheres of radius a at the same volume fraction, thus 
reducing the thermodynamics and particle correlations of 
aligned hard (nonoverlapping) spheroids into an equivalent 
problem involving hard spheres. Here, X, Y, Z and x, y, z 
represent coordinates in the sphere and spheroid domains, 
respectively. This transformation actually also applies to 
ouerlapping (i.e., spatially uncorrelated) spheres.‘* Thus the 
Z coordinate in the sphere domain is mapped to 

z = (b/a)Z (6) 
in the corresponding spheroid domain. Lado and Tor- 
quato ” have recen y tl computed the two-point matrix prob- 
ability function S, for distributions of oriented hard spher- 
oids using this scale transformation. Figures 1 and 2 depict 
two-dimensional distributions of oriented hard ellipses and 
oriented overlapping ellipses. 

FIG. 1. A distribution of oriented impenetrable ellipses at an ellipse volume 
fraction 4, -0.3 and aspect ratio E = b/a = 3. 

Therefore, we first generate realizations of spheres, then 
“stretch” the entire system according to (6) to obtain corre- 
sponding distributions of oriented spheroids of arbitrary as- 
pect ratio E. A standard Metropolis algorithmI is used to 
generate equilibrium configurations of overlapping and non- 
overlapping spheres at sphere volume fraction $*. Then, N 
spheres of radius a are initially placed on lattice sites of a 
cubic array in a cubical cell of volume L 3. [Note that the 
reduced number density 7 = (N/L 3, (47r/3)a3 is equal to 
the sphere volume fraction ti2 only in the hard-sphere case. 
For overlapping spheres, $2 = 1 - exp( - 7). ] The cell is 
surrounded by periodic images of itself. Each spherical par- 
ticle is then randomly moved a small distance to a new posi- 
tion which is accepted only if no hard-core overlap exists. 
This process is repeated many times until equilibrium is 
achieved. To ensure equilibrium configurations have been 
generated, the simulation program measures the contact val- 

FIG. 2. A distribution of oriented overlapping ellipses at an ellipse volume 
fraction d1 -0.3 and aspect ratio E = b/a = 3. 
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ue of the pair or radial distribution function g, (2a), which is 
trivially related to the pressure of the system. In the case of 
hard spheres, the simulated value of g, at contact is then 
compared to the well-known and accurate Carnahan-Star- 
ling approximation.” The measured contact values of g, 
were found to be in excellent agreement with the latter. 

ratio E = 0.1, 0.2, 0.5, 1, 2, 5, and 10 and trap volume frac- 
tion +2 = 0.1, 0.3, and 0.5. Data for overlapping and nono- 
verlapping traps are given. In the case of hard spherical 
traps, #2 = 0.5 corresponds to a value very close to the onset 
of the fluid-solid phase transition.” 

Once a configuration of spheres has been generated, the 
system is “stretched” or “compressed” using the mapping 
(6)) resulting in a configuration of randomly positioned ori- 
ented spheroids with volume fraction & or reduced number 
density 7, and degree of penetrability identical to the original 
configuration of spheres in the cubical cell. It is in the spher- 
oid domain that random walks are conducted. 

Our data shall be compared to a rigorous lower bound 
on the trapping rate (or trapping constant) for oriented 
spheroidal traps obtained recently by Torquato and Lado.r2 
These authors computed the general two-point “void” 
bound derived by Torquato and Rubinstein.’ Specifically, 
Torquato and Lado found 

k>k’*’ = (Dq5,&/4a2(x).)f(E), / (7) 

The total mean-square displacement of Brownian parti- 
cles before trapping 7’ is computed using the first passage 
time algorithm of Torquato and Kim.” One first constructs 
the largest possible concentric sphere of radius r, about the 
initial position of the Brownian particle that does not over- 
lap any traps. Now since the average time li required for the 
Brownian particle to first strike the surface of the imaginary 
sphere of radius rj is simply e/60, then one need only ran- 
domly choose a point on this surface and record r,. This 
process is repeated, each time keeping track of ri until the 
walker is trapped; the total mean-square displacement per 
walker is C<. The quantity ?* or the trapping rate is finally 
determined by averaging over many random walks and real- 
izations. In practice, the Brownian particle is considered 
trapped when it comes within a very small distance S of the 
trap surface. A further savings in computation time is made 
by checking distances only to traps nearest to the walker by 
employing the “Grid” method described by Lee ef aI.’ Tor- 
quato and Kim lo showed that for sp herical traps this algo- 
rithm resulted in an execution time which is at least an order 
of magnitude faster than simulation methodologies that sim- 
ulate the detailed zig-zag motion of the random walker with 
small finite step sizes.4v8 

