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A generalized Brownian motion simulation technique developed by Kim and Torquato [J. 
Appl. Phys. 68, 3892 ( 1990) ] is applied to compute “exactly” the effective conductivity a, of 
heterogeneous media composed of regular and random distributions of hard spheres of 
conductivity a, in a matrix of conductivity (pi for virtually the entire volume fraction range 
and for several values of the conductivity ratio a = ~~/a,, including superconducting spheres 
(a = CO ) and perfectly insulating spheres (a = 0). A key feature of the procedure is the use of 

first-passage-time equations in the two homogeneous phases and at the two-phase interface. 
The method is shown to yield u, accurately with a comparatively fast execution time. The 
microstructure-sensitive analytical approximation of o, for dispersions derived by Torquato 
[J. Appl. Phys. 58,379O (1985) ] is shown to be in excellent agreement with our data for 
random suspensions for the wide range of conditions reported here. 

I. INTRODUCTION 
The problem of determining the effective transport and 

mechanical properties of multiphase media (given the phase 
properties and volume fractions) is an outstanding one in 
science and engineering. ‘,* Except for a few idealized mod- 
els, there are no exact analytical predictions of the effective 
properties of random multiphase systems for arbitrary phase 
properties and volume fractions, even for the simplest class 
of problems, i.e., properties associated with transport pro- 
cesses governed by a steady-state diffusion equation (e.g., 
conductivity, dielectric constant, diffusion coefficient, trap- 
ping rate, etc.).2 For arbitrary phase properties and volume 
fractions, theoretical techniques basically fall into two cate- 
gories: effective-medium approximations3V4 and rigorous 
bounding techniques. ‘.‘-’ Comparatively, there is a dearth 
of work on the determination of effective properties from 
computer simulations, especially for continuum models 
(e.g., distributions of particles in a matrix). Such “computer 
experiments” could provide unambiguous tests on the afore- 
mentioned theories for well-defined continuum models. 

Conventional approaches to obtaining o, by simula- 
tions solve the local governing differential equations for the 
fields (e.g., electric, temperature, concentration, etc.), sub- 
ject to the appropriate boundary conditions at the multi- 
phase interface of the computer-generated random hetero- 
geneous system, using some numerical procedure such as 
finite differences, finite elements, or boundary elements. The 
solutions obtained for a sufficiently large number of such 

;‘) Author to whom all correspondence should be addressed. Temporary ad- 
dress until May 31, 1991 is Courant Institute of Mathematical Sciences, 
New York University, 251 Mercer St., New York, NY 10012. 

random configurations are then collected to yield the con- 
figurationally averaged fields and hence the effective proper- 
ties. (For example, the effective electrical and thermal con- 
ductivities are defined by averaged Ohm’s and Fourier’s 
laws, respectively.) This is clearly a very wasteful way of 
obtaining the average behavior since there is a significant 
amount of information lost in going from the local to the 
average fields. It is not surprising, therefore, that such calcu- 
lations become computationally exorbitant, even when per- 
formed on a supercomputer. 

Recently, the authors8,9 have developed a Brownian 
motion simulation technique that directly yields the average 
behavior or effective properties of disordered n-phase heter- 
ogeneous media in which the transport process is governed 
by a steady-state diffusion equation 

DV2Q> = - y (in each phase). (1) 
Here, @ is some potential, D is the diffusion coefficient, and 
y is a source term. The appropriate boundary conditions at 
the multiphase interface must be satisfied. Thus, for exam- 
ple, their algorithm can be applied to compute the effective 
conductivity (and mathematically analogous properties 
such as the dielectric constant, magnetic permeability, and 
diffusion coefficient) and the trapping rate associated with 
diffusion-controlled processes among static traps. Torquato 
and Kim” first applied the Brownian motion technique to 
compute the trapping rate by relating it to the inverse of the 
mean time taken for Brownian particles (representing the 
diffusing species) to get trapped. Kim and Torquato’ subse- 
quently extended the formulation to determine the effective 
conductivity of n-phase random media by relating it to the 
mean time associated with a Brownian trajectory in the limit 
of very large times. They specifically illustrated their meth- 
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od by obtaining a, for random arrays of infinitely long cylin- 
ders in a matrix. 

