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The n-point probability function S,, (r”) is fundamental to the study of the macroscopic 
properties of two-phase random heterogeneous media. This quantity gives the probability of 
finding n points with positions r”= {r ,,...,r,} all in one of the phases, say phase 1. For media 
composed of distributions of oriented, possibly overlapping, spheriods of one material with 
aspect ratio E in a “matrix” of another material, it is shown that there is a scaling relation that 
maps results for the S, for sphere systems (E = 1) into equivalent results for spheriod systems 
with arbitrary aspect ratio E. Using this scaling relation it is then demonstrated that certain 
transport and microstructural properties of spheriodal systems generally depend upon purely 
shape-dependent functions and lower-order spatial moments of S, (minus its long-range value) 
of the equivalent spherical system. Specifically, the following three distinct calculations are 
carried out for both hard, oriented spheroids and overlapping (i.e., spatially uncorrelated), 
oriented spheroids: ( 1) bounds on the diffusion-controlled trapping constant; (2) bounds on 
the effective conductivity tensor; and (3) fluctuations in the local volume fraction as measured 
by the “coarseness.” These computations enable us to investigate the effects of statistical 
anisotropy (i.e., particle asymmetry) and particle exclusion volume on the aforementioned 
quantities. 

I. INTRODUCTION 

The study of the macroscopic properties (e.g., trans- 
port, mechanical, optical, and electromagnetic properties) 
and microstructure of two-phase heterogeneous media has a 
long history and has been receiving considerable attention in 
the last decade (see Refs. l-3 and references therein). Many 
natural and artificial materials are heterogeneous on a “mi- 
croscopic” scale, which is much smaller than the macro- 
scopic length scale but much larger than molecular length 
scales. This class of materials include fluid-saturated sand- 
stones, blood, animal and plant tissue, slurries, microemul- 
sions, laminated composites, fiber-reinforced materials, par- 
ticulate composites, cermets, and soils, to mention but a few 
examples. 

The effective properties of such media generally depend 
upon the microstructure via an infinite set of statistical cor- 
relation functions. This set of correlation functions is not 
unique, however.4 One such correlation function is the n- 
point probability function S,, (r”), which gives the joint 
probability of finding n points with positions r” 
G (r,,rz ,..., r, } all in one of the phases, say phase 1. Rigorous 
expressions for the effective conductivity of com- 
posites,2*3*“-7 trapping constant associated with diffusion- 
controlled reactions among static traps,* fluid permeability 
associated with viscous flow through porous media,‘*” and 
the elastic moduli of composites,’ ’ have been shown to de- 
pend upon functionals of the S, . 

“On leave of absence from the Department of Mechanical and Aerospace 
Engineering, North Carolina State University, Raleigh, NC 27695-7910. 

In recent years progress has been made in representing 
and computing the S,, for isotropic two-phase random-media 
models consisting of distributions of spheres of one material 
in a “matrix” of another materia1.7*12-‘4 This has led to the 
evaluation of rigorous bounds on the effective properties of 
such models.3*6”0*‘5~‘6 Only a few calculations of lower-or- 
der S, for statistically anisotropic distributions of particles 
have been carried out to date. The two-point function S,, for 
example, has only recently been computed for overlapping 
(i.e., spatially uncorrelated), oriented cylinders of finite as- 
pect ratio7 and for oriented, nonoverlapping (i.e., spatially 
correlated) spheroids of arbitrary aspect ratio.” Conse- 
quently, the problem of rigorously determining the macro- 
scopic properties of statistically anisotropic two-phase ran- 
dom media has been relatively unexplored. 

One of the purposes of this paper is to further study the 
microstructure of distributions of oriented, possibly overlap- 
ping, spheroids of aspect ratio E = b/a. The axially symmet- 
ric spheroidal inclusions, with semiaxes a and 6, are aligned 
with their symmetry axis in the z direction. This is a useful 
model of statistically anisotropic two-phase media, contain- 
ing the special limiting cases of oriented disks (E = 0), 
spheres (E = 1) and oriented needles (E = ~1) ) and may be 
generally employed to model anisotropic sandstones, lami- 
nates, and aligned, short-fiber composites. 

We show in Sec. II that there is a scaling relation that 
enables one to map results for the S,, for sphere systems 
(E = 1) into equivalent results for spheroids with arbitrary 
aspect ratio E. Using this scaling relation we then demon- 
strate in Sets. III-V that certain transport and microstruc- 
tural properties ofspher&zIsystems generally depend upon 
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purely shape-dependent functions and lower-order spatial 
moments of the two-point function S, (minus its long-range 
value St ) of the equivalent spherical system. 