2Xb 

ln[(l +xb)/(l-Xb)] ’ 
b<a, 

(8) 
1 x,/tan- ‘(x0 1, b>a 

is a purely shape-dependent function with 

x2 = - ,yi = (b ‘/a*) - 1, (9) 
and the quantity 

where 

(4, = s,- x[S2 (xl - &]dx (10) 

is the first moment of the probability function 
[S, (x) - & ] for th e reference spherical system. Here, 

S, (r) is the probability of finding the end points of a line 
segment of length r in the trap-free region, 4: is its long- 
range value, and x = r/2a. Note that Torquato and Lado 
actually bounded the trapping constant that is simply related 
to k by relation (3). 

We employ this algorithm in the spheroidal case with 
the only difference being the part of the algorithm that 
checks for the minimum distance from a point to a trap sur- 
face, i.e., the radius of the first passage sphere. For spherical 
traps, the minimum distance is simply the distance between 
the sphere center and the point, minus the sphere radius. For 
spheroidal traps, however, determination of the minimum 
distance is somewhat more involved. Because the traps are 
symmetrical about their z axes, this problem reduces to de- 
termination of the minimum distance between a point and an 
ellipse, resulting in a quartic equation which can be solved 
analytically. ‘* 

For the values of volume fraction 42 and aspect ratio E 
considered here, there are no other analytical expressions of 
k available. As a test case, however, we can conduct our 
simulations at very low volume fractions and compare to the 
exact infinitely dilute limit of k, denoted by k,, for oriented 
spheroids. From the Appendix, we have 

In our simulations, each configuration contained lOOO- 
1134 traps, S/a = 0.0001, and a total of 1000 walks per con- 
figuration were carried out. A total of 100 configurations 
were generated for each value of v and E examined. Our 
calculations were carried out on a VAX station 3 100 and a 
CRAY Y-MP. 

k, = (3Dq5,/a2)f(e). (11) 
Note that ( 11) contains the same shape-dependent function 
f(e) as the bound (7). In the infinitely dilute limit, Torquato 
and Rubinstein’ showed that 

(-do -42m. (12) 
Substitution of ( 12) into (7) gives 

k>kC2’ = (5D4,/2a2)f(e) (h < 1). (13) 
Thus, in the infinitely dilute limit, the bound gives 5kJ6. 
Although bound (7) is not exact in this limit, it does reflect 
the proper shape dependence. 

We carried out simulations of the trapping rate for a 
variety of aspect ratios in the range 0.1 <E< 10 at trap volume 
fractions between 10 - 5 and 10 - 4 and found excellent agree- 
ment with the exact result ( 11). 

III. RESULTS AND DISCUSSION 
A. Trapping rate 

Here we report computer simulation results fork of dis- 
tributions of oriented spheroidal traps at values of the aspect 

Tables I and II summarize our data for the trapping rate 
for random distributions of oriented prolate and oblate 
spheroidal traps in tabular form. Table I gives results for the 
dimensionless trapping rate ka2/D, whereas Table II gives 
results for the dimensionless trapping rate k/k,. Note that 
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TABLE I. The dimensionless trapping rate ka’/D for selected values of the 
trap volume fraction & and aspect ratio b /a in the cases ofboth overlapping 
and hard, oriented spheroidal trap distributions. Here, Q is the semiaxis de- 
fined in the text and D is the diffusion coefficient. 

ka’/D 

Overlapping spheroids Hard spheroids 

b/a f& = 0.1 q& = 0.3 qh2 = 0.5 r$, = 0.1 & = 0.3 & = 0.5 

0.1 5.03 31.3 93.6 6.13 54.8 247. 
0.2 2.19 12.0 34.0 2.69 21.6 94.9 
0.5 0.874 4.43 11.5 1.08 8.10 34.3 
1.0 0.513 2.50 6.52 0.633 4.68 19.4 
2.0 0.345 1 .I3 4.52 0.430 3.20 13.5 
5.0 0.251 1.35 3.59 0.313 2.42 10.4 