Unlike recent random-walk algorithms which simulate 
the detailed zigzag motion of the walker with small finite 
steps,“‘-” the authors’ formulationsX~y utilize the appropri- 
atefirst-passage-time equations to compute mean times. Tor- 
quato and KimX demonstrated that in the trapping problem 
this results in an execution time that is at least an order of 
magnitude faster than the methods which simulate the de- 
tailed zigzag motion of the walker. The essence of the first- 
passage-time methodology is to construct the largest con- 
centric sphere of radius R (around a randomly chosen initial 
location of the Brownian particIe) which just touches the 
multiphase interface. The mean time r taken for the Brow- 
nian particle (initially at the imaginary sphere center) to 
first strike a randomly chosen point on the sphere surface is 
simply proportional to R ‘. The process is repeated, each 
time keeping track of R ’ and thus r, until the walker comes 
within a small distance of the multiphase interface. At this 
juncture in the conduction problem, one must compute the 
mean time associated with crossing the boundary r,, and the 
probability of crossing the boundary, both of which depend 
upon the phase conductivities and local geometry, and were 
derived, for the first time, for arbitrary microstructures by 
Kim and Torquato’ using first-passage-time analysis. At 
some future time, the Brownian particle again will walk en- 
tirely in one phase and the above procedure is repeated. In 
the trapping problem, once the walker comes within a pre- 
scribed small distance of a trap, the walk is ended. 

In this paper, we shall use Kim and Torquato’s general- 
ized Brownian motion simulation technique to compute ex- 
actly the effective conductivity a, of a two-phase system 
composed of an equilibrium distribution of hard spheres of 
conductivity cr2 in a matrix of conductivity 0,. This is a 
useful model of a wide class of suspensions in which exclu- 
sion-volume effects play a dominant role in determining the 
microstructure. Conductivity data will be reported for virtu- 
ally the entire volume fraction range and for a = o2 /a, = 0, 
10, and CO. The data will then be compared to the approxi- 
mate expression obtained by Torquato,13 which is expected 
to be highly accurate. Our data will be compared to previous 
results, including rigorous bounds. 

Regular arrays of spheres are a useful theoretical bench- 
mark since the simplicity of such geometries permits exact 
solutions of 0,. Accordingly, we shall also determine o, for 
simple cubic lattices ofspheres and test these data against the 
exact results. 

This paper is organized as follows. In Sec. II, we define 
the effective conductivity o‘, in terms of certain averages of 
the Brownian motion trajectories and present the appropri- 
ate first-passage-time relations that apply in the immediate 
vicinity of the boundary between two phases, say, phases 1 
and 2. In Sec. III, we describe the simulation details to com- 
pute the effective conductivity a, for two-phase media com- 
posed of both simple cubic lattices and equilibrium distribu- 
tions of hard spheres of conductivity (TV in a matrix of con- 
ductivity 0,. In Sec. IV, we report data for uI, and compare 
with previous results. In Sec. V, we make concluding re- 
marks. 

II. BROWNIAN MOTION FORMULATION 

The authors’ gave a general formulation to obtain ex- 
actly the effective conductivity a, for isotropic n-phase com- 
posites having phase conductivities 0, ,a,, . . . ,a,? in terms of 
certain averages of Brownian motion trajectories. To facili- 
tate the calculation they derived, for the first time, the appro- 
priate first-passage-time equations which apply in the homo- 
geneous phases and at the multiphase interface for 
d-dimensional media of arbitrary microstructure. Here, we 
shall apply our earlier general results to compute the effec- 
tive conductivity of arbitrary three-dimensional distribu- 
tions of spheres of conductivity o, in a matrix of conductiv- 
ity 0,. 