In particular, we consider the following three distinct 
calculations for both hard (i.e., spatially correlated) and 
overlapping (i.e., spatially uncorrelated) oriented spher- 
oids: 

( 1) two-point bounds on the diffusion-controlled trap- 
ping constant’ y; 

(2) two-point bounds on the effective conductivity ten- 
sor7 a,; and 

(3) the so-called coarsenessnj C (i.e., local volume frac- 
tion fluctuations), a meausre of the nonuniformity of spatial 
coverage of the inclusions. 

These computations will enable us to study the effects of 
statistical anisotropy (by varying E) and particle exclusion 
volume on the aforementioned quantities. 

II. MICROSTRUCTURE CHARACTERIZATION 

Consider statistically inhomogeneous media composed 
of identical, oriented inclusions of arbitrary shape (phase 2) 
with volume fraction 42 distributed throughout a “matrix” 
(phase 1) with volume fraction 4,. The matrix space need 
not be continuously connected since the inclusions are gen- 
erally allowed to overlap one another, creating a possibly 
connected “particle” phase. Torquato and Ste11’2v’3 were the 
first to consider obtaining the S,, (r”) for statistically inho- 
mogeneous distributions of identical spheres in terms of the 
n-particle probability density functionsp,,...,p,. The quanti- 
ty pn (r”) characterizes the probability of finding a configu- 
ration of n spheres with positions r”. Thus, S, (Jf ) gives the 
probability of finding n points with positions r” in the matrix 
phase. Torquato and Sen7 generalized the Torquato-Stell 
sphere results to cases of identical inclusions in which the 
configurational coordinate for each inclusion is fully speci- 
fied by its center-of-mass position (e.g., oriented cylinders or 
ellipsoids) by a simple reinterpretation of the inclusion indi- 
catorfunction; they found 

S,(r”) = 1 + 2 qJp,(r.+,,...,r,,,,) 
k=l . 

xj=~+,(l- n [I-M(l;i)] dr,, (2.1) 
i= 1 ) 

where 
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functions of relative positions, i.e., 

pn (rl,r2,..., 5 1 =pn (r12 ,..., rln 1, 

=p”g, (r12,...,rln 1, (2.4) 
4 (rl,r2,..., rn 1 = S, (r12,...,rln 1. (2.5) 

The second equality of (2.5) defines the dimensionless n- 
particle distribution function g,, wherep is the number den- 
sity of spheroids. The one-point quantities are especially 
simple: 

p,(r,) =p, g,(r,) = 1, S,(r,) = 4,. 
For such media, it is useful to write (2.1) as 

(2.6) 

S,(r 12,...,rln 1 = 1 + kz, ( - llkpkSkk)(r12 ,..., rln 1, 

where 

S(k) =-j.- 
n k, gk(rr+lp-+7rn+k) 

.s 

(2.7) 

X Ijk (I-fi [I-m(r,,)])dr,. (2.8) 
j=n+l 1 *=I / 

Our primary interest in (2.7) will be for the case of oriented 
spheroids of aspect ratio E = b /a 

The task ofcomputing theS, (r”) for oriented spheroids 
is made reasonably straightforward by exploiting an obser- 
vation of Lebowitz and Perram.‘” They studied the special 
case of equilibrium distributions of nonoverlapping (hard) 
spheroids, and noted that a scale transformation to coordi- 
nates 

R= W,Y,Z) = (x,y,(a/b)z) 
converts spheroids of shape 

(2.9) 

(x2 + y2)/a2 + (z?/b *) = 1 (2.10) 
and volume fraction $2 into spheres of radius a at the same 
volume fraction, thus reducing the thermodynamics and 
particle correlations of aligned hard spheroids to an equiva- 
lent problem involving hard spheres, a much studied model 
in the theory of liquids.” Lado and Torquato” recently em- 
ployed this observation to compute the two-point function 
S,(r,,) = S,(r,B) for oriented hard spheroids for various 
values of e and 42, where ri2 = jr ,* 1 and 6 is the polar angle 
between thez axis and rt2. They did so by showing that S, for 
this model scales as 

m(r) = 
1, re& 
0, otherwise, 

(2.2) 

is the inclusion indicator function, D, the inclusion region, r 
a position vector measured with respect to the inclusion cen- 
troid, and rji = ri - rj. Note that in relation (2.1) the posi- 
tions r ,,...,r,, refer to points in the matrix while the positions 
r n + , ,...,r,, + k refer to the inclusion centroids. For the special 
case of axially symmetric spheroids with semiaxes a and b 
aligned with their symmetry axis in the z direction, one has 

where 

(2.11) 

a(B) = 2a 
[l - (1 -a*/b’)cos*Q]‘/* 

(2.12) 

m(r) = 1, (x2 +y2)/a2 + @/b*)(l, 
0, otherwise. (2.3) 