10.0 0.231 1.24 3.38 0.219 2.23 9.59 

the results for spheres (b /a = 1) agree well with the results 
of Lee et aL8 who computed k by simulating the detailed zig- 
zag motion of the random walker.20 

Figure 3 depicts the scaled trapping rate ka*/D vs 
log(b/a) for both hard and overlapping spheroids with 
d2 = 0.1. Included in the figure are the corresponding two- 
point bounds (7) computed by Torquato and Lade.” Fig- 
ures 4 and 5 show corresponding results for $2 = 0.3 and 
42 = 0.5, respectively. There are a number of noteworthy 
features. First, not surprisingly, ka2/D increases with in- 
creasing trap volume fraction & for fixed aspect ratio for 
both hard and overlapping traps. Second, the data always lie 
above the rigorous lower bound, with the discrepancy be- 
tween the two increasing with increasing c$*, as expected. 
Third, for fixed 42 and b/a, the trapping rate for hard traps 
lies above the trapping rate for overlapping traps. This is 
expected since the specific surface (interfacial surface area 
per unit volume) of the former system is always greater than 
the specific surface of the latter for nonzero &. Fourth, 
ka2/D, for fixed 42, decreases with increasing aspect ratio; 
prolate and oblate results are always below and above the 
sphere results (b /a = 1 ), respectively. Again, this is related 

TABLE II. The dimensionless trapping rate k /k, for selected values of the 
trap volume fraction I$~ andaspect ratio b /a in thecasesofboth overlapping 
and hard, oriented spheroidal trap distributions. Here, k/k, is the exact 
infinitely dilute-limit result (11). 

k/k, 

Overlapping spheroids Hard spheroids 

b/a &=O.l q5>=0.3 qs*=o.s l$,=O.l &=0.3 &=0.5 

0.1 2.48 5.14 9.22 3.02 9.00 24.3 
0.2 2.04 3.14 6.33 2.50 6.72 17.7 
0.5 1.76 2.91 4.65 2.18 5.44 13.8 
1.0 I.71 2.78 4.35 2.11 5.20 12.9 
2.0 1.75 2.93 4.58 2.18 5.40 13.1 
5.0 2.00 3.50 5.60 2.44 6.28 16.2 

10.0 2.3 1 4.19 6.79 2.80 7.45 19.2 

1..  .  .  1, .  1, I , .  .  *  

bdb/a) 

FIG. 3. The dimensionless trapping rate ka’/D vs the log of the aspect ratio 
b/a for hard oriented spheroids and overlapping oriented spheroids at a 
spheroid volume fraction & = 0.1. Filled and unfilled circles are the hard 
and overlapping simulation data, respectively. Solid and dashed lines, re- 
spectively, are the lower bounds (7) for hard and overlapping traps ob- 
tained by Torquato and Lade.‘* 

to the fact that the surface area available for reaction de- 
creases as b /a increases for fixed c$*. Whereas k gradually 
changes as the aspect ratio b /a is varied for prolate spheroi- 
dal traps, k dramatically increases as the spheroids become 
disklike (E< 1). For the case of hard ablate traps, the data 
obtained for the range 0.1 GE< 1 obeys the following power 
law: 

ka2/D- (b/a) -*, (14) 
where the exponent a (approximately unity) weakly de- 
pends on the trap volume fraction (a = 0.99 at & = 0.1, 
a= l.O7at#, =0.3,anda= 1.11 at+, =0.5). 

kAb/a) 
FIG. 4. As in Fig. 3 for & = 0.3. 
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FIG. 5. As in Fig. 3 for #2 = 0.5. 