A. Effective conductivity 

Consider a Brownian particle (conduction tracer) mov- 
ing in a homogeneous spherical region R of conductivity o. 
Let the boundary be denoted by dR (see Fig. 1). The mean 
hitting time r(R), which is defined to be the mean time tak- 
en for a random walker initially at the center of a sphere of 
radius R and conductivity tz to hit the surface for the first 
time, is given by’ 

T(R) =R’. 
6a 

Equation (2) can be rewritten as 

R2 g=-----. 
67-(R) 

(2) 

(3) 

Thus, if T(R), which represents the first hitting time aver- 
aged over an infinitely large number of such Brownian tra- 
jectories, is known, then the conductivity D can be obtained 
via Eq. (3). If an infinite medium is to be considered, the 
conductivity is given by 

OAL.il ( 
6T(R) IR--ra 

. -I 

The effective conductivity o, of an infinitely large com- 
posite medium can be computed in the same manner. Sup- 
pose we have a sphere of radius X which encompasses a dis- 
tribution of spheres of conductivity c2 (phase 2) in a matrix 
(phase 1). If we view this sphere as an effective homoge- 

dR 

FIG. 1. Spherical homogeneous region R of conductivity o and radius R. 
Mean hitting time r = R l/60. 
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FIG. 2. Circular region of radius Xcontaining a random suspension ofhard 
inclusions of conductivity e: in a matrix of conductivity 0,. The effective 
conductivity is (T,,. Brownian trajectory is schematically indicated, with R, 
denoting the first-passage-time radii. 

neous sphere of conductivity a, (see Fig. 2), we can write in 
the spirit of Eq. (3) that 

x2 
ue = 67-,(x). 

(5) 

Here r, (X) is the total mean time associated with the total 
mean-square displacement X 2. 

In the actual computer simulation, in most cases where 
the Brownian particle is far from the two-phase interface, we 
employ the same time-saving technique used by the au- 
thor?.” which is now described. First, one constructs the 
largest imaginary concentric sphere of radius R around the 
diffusing particle which just touches the multiphase inter- 
face. The Brownian particle then jumps in one step to a ran- 
dom point on the surface of this imaginary concentric 
sphere, and the process is repeated, each time keeping track 
of R f (where R, is the radius of the ith first-passage sphere), 
until the particle is within some prescribed very small dis- 
tance of two-phase interface. At this juncture, we need to 
compute not only the mean hitting time r, (R) associated 
with imaginary concentric sphere of radius R in the small 
neighborhood of the interface, but also the probability of 
crossing the interface. Both of these quantities, described 
fully below, are functions of o, ,02 and the local geometry. 
Thus, the expression for the effective conductivity used in 
practice is given by’ 

a, = 
G,R f + E]Rf + Z,R :> 

6(2,~, (Rt ) + Ejr2 (RI 1 + zkr, (R, 1) ’ 
(6) 

since X2=(2,Rf+Z,R~+2,,R:). Here, 7, (RI 
[ r2 (R) ] denotes the time for a random walker to make a 
first flight in a homogeneous sphere of radius R of conduc- 
tivity 0, ( o2 ), the summations over the subscript i andj are 
for the random-walk paths in phase 1 and phase 2, respec- 
tively, and the summation over the subscript k is for the 
random-walk paths crossing the interface boundary. 

Since each path segment, having mean-square displace- 
ment R f or R J’, is wholly contained in an homogeneous part 

of the medium, Eqs. (2) and (6) yield 

ff, = (ZiRf+E,RJ+B,Ri) 
6@,Rf/60, + E,R,%u, + Z,r,(Rk)) 

or 

ue -= (Z,Rfi~l + zjRf/U, +I;,R:/o,) 
0' (ZiRf/a, +x,Rj/~, +62,r,(R,)) ' ('I 

Each term inside the brackets of Eq. (8 ) has dimensions of 
time, and therefore (8) can be rewritten as 

ffe -= (Tr, CR;) + xjr, (Rj) + 2,r, CR, )> 
UI (2;7,(R,) +xjrl(R,)/a+ C,r,(R,)) ' (9) 

Here a = a, /a, is the conductivity ratio. If an infinite medi- 
um is to be considered, then we have 

0, -= (z,r, (R,) + zjr, (Rj) + Z,r,(R,)) 
Cl (Girl +~jr,(Rj)/a+8,r,(R~)) X--m. 