In the case of statistically homogeneous but anisotropic 
distributions of inclusions, the pn and, thus, the S,, become 

is an angle-dependent “sphere diameter” and ao=2a is the 
sphere diameter. Thus, (2.11) states that S, for hard spher- 
oids of aspect ratio E and inclusion volume fraction 42 can be 
obtained from the S, for hard-sphere systems of volume frac- 
tion 42 in which distances are scaled by a,. From (2.9) we 
extract the radial coordinate R in the sphere system as 

R = 2a[r/a(O)], 

where a(B) is given by (2.12). 
(2.13) 
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We shall prove here that relation (2.11) applies not only 
to hard spheroids but to spheroids with an arbitrary degree 
of impenetrability, i.e., possibly overlapping spheroids. 
Moreover, it shall be demonstrated that a relation like 
(2.11) holds in the case of such spheroidal systems for S, for 
any value of n, i.e., 

S” (r,2,..., r,,;E) = S, 
( 

o,A ,..., (T rln 
de,,) 

-;l . 
odel,) ) 

(2.14) 

We begin by considering the instance of n = 2, i.e., 
S2( r,2). It is useful to review briefly the arguments of Lado 
and Torquato “I for the special case of hard spheroids. For 
such a model, the infinite series (2.7) truncates after the nth 
termi (because of the presence of conflicting step func- 
tions) and for n = 2 we have, after simplification, 

S,(r,,;fz) = 1 --p!7~‘)(r12;e) +p2S:2’(r,2;e), (2.15) 
where 

= 2Y,(d - 
s 

m(r13)m(r2,)dr3 (2.16) 

is the union volume of two aligned spheroids whose centroids 
are separated by r , 2, 

V, ( E) = (471/3 ) a26 = 47ra3d3 

is the volume of one spheroid, and 

(2.17) 

S:2’(r12;e) = g2(r34)m(r13)m(r2,)dr3 dr,. (2.18) 
I 

For spheres of diameter a,, the intersection volume of 
two spheres is given by 

V:W12;l) = 
s 

m(R13)m(R2,)dR3 

where 
xH(ao - R,,), (2.19) 

(2.22) 

A simple scaled relationship like (2.22) for the two- 
body term S i2) is immediate from (2.18) : 

b 2 Sc2’(r12;e) = - 2 (>S 
g,(R,,)m(R,,)m(R,,)dR, dR, 

a 

(2.23) 

Note that since the volume fraction $2 is invariant under 
the transformation (2.9), the number densities of the spher- 
oid and sphere systems are related by the expression 

p(c) = (db)p(l). (2.24) 

Therefore, the combination of (2.15) and (2.22)-(2.24) 
yields the scaling relation (2.11) for hard inclusions. 

Note that when r12 = 0, (2.15) yields the matrix volume 
fraction as 

S2(O;e) = $i5, = 1 - r], (2.25) 

where 

11 =p(c)+a2b =p( l)$n-a3 (2.26) 

is a reduced density and therefore, for hard particles, the 
inclusion volume fraction is simply related to the reduced 
density by 

42 = 7. (2.27) 

Now we shall prove the scaling relation (2.11) for the 
case of “fully penetrable” spheroids, i.e., spatially uncorre- 
lated spheroids. The n-particle distribution functions g, are 
trivial for such a model: 

g,(P) = 1, Vn. (2.28) 

The series (2.7) for n = 2 then yields 

S2012;d = exp[ -pV2(r12;E)l, (2.29) 

implying that 

m(R) = 1, R<a 
0, R>a 

is the sphere indicator function and 

H(x) = 
i 

1, x>o 
0, x<o 
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(2.20) 

S:k’(r,2;c) = [Si1’(r12;~)]k = [ V2(r,2;c)]k 
k! k! 

7 (2.30) 

is the Heaviside step function. 
The coordinate transformation (2.9) in conjunction 

with (2.16) and (2.19) yields the union volume for spher- 
oids as 

= $ ra2b - -$- ra2b 

(2.21) where V2 is the union volume defined by (2.16). Use of 
(2.22) in (2.29) immediately proves (2.11). Again, the vol- 
ume fractions of the spheroid and sphere systems are equal. 

The matrix volume fraction 4, for fully penetrable 
spheroids is easily obtained from (2.29) as follows: 

4, = S2(O;E) = exp( - 71, (2.31) 

where 77 is the reduced density defined in (2.26). Thus, be- 
cause the inclusions are allowed to overlap, the inclusion 
volume fraction is given by 

42 = 1 - exp( - 771, (2.32) 

which is different from the totally impenetrable result 
(2.27). 