Figures 6-8 show the dimensionless trapping rate k /k, 
vs log(b /a) for & = 0.1,0.3, and 0.5, respectively. Plotted 
in this fashion, for a certain range of $z and b /a, we see that 
the symmetric relation 

k(Wk,(d = k(e-‘)/k,(E-‘) (15) 
is approximately obeyed. Expression ( 15) holds for small & 
(& < 0.1) for a wide range of aspect ratios. It is also approxi- 
mately satisfied for nearly spherical shapes (0.5 < b /a < 2) 
for all volume fractions reported. Interestingly, the bound 
(7) exactly obeys such a scaling, i.e., (7) and ( 11) combine 
to give 

$2 = 0.1 

m 
0 

q . . 
0 

k 0 
k, 2. 0 0 0 

0 0 

----------------- 

0 "'."'..'*,**'l*.. 
-1 -0.5 0 0.5 1 

kdb/a) 
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) a l 
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0 0 

0 0 0 

2- 

i----___-------- 

0 ~““~.~~‘.~~~‘~~~~ 
-1 -0.5 0 0.5 1 

b(b/a) 

FIG. 7. As in Fig. 6 with 42 = 0.3. 

k”‘(e)/ks(e) = k’*‘(e-‘)/k,(e-‘). (16) 
The ratio k “‘(e)/k, (E), however, for fixed &, is indepen- 
dent of the aspect ratio, in contrast to the data. 

In Figs. 9 and 10 we plot the dimensionless trapping rate 
k/k, versus the trap volume fraction #2 for hard, prolate 
spheroids and hard, oblate spheroids, respectively. (Corre- 
sponding plots for the overlapping case are similar and hence 
are not shown.) Included in the figures are the associated 
lower bounds. Comparing Figs. 9 and 10 again confirms the 
validity of the symmetric relation (15) for the aforemen- 
tioned range of parameters. 

B. Fluid permeability tensor 

Torquato I3 has shown that the fluid permeability tensor 
K for an anisotropic porous medium of arbitrary topology at 
porosity 4, ( = 1 - 42 ) is related to the trapping rate k of 
the same medium by the tensor relation (3). Thus the results 
of Table I for ka’/D lead immediately to upper bounds on 

30 -1 I I, . ( . . . . . .., . 

#2 = 0.5 . 
1 

20 - 0 
0 

k 0 

k, . l 
0 

. 

10 - 

FIG. 6. The dimensionless trapping rate k/k, versus the log of the aspect 
ratio b/a for hard oriented spheroids and overlapping oriented spheroids at 
a spheroid volume fraction I$~ = 0.1. Filled and unfilled circles are the hard 
and overlapping simulation data, respectively. Solid and dashed lines, re- 
spectively, are the lower bounds (7) for hard and overlapping traps ob- 
tained by Torquato and Lado. ‘* Here, k, is the exact infinitely dilute-limit 
result (11). 

0 > 
0 

n n 

------__--------- 
0 ‘*~~‘~**~‘*~**‘~‘~’ 
-1 -0.5 0 0.5 1 

b&da) 

FIG. 8. As in Fig. 6 with +2 = 0.5. 
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B 
A 
. 

I_j// 
I I I . I * 

0.2 0.4 0.6 0.6 1 

$2 

FIG. 9. The dimensionless trapping rate k  /k, versus spheroid volume frac- 
tion q5, for hard prolate traps at various aspect ratios. The solid line is the 
lower bound (7) for hard prolate spheroids’* that is independent of aspect 
ratio. 

the eigenvalues of K, which we denote by K,,, or lower 
bounds on K i; ‘, where K - ’ is the fluid resistance tensor. If 
we let the xj direction be parallel to the axis of symmetry, 
then from (3) we have 

[“g’ K;? Ky>[i %  ;], (17) 

where y (the trapping constant) is related to k (the trapping 
rate) by relation (3). Here we have used the fact that 
K, , = Kz2. Note that the trapping constant tensor is isotrop- 
ic as discussed in the Introduction. Now for prolate spher- 
oids, K,;‘>K3;‘, and thus the bound on K3; ’ will be 

20 

k 

k, 

10 

A 

0 

n 

.lZ2 !AL! 
0 0.2 0.4 0.6 0.8 1 

$2 

30, . , I , I . I 
n 

FIG. 10. As in Fig. 9 for hard, oriented oblate spheroids. 