(10) 

Note that, for an infinite medium, the initial position of the 
Brownian particle is arbitrary. Equation (IO) is the basic 
equation used to compute the effective conductivity. 

B. Random walk crossing the interface boundary 
Here, we employ the appropriate first-passage-time 

equations’ (i.e., mean hitting times and probabilities) which 
apply in a very small neighborhood of the generally curved 
interface boundary (see Fig. 3). The basic questions are (i) 
What is the probability p, (x) [p2 (x)] that the random 
walker initially at x near h, the center of an imaginary 
sphere of radius R, hits the surface in phase 1, JR, (the 
surface in phase 2, da2 ) for the first time without hitting 
Js1, (JR, )? (ii) What is the mean hitting timers (x) for the 
random walker initially at x to hit dR ( = da, UCTC& ) for 
the first time? Note that the initial position of the random 
walker is generally not at the interface. 

_.-- . . . . 
: . . 

R, ---*..* 
. 

,  

,  

0 ‘. an, . 

FIG. 3. Two-dimensional depiction of the small neighborhood of the curved 
interface boundary between phase 1 of conductivity o, and phase 2 of con- 
ductivity oJ. 
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First-passage-time analysis leads to the boundary-value 
problems given by9 

vp, = 0, in 0 (=Ck,lJfl,), 

p, (xl = 1, on Xl,, 

p,(x) =o, on X&, 

PI (x)l, =p, (x)l,, on r, (11) 

21, =a-$$l,, on l?, 

p2 (xl = 1 -p, (xl, 
a,v21-, = - 1, in C!; (i= 1,2), 

Q-, (xl = 0, on &A, 

r,(x)I, = T$(X)IZ, on r, 

$1, =a$-12, on r. 

(12) 

(13) 

Here r denotes the interface surface, n, denotes unit 
outward normal from region R,, and ( a) Ii means the ap- 
proach to f from the region R, (i= 1,2). Note that the 
imaginary sphere of radius R described above is centered on 
the interface boundary rather than on the random walker 
since the former lends itself to a more tractable solution. 

The solutions of Eqs. ( 1 1 )-( 13) for an interface with an 
infinite radius of curvature (straight line for d = 2 or plane 
for d = 3) is straightforward and for d>2 is given by an 
infinite series involving d-dimensional spherical harmon- 
ics.’ We seek, however, a solution for curved interfaces since 
this will result in more accurate calculations and because the 
radius R in practice does not have to be as small as it would 
have to be in the zero-curvature case, thus reducing the com- 
putation time. The general solution is intractable analytical- 
ly, but we have devised an approximate analytical solution’ 
(based upon the zero-curvature solution) which turns out to 
give excellent agreement with a numerical evaluations of 
Eqs. ( 1 l)-( 13). These general solutions are given by the 
following relations: 

p,tr,m = 
Al 

A, +aA, 
1+a 2 B2,n+I 

,n = 0 

for O<r<R, oaXd2, 

p,(rJa = Al 

A, +aA, 
1 + 2 Bz,,, + I 

tn = 0 

2in+ I 
P 2,n + I (cos 0) 9 1 

for O<r<R, r/2<0<n, where 

B ( - 1)‘“(2m)! 4m + 3 
2’n L ’ = 22m+l(m!)2 Z’ 

p2 (r,B) = 1 -pI h%, 

for O<r<R, O<fkn, 
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(14a) 

(14b) 

(15) 

R 2 v’, + v* rs (r,O) = - 
60, V, +aV, 

x P*(cos 0) FG(r,B) , 1 
for O<r<R, OQ<r/2, 

R2 
7,(r,f3) = - v, + v, 

6~7, V, +aV, 

x P,(COS 0) G(r,Q) , 1 (16) 

for O<r<R, r/2<tkr, where 

G(r,@ = g C2,,,+, + 
0 

2m + I 

Cm+, (coW, 
m = 0 

C (- 1) “I+ ‘(2m)! 3(4m + 3) 
2mtl = 2’” + ‘(m!)2 (2m - l)(m + 2)(m + 1) . 