S:‘)(r12;e) = 2Vl(e) -b m(R,,)m(R,,)dR, 
a s 

Using similar arguments, it is easily proven that (2.11) 
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applies to inclusions with an arbitrary degree of impenetra- proof of the scaling relation (2.14) for S,, for any n, we shall 
bility. (An example of an interpenetrable-particle system is 
the penetrable-concentric-shell model.)20 However, since 

prove the latter. Let B,, be the polar angle that ril makes with 
the z axis. Then the coordinate transformation (2.9) in con- 

the general proof of (2.11) is essentially the same as the junction with (2.8) gives 

(2.33) 

Combination of (2.7) and (2.33) then gives the general scal- 
ing relation (2.14) that enables one to obtain the S, for ori- 
ented, possibly overlapping, spheroids with volume fraction 
+2 and aspect ratio E given the S, for the corresponding 
sphere system at the same volume fraction #2. The relation 
(2.14) is valid for equilibrium as well as nonequilibrium en- 
sembles of possibly overlapping spheroids. 

We note in passing that (2.33) holds also in two dimen- 
sions for ellipses of shape 

(x2/a’) + (y2/b2) = 1, (2.34) 
oriented in they direction with semiaxes a and 6. Here a( 0) 
is still given by (2.12) but 0 is the angle between the x axis 
and r, and a is the radius of the reference system of disks. 

In the ensuing sections, the scaling relation (2.14) is 
employed to compute bounds on the trapping constant and 
effective thermal conductivity of suspensions of oriented 
spheroids as well as the coarseness for such a model. It shall 
generally be shown that the nontrivial dependence on vol- 
ume fraction of these quantities is embodied in lower-order 
spatial moments of [ S2( r) - 4: ] for spheres of diameter 
u = 2a, where & is just the long-range value of S, (r). The 
two-point function has been computed for both equilibrium 
distributions of hard spheresI and fully overlapping (pene- 
trable) spheres.21 Thus, the spatial moments are easily eval- 
uated for these two models and in Table I we tabulate the 
zeroth, first, and second moments for both impenetrable and 
fully penetrable spheres, where the general moment is de- 
fined by 

TABLE I. Lower-order dimensionless spatial moments (x” ), as defined by 
(2.35) as a function of the particle volume fraction & for two spherical 
models: totally impenetrable (hard) and fully penetrable (overlapping) 
spheres. 

Totally impenetrable spheres Fully penetrable spheres 

& (x0), x103(x’), x103(x*), xlO~(xO),x 109(x’), x lo’(x*), x 10% 

0.1 29.48 6.420 1.904 33.09 8.14 3.617 
0.2 45.84 8.280 1.769 51.50 15.01 6.173 
0.3 52.40 7.922 1.220 73.55 18.94 7.726 
0.4 51.70 6.552 0.718 81.55 20.66 8.349 
0.5 45.78 4.822 0.366 81.90 20.34 8.124 
0.6 36.20 2.048 0.156 75.10 18.19 7.157 
0.7 61.85 14.49 5.585 
0.8 43.21 9.62 3.596 
0.9 20.88 4.24 1.494 

I 

(x.,,=~~xn[S2(x, -&]dx. (2.35) 

Here x = r/2a is a dimensionless distance and the brackets 
with subscript “0” shall denote an average in a reference 
system of spheres. Results for hard spheres were computed 
using the accurate Verlet-Weis2’ fit for the radial distribu- 
tion function. The volume-fraction value #2 = 0.6 for hard 
spheres corresponds to approximately 95% of the random 
close-packing value.23 

For the case of arbitrary E, the generalized moments 

are simplified by the scaling relation (2.14) to read 

M, (6) = (2a)nW)oln (~1, (2.37) 
where 

5,(ed 
s 

’ du 1 
2 -1 [ 1 - (1 - l/E’)zZ](n+ ‘)‘Z 

(2.38) 

is a purely shape-dependent factor. The first three such fac- 
tors are explicitly 

(2.39) Cob(d = 

sfl(d = (2.40) 

C2 (El = e, all E, 
where 

xi = -xi = (a2/b 2, - 1. 