a2 

K 33 

5or---l 

20 i- 

40 
30 I 

L 

L 

10 - 

0  
0  0.2 0.4 0.6 0.6 1 

$2 

FIG. 11. Lower bounds on the dimensionless fluid resistance aZK ,;, ’ versus 
spheroid volume fraction q%* for hard prolate spheroids at various values of 
the aspect ratio b/a. The bounds are obtained by combination of relations 
(3), ( 17) and the results of Table I for the trapping rate. Solid lines are 
spline fits of the data so obtained. 

sharper than the bound on K 11’. On the other hand, for 
oblate spheroids, K ,J ’ <K 3< ’ and so the bound on K 3; ’ 
will be weaker than the bound on K ‘< ‘. The results of Table 
I and Eqs. (3) and ( 17) show that the resistance K i; ’ in the 
xi direction increases with increasing concentration of 
spheroids 42, as expected. In Fig. 11, we plot the dimension- 
less resistance u*K 33 ’ versus volume fraction for the case of 
hard prolate spheroids at various aspect ratios. 
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APPENDIX: BOUNDARY-VALUE PROBLEM FOR AN 
ISOLATED SPHEROIDALTRAP AND THE DILUTE-LIMIT 
TRAPPING RATE 

Here we present solution details of the boundary value 
problem for an isolated spheroidal trap. From this solution 
we obtain the infinitely dilute limit trapping rate k,. In gen- 
eral, the equation describing the concentration c of reactant 
species about a single trap of arbitrary shape is given by 

v*c = 0 (Al) 
in the trap-free region with boundary conditions 

c(Y) = 0, (A21 

c(r +co) =c, (A31 

where 7 is the average concentration over the trap-free re- 
gion, and 9 denotes the trap surface. In prolate spheroidal 
coordinates,” 
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v=c = 1 
a*( sinh’ r] + sin2 0) 

e + coth 77 * + - a*c 

h2 arj de= 
+cot& 

de 1 
1 

+ 
f32C 

a2 sinh2 7 sin* 6 &? ’ 
(A4) 

where a = ,/n, a and b being the semiminor and semi- 
major axes of the spheroid, respectively. The trap surface 
defined by 77 = ?J,, is related to a and b through 

a=asinhT,, (A51 
b=acoshq,. (A61 

The boundary conditions (A2) and (A3) become, respec- 
tively, 

c(??=qo) =o, (A7) 
c(q+co) =z. (A81 

Clearly c = c( 7) only, and so (Al) reduces to 

-+coth@=O d=c 

dv2 4 ’ 
(A9) 

which, with boundary conditions (A7) and (A8), yields 

In coth( v/2) 

In coth( v0/2) I 
f (A101 

which is the species concentration about a single prolate 
spheroidal trap. The total reactant flux J, into a single isolat- 
ed trap is given by 

J,= -D 
s 

Vc(v = v0 ) *ii dY, (All) 
.Y’ 

where A is the unit vector normal to the trap surface. Carry- 
ing out indicated operations yields 

J, = 4Dv-Ea 
In coth(q,/2) * 

C.412) 

For steady-state conditions in a field of N widely spaced 
traps (i.e., negligible competition between traps), the reac- 
tant flux into all traps (the total trapping rate) is exactly 
equal to the rate of production of the reactant over the entire 
volume V, or 

NJ, = Vk,T. (A13) 
Since cash v. = b/a, sinh q,, = a/a, andp = N/V, substi- 
tuting (A 12) into (A 13) yields (after simple algebra) 

k, =4Dr,,a[@?An(e+dm)]. (A14) 
In general, as the volume fraction of traps approaches zero, 

4rpa approaches 3+,/(a*e) (note that this relation is al- 
ways true for impenetrable traps). Then rearranging terms, 
(A14) yields the infinitely dilute limit 

k, _ 3D4= 2xO 
a2 ln[(l +x0)/(1 -xa)] ’ 

(Al5) 

For oblate spheroidal traps, (A 1) takes the form” 

d=c -+tanhv*=O, 
dv* drl 

(A161 

which with conditions (A7) and (A8) results in 

cot-’ sinh 17 
’ cot - ’ sinh q. 1 (A17) 

Following the same procedure as above, we find 

k, = 4Drrp[a/cot-‘(sinh vO)]. (A181 
With some straightforward rearrangement, for 42 -0, the 
above yields 

k, = ( 3D& /a2) (X&in - ’ ,yh ). (A19) 
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