Here, the arguments of r, and p, are the components of 
x - x0, where r = Ix - x0 1 and 8 is a spherical polar angle 
measured from a reference axis (see Fig. 4). P, denotes the 
Legendre function of degree n. For simulation purposes, 
however, it suffices to know solutions along the symmetry 
axis (i.e., 8 = 0 or r). Thus, we have 

pl (r,O) = 
Al 

A, +aA, (17a) 
for O<r<R, 

Al 
l-+2,,+, + 

*tn+ I 

p, O-+-l = 
A, +aA, 0 I 

p 
,n = 0 

(17b) 

for O<r<R, 

p2 (r,O) = 1 -pI (r,O), 
for O<r<R, 

(18a) 

p2 (r,v) = 1 -p, (r,n), 
for O<r<R, 

(18b) 

symmetry axis 

FIG. 4. Coordinate system in the limit of ajar-plane interface boundary. 
The coordinate system is defined in the same way for a curved interface. 
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(19a) 

for O<r<R, 

(19b) 
for O<r<R, where 

B ( - 1)‘“(2m)! 4m + 3 
2rnfI = 2 2m+‘(m!)2 m+l’ 

C ( - l)‘n+‘(2m)! 3(4m + 3) 
2mtl = z2’“+ ‘(m!)’ (2m--ll)(m+2)(m+l)’ 

C. Random walk at the surface of perfectly insulating 
spheres 

Consider a suspension of perfectly insulating spheres 
(a = 0). It is clear that if the random walker is in the insulat- 
ing sphere, it stays there forever, and if the random walker is 
outside the insulating sphere, it can never enter the sphere. 
Hence, p, (r,O) is trivially unity, which is in agreement with 
the general relation (18). Note that we do not have to con- 
sider p, (r,n) since the random walker trapped inside the 
insulating sphere cannot move. However, it is important to 
include these trapped random walkers in order to correctly 
compute the mean-square displacement [as in Eq. (6) ] and 
hence the effective conductivity. As proven by Kim and Tor- 
quato,’ such trapped random walkers will reduce the mean- 
square displacement and hence the effective conductivity o, 
by a factor of ( 1 - 42 ), where e52 is the sphere volume frac- 
tion. Thus, calculation of the mean-square displacement 
averaged over only the freely moving random walkers out- 
side the insulating spheres would overestimate this quantity 
byafactorof(1 -&). 

The expression for the mean hitting time 7% given in Sec. 
II B, can be also applied without any difficulty for a = 0 
with the result 

R’ 
r, (r,O) = - VI + v2 

60, J’, 

X[l ++(~~-~,p2~m+’ ($)2’n+‘]. 
Note that Eq. (20) is an expression for the mean hitting time 
of a random walker initially at the distance r from the center 
of a homogeneous sphere of radius R (see Fig. 3). Note also 
that we do not consider 7;(r,n-) for the same reason that 
p, (r,r) is not considered. 

D. Random walk at the surface of superconducting 
sphere 

Consider suspensions of superconducting spheres 
(a = ~13). If a = CO, Eqs. (17)-(19) yield trivial answers: 

p, = 0, p2 = 1, and r., = 0. This implies that the random 

walker at the interface boundary always gets trapped in the 
superconducting phase and never escapes from there while 
this process spends no time. This is undesirable from simula- 
tion standpoint since we need to investigate the random- 
walk behavior in the large-time limit. Hence, for a = CO we 
employ a different approach than in the case of finite a.’ We 
first construct an imaginary concentric sphere of radius R 
around the hard sphere of radius a such that the concentric 
shell of thickness (R - a) contains only phase 1 (see Fig. 5). 
The mean hitting time for striking the surface 6’fi of the 
sphere of radius R for a random walker initially at some 
location near to interface boundary (where the normal dis- 
tance from the interface boundary is r) is given by 

R? 7- =- ., 1 _ (rta)’ 
60, > R2 ’ 

O<r<S(R -a), (21) 

where S is some prescribed small number. Note that we only 
have to consider random-walk paths in phase 1 since once 
the walker touches the interface boundary I, it will jump to 
dR spending an amount of time given by Eq. (2 1). 