(2.41) 

(2.42) 

III. BOUNDS ON THE DIFFUSION-CONTROLLED 
TRAPPING CONSTANT 

Consider the problem of diffusion-controlled reactions 
in a two-phase random medium composed of a trap-free re- 
gion of volume fraction 4, containing reactive particles and a 
trap region of volume fraction #2. Reactant diffuses in the 
trap-free region but is instantly absorbed on contact with any 
trap. At steady state, the rate of production of the diffusing 

J. Chem. Phys., Vol. 94, No. 6,15 March 1991 

Downloaded 12 Mar 2009 to 128.112.83.37. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



species is exactly compensated by its removal by the traps. 
The trapping constant y is proportional to the trapping 
rate.‘4 

Virtually all previous calculations of y for continuum 
models have been carried out for isotropic distributions of 
spherical traps.25 There is a dearth of results for statistically 
anisotropic models. A recent study of y for the special case of 
oriented, slender, rodlike traps at dilute concentrations26 
stands as an exception. To our knowledge, y has not been 
computed for any anisotropic model at high trap concentra- 
tions where there is strong competition between the traps. 

A useful means of estimating y at arbitrary trap volume 
fraction is by the determination of rigorous bounds on y. 
Bounds on effective properties of random media generally 
capture the salient features of the problem and can provide 
an accurate prediction of the property for a wide range of 
conditions.3 

Torquato and Rubinsteina derived a two-point lower 
bound on y, termed a “void” bound, that is valid for any 
statistically anisotropic medium” and is given by 

Y>Y:2’, 
where 

(3.1) 

(2) _ 
YL - (-&+ [S,(r) -P:]dr)-'. (3.2) 

2 r 

For future discussions it is useful to distinguish between 
statistical anisotropy and macroscopic anisotropy. By sta- 
tistical anisotropy we mean that the n-point functions S, do 
not remain invariant under rotation. Macroscopic anisotro- 
py refers to anisotropy with respect to the macroscopic prop- 
erties of the system, e.g., effective conductivity tensor a,. 
Although macroscopic anisotropy always implies statistical 
anisotropy, the converse is not necessarily true. For exam- 
ple, a cubic array of spheres (statistically anisotropic) is de- 
scribed by a scalar effective conductivity 0,; similarly a me- 
dium composed of oriented spheroids (statistically 
anisotropic), though described by an effective conductivity 
tensor a,, possesses a scalar trapping constant y. Indeed, the 
trapping constant y is a scalar for any statistically anisotrop- 
ic medium. 

Consider the evaluation of the void bound (3.1) for dis- 
tributions of oriented, possibly overlapping, spheroidal traps 
ofaspect ratio E = b /a. The scaling relation (2.11) in combi- 
nation with (3.2) yields 

y:2’(4 = C&/4a2b), ,fCd, 
where 

(3.3) 

f(E) = 1/!51(d, (3.4) 

6, (e) is given by (2.40), and (x), is the first spatial moment 
for spheres defined by (2.35). Thus, the nontrivial volume- 
fraction dependence enters the bound only through (x),, 
which is tabulated in Table I for hard (i.e., totally impen- 
etrable) spheres and fully penetrable spheres, respectively. 
The shape-dependent functionf( b /a) is shown in Fig. 1. For 
veryslenderinclusions (bga),f( b /a) - [ ln( 2b /a)] - ‘, and 
for disklike inclusions (b <a), f( b /a) - 2a/rb. 

It is noteworthy that the two-point bound (3.3) gives 
the following symmetrical relation between spheroids of as- 

&l(f) 
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@l(E) 
FIG. 1. Log-log plot of the shape-dependent function J(E), defined by 
(3.4), versus the aspect ratio 6. 

pect ratio E and those of aspect ratio E- ’ at the same volume 
fraction #2: 

d?(E) - f(E) . 
YZ”C l/E) fC l/E) 

(3.5) 

Note that the right-hand side of (3.5) is only shape-depen- 
dent (i.e., independent of 4,). Thus, results for ri2’ (E) can 
be obtained from results for r:“‘( l/r) by multiplying the 
latter by a shape-dependent function. Relation (3.5) sug- 
gests that the actual trapping constant for spheroids obeys a 
similar simple scaling law for a certain region of the param- 
eter space. 

For the case of infinitely dilute spheroids, we can evalu- 
ate the void bound (3.3) and compare it with the exact result 

y,(e) = (V,/a*)f(c), (3.6) 
which for spheres (E = 1) reduces to the well-known Smolu- 
chowski result. Result (3.6) is easily obtained given the solu- 
tion of the boundary-value problem for an isolated, perfectly 
absorbing spheroidal trap in an infinite medium. Note that 
(3.6) depends on the same shape-dependent function f(e) 
which arises in the bound (3.3). In this infinitely dilute limit, 
Torquato and Rubinstein’ showed that 

(x)0 -42/w (3.7) 
so that 

YZ2’(e) = (5/2a2)f(e) (4,gl). (3.8) 

Thus, for #2 < 1, the bound gives 5y, ( l )/6. Observe that the 
two-point bound (3.3) and the low-density result (3.8) gives 
another scaling relation between spheroids of aspect ratio E 
and those of aspect ratio l/e: 

Yi2) (6) yi2)( l/E) -= 
y,(l/4 - 

(3.9) 
Y,(E) 

The scaled trapping constants of relation (3.9) are functions 
of volume fraction only, specifically, they equal 
#2 [ 12(x), ] --I. It is expected that the true trapping constant 
will behave in a similar fashion for small c.)~ and b/a not 
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not much different from unity, but generally such a scaling 
will depend upon the aspect ratio as well. 

Figures 2 and 3 show the lower bounds (3.3) on the 
dimensionless trapping constant ya* as a function of the as- 
pect ratio b/a at ek2 = 0.2 and 0.6, respectively, for hard and 
overlapping spheroids. The bounds are seen to be monotoni- 
cally decreasing functions of b /a, as expected. For fixed b /a, 
the hard spheroid results are always greater than the over- 
lapping spheroid results, the difference widening as 42 in- 
creases. This behavior is due to the fact that distributions of 
hard spheroidal traps have more surface area available for 
reaction than overlapping spheroidal traps at the same vol- 
ume fraction. 

Figures 4 and 5 depict the lower bounds on ya2 versus 
the trap volume fraction $2 for b /a = 5 and 0.2, respectively, 
for hard and overlapping spheroids. Not surprisingly, these 
results indicate that the trapping constant increases with in- 
creasing trap concentration. The symmetrical scaling rela- 
tion (3.5) is graphically illustrated in these figures. 

In Fig. 6 we plot lower bounds on the trapping constant 
scaled by the dilute-limit value, r/rs, as a function of #2. By 
the scaling relation (3.9) such a result is independent of the 
aspect ratio and therefore applies to all aspect ratios. 

IV. BOUNDS ON THE EFFECTIVE CONDUCTIVITY 
TENSOR 

Sen and Torquato’ have recently derived two-, three-, 
and four-point bounds on the effective conductivity tensor 
ue for general d-dimensional two-phase media with phase 
conductivities c1 and a,. The n-point bounds have been 
shown to depend explicitly upon functionals of the n-point 
probability functions S ,, S 2,...,S,, for two-phase statistically 
anisotropic media of arbitrary microstructure. These func- 
tionals have been related7 to the “normalization factors” and 
“weights” of Milton2 and thus the latter have been explicitly 
given in terms of the S, for the first time. 

‘O1....,.,.,,...., 

-1 -0.5 0 0.5 1 

lodb/a) 

FIG. 3. As in Fig. 2, with dz = 0.6. 

We are concerned here with the two-point Sen-Tor- 
quato bounds which, for u2>c,, are given by 

v2 

U;2’<U, <C@, 

(2) 
UL -= 

Cl I 

(2) 
UIJ 

-= 

a2 1 

where 

a2 = - hP2A:, 

Mb/o) 

(4.1) 

(4.2) 

(4.3) 

FIG. 2. Two-point lower bounds (3.3) on the dimensionless trapping con- 
stant yu* as a function of the log of the aspect ratio b/a at the trap volume 
fraction & = 0.2 for hard (- ) and overlapping (- - -) oriented 
spheroids. 

FIG. 4. Two-point lower bounds (3.3) on the dimensionless trapping con- 
stant ya’ versus the trap volume fraction q& for hard ( -) and overlap- 
ping (- - -) oriented, prolate spheroids with an aspect ratio b/a = 5. 
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2w 
' ' ' ' ' ' I 

E = b/o = 0.2 

I 
I 

I 

0 
0 0.2 0.4 0.6 0.6 1 

$2 

FIG. 5. As in Fig. 2, for oblate spheroids with an aspect ratio b/a = 0.2. 

A;=U- d 
d 2n(d- 1Mdz 

(4.4) 
Here U is the identity tensor and the subscript S on the inte- 
gral of (4.4) indicates that the integration is to be carried out 
with the exclusion of an infinitesimally small d-dimensional 
sphere centered at r. The notation of (4.1) signifies that the 
tensors (&’ - 0,) and (a, - a;‘)) are positive-semidefin- 
ite. The two-point parameters a2 and A: have the following 
properties.’ First, for macroscopically isotropic media, 

d, = - 4,&U/d, AT = U/d. (4.5) 
Second, for general isotropic media the traces of these ten- 
sors are given by 

tr(a,) = - qQ,& tr(A:) = 0. (4.6) 
Third, the two-point parameters are bounded from above 
and below as follows: 

- 4,42<(~2)kk<O (4.7) 
O<(A ?)/&<I, (4.8) 

where X,, (k = l,...,d) denote the diagonal elements of a 
tensor X. The two-point bounds (4.1) are the anisotropic 
generalization of the isotropic Hashin-Shtrikman bounds.” 
Note that unlike the Hashin-Shtrikman bounds, the aniso- 
tropic bounds (4.1) generally depend upon S, in a nontrivial 
manner. 

For three-dimensional distributions of inclusions 
aligned in the xg direction which possess transverse isotropy 
and azimuthal symmetry (e.g., circular cylinders and spher- 
aids), the so-called “polarization” tensor A: becomes 

A:-[! 4 ,$A, (4.9) 

where 

1 “dr * Q=f-lim- - 
s s "-02qS,f$, 6 r 0 

d (cos 0) 

XP2(cos 0) [S,(r) - & 1. (4.10) 
Here, Pz(x) is the Legendre polynomial of order two. 

Consider evaluating the key integral (4.10) for possibly 
overlapping, oriented spheroids of aspect ratio E. This shall 
be accomplished by again invoking the scaling relation 
(2.11). Let 

K=lim WC 
s s 

1 

s-0 s r duP2(u)[S2(r,E) -&I (4.11) 
-1 

with u = cos 8. Substitution of relation (2.11) into (4.11) 
yields 

K=lim -f!! 
s s 

I 

s-0 6 r -1 
d~P,(u)[S~(~;l)-m:]=~~-f~m~~~,d~(~[~(1-~2)1)[S2(~;l)-l:] 

’ -dr ’ =- 
s s 20 -I 

du u( 1 - u’)S; 

= -~[S2(O;1)-q5~]j-~,duu(1-u2)o(u)-$(--!--). (4.12) 

I 

where prime denotes total derivative. Note that K, unlike the 
other key functionals in this paper, depends upon S, - & in 
a trivial way. Substitution of (4.12) into (4.10) finally gives 

should not be confused with the phase conductivities D;.] 
The integral of (4.13) is easily evaluated with the result 

du u( 1 - u2)a( u) d 1 
( > 

P=+(l+ 
(bh:‘- 1 [l -&/(~)I]~ 

I du a(u) ’ 
(4.13) 

$1 (4.14) 
a 

showing that Q interestingly is a purely shape-dependent 
parameter independent of the structure of the spheroidal dis- 
tribution and of the volume fraction. [Note that a(u) in 
(4.12) and (4.13) is the angle-dependent “diameter” and 

Q=f[l+ ’ 1 --J-tan-‘&) 
(b/al2 - 1 ,& )I 

, 

b<l (4.15) 
a 
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40, . I . , / . / , , arbitrary shape. Torquato and Sen,7 for example, evaluated 
the two-point bounds (4.1) for oriented, overlapping cylin- 
ders of finite aspect ratio and found some sensitivity due to 
structure. 

$2 

FIG. 6. Two-point lower bounds (3.3) on the scaled trapping constant y/y$ 
as a function ofthe trap volume fraction for hard ( -) and overlapping 
(- - -) oriented spheroids of arbitrary aspect ratio e. Note that this fig- 
ure illustrates the scaling relation r:*j ( E)/Y, (E) = ri*j ( 1/6)/y, ( l/e) giv- 
en by (3.10). 

wherexII andxb are defined by (2.42). Q = l/3, l/2, and 0 
forflatdisks(e=O),spheres(e= l)andneedles(e= or)), 
respectively. The parameter Q is plotted in Fig. 7. 

Willis29 actually was the first to obtain these results for 
spheroids using a completely different approach. He did so, 
elegantly, without explicitly evaluating the integral K in- 
volving S, by employing a well-known result due to Eshelby 
for ellipsoids.30 Thus, he did not note or use the scaling rela- 
tion (2.11). The nature of Willis’ derivation, however, pre- 
vented him from drawing what we believe to be an important 
conclusion, namely, the two-point bounds for spheroids are 
insensitive to the type of spatial correlations between the 
spheroids, i.e., one gets the same answer whether the spher- 
oids are penetrable or not. This is not true for inclusions of 

Figure 8 depicts the two-point bounds on the three diag- 
onal components of the effective conductivity tensor (0, ) ii 
(i = 1,2, and 3) for conducting (a = 0,/a, = lo), oriented, 
slender fibers using the spheroidal results for b /a = 10. Fig- 
ure 9 shows the corresponding bounds for the case of insulat- 
ing ( CY = 0. 1 ), oriented, penny-shaped cracks (b /a = 0.1). 
Again, we emphasize that these results apply to spheroidal 
systems with an arbitrary degree of impenetrability. 

V. COARSENESS: LOCAL VOLUME FRACTION 
FLUCTUATIONS 

Although the volume fraction is constant for statistical- 
ly homogeneous but anisotropic media, on a spatially local 
level it fluctuates. An interesting and relatively unexplored 
question in the study of multiphase random media is the 
following: How does the “local” volume fraction fluctuate 
about its average value? The answer to this query has rel- 
evance to a number of problems, including scattering by 
heterogeneous media,3’ transport through composites and 
porous media, I-3 and the study of noise and granularity of 
photographic images.16 

The local volume fraction r(x) at some position x is 
defined to be the volume fraction in one of the phases, say 
phase 1, contained in some generally finite-sized “observa- 
tion region” (see Fig. 10). Clearly, r(x) is a random variable 
and becomes a constant equal to 4, in the limit of an infinite- 
ly large observation region. Lu and Torquato” have termed 
the coarseness, C, to be the standard deviation associated 
with r(x) divided by 4,, i.e., 

6- 
E = b/o = 10 

0 0.2 0.4 0.6 0.6 1 

$2 

01”“‘.“,““““.‘1 
0 5 * 10 1.5 2( 

b/a 

FIG. 7. Shape-dependent function Q, given by (4.14) and (4.15 ) , versus the 
aspect ratio b/a for possibly overlapping spheroids. 

FIG. 8. Two-point Sen-Torquato bounds’ on the dimensionless effective 
conductivity diagonal components o,/o, [ o, = (0, ) ,, ] versus the inclusion 
volume fraction e$ for a composite containing conducting (a = o,/ 
c2 = IO), oriented, slender (b/a = IO), spheroidal inclusions. The dashed 
lines are bounds for (0, ) , , = (a,),, and the solid lines are bounds for 
cue )J,. 
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a 

FIG. 9. As in Fig. 7, for nonconducting (a = oZ/oI = O.l), oriented, flat 
(b/a = 0.1) oblate spheroidal inclusions. 

c = J((7-3 - (d2)/4, 

= JFFiW417 (5.1) 
where angular brackets denote an ensemble average. For in- 
finitely large and infinitesimally small observation regions, 
C is, respectively, given by 

c=o (5.2) 
and 

c= m/4,. (5.3) 
The coarseness provides a quantitative measure of nonuni- 
formity of coverage of the phases. 

Lu and Torquato’” obtained a general expression for the 
coarseness for arbitrary, statistically anisotropic, two-phase 
media in terms of S,(r). They were the first to study the 
effect of exclusion volume on C for arbitrary observation 
region sizes by computing it for d-dimensional hard spheres. 

FIG. IO. Schematic of two-dimensional two-phase media with a circular 
observation region of radius R, centered at position x. 

FIG. 11. Scaled coarseness C * = C[ Vd V, ( 1) ] I’* versus the aspect ratio 
b/a for hard ( -) and overlapping (- - -) oriented spheroids. 
Lighter lines correspond to an inclusion volume fraction of & = 0.2. Hea- 
vier lines correspond to I$* = 0.6. V, ( 1) = 4?ra’/3. 

The coarseness has heretofore not been computed for statis- 
tically anisotropic distributions of inclusions. 

We shall compute the coarseness of distributions of ori- 
ented, possibly overlapping, spheroids in cases in which the 
characteristic size of the observation region is much larger 
than the spatial correlation length, since the coarseness rela- 
tion is then somewhat simplified. I6 In practice, the size of the 
observation region is, in fact, much larger than the charac- 
teristic size of the particles. For general media and very large 
observation region, it can be shown thatI 

c= l -(J[S,Cr) - &]d)“‘, 
dlV0 

(5.4) 

where V, is the volume of the observation region. Use of the 
scaling relation (2.11) in ( 5.4) yields the desired result for 
spheroids, namely, 

c = (2&/4,) [ v,(d/v#2(x2)~‘2, 

= 4@(a3dv,,“‘(X2)~‘2, (5.5) 
where V, (E) is the volume of a spheroid as given by (2.17) 
and (x2), is the second spatial moment for spheres defined 
by (2.35). Here we have used (2.41). Thus, C, for fixed 
semiaxis a, observation region size and volume fraction $2, is 
proportional to the square root of the aspect ratio E. 

Figure 11 shows the scaled coarseness C * = C[ V,/ 
wH”2 as a function of aspect ratio b /a for both hard and 
overlapping spheroids, where V, ( 1) = 4s-a3/3 is just the 
volume of a sphere. Here we have used the results of the 
second spatial moment (x2), given in Table I. As was found 
in the case of spheres,16 exclusion volume effects lower the 
coarseness. 

Finally, we note that the coarseness C(E) for spheroids 
of aspect ratio E is related to the same quantity for spheres 
C( 1) by the simple relation 

C(E)/C( 1) = 6. (5.6) 
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