III. SIMULATION DETAILS 
Here, we apply the Brownian motion formulation to 

compute the effective conductivity a, of an equilibrium dis- 
tribution of hard spheres of conductivity 0; in a matrix of 
conductivity 0,. We consider the cases a = oT,/a, = 0, 10, 
and CO. To assess the accuracy of the method, we also com- 
pute a, for the idealized microgeometry of a simple cubic 
lattice of hard spheres of conductivity a2 in a matrix of con- 
ductivity g, since its solution is known exactly.14 Before 
presenting these simulation results, we first describe the sim- 
ulation procedure in some detail. 

Obtaining the effective conductivity o’e from computer 
simulations is a two-step process: (i) First, one must gener- 

‘i 

FIG. 5. Spherical inclusion centered at x,~ for the case of a = q,/~, = CO. 
Here, V, is thevolumeofthesphereofradiusa (ofconductivitya2 ) plus the 
volume of the imaginary concentric inner shell of thickness r= IzJ 
(z = x - y) (of conductivity CT, ), and V, is the volume of the imaginary 
concentric outer shell of thickness [R - (r + a) ] (of conductivity o, ). 
Furthermore. K:, is the sum of V, and V,, XL denotes the outer surface 
including x, and I- denotes the interface boundary including y. 
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ate realizations of the random heterogeneous medium. (ii) 
Second, employing the Brownian motion algorithm, one de- 
termines the effective conductivity for each realization (us- 
ing many random walkers) and then averages over a suffi- 
ciently large number of realizations to obtain o@. 

In order to generate equilibrium configurations of hard 
spheres at volume fraction &, we employ a conventional 
Metropolis algorithm.15 N spheres of radius a are initially 
placed on the lattice sites of a body-centered-cubic array in a 
cubic unit cell. The unit cell is surrounded by periodic im- 
ages of itself. Each sphere is then moved by a small distance 
to a new position which is accepted or rejected according to 
whether or not spheres overlap. This process is repeated un- 
til equilibrium is achieved. In our simulations N = 112 and 
125 (depending upon & ) and each sphere is moved 200-400 
times before sampling for equilibrium realizations. In order 
to ensure that equilibrium is achieved, we determined the 
contact value of the radial distribution function g, (2~) as a 
function of & = N4va3/3 and compared the measured con- 
tact values to previously obtained accurate estimates of 
them. Our simulations were carried out for the wide range 
0 < & $0.6. For & <OS, we compared g, (2~) to the well- 
known and accurate Carnahan-Starling approximation.‘6 
For & = 0.6 (a value of about 95% of the random close- 
packing value for hard spheres,” & ~0.63), the accurate 
series expansion of Song, Stratt, and Mason” is used as a 
comparision. For spherical volume fractions above the fluid- 
solid phase transition ( $2 = 0.497)) generation of equilibri- 
um configurations become quite difficult due to the metasta- 
ble behavior of the hard-sphere fluid in this region.‘* Thus, 
for &* = 0.6, we follow the careful procedure used by Miller 
and Torquato” to generate configurations in this region. 
The essence of the method is to generate an equilibrium dis- 
tribution at & = 0.5 and then, incrementally, allow the par- 
ticle diameters to swell until the desired volume fraction 
above (6* = 0.5 and below & is attained. In Table I we com- 
pare our measured values of the contact value of the radial 
distribution function to the Carnahan-Starling approxima- 
tion for 0<1$,<0.5 and to the expression of Song and co- 
workers for & = 0.6. In general, the agreement between our 
results and previous results is excellent. 

The essence of the Brownian motion algorithm has been 
described in Sec. II. Here, we need to be more specific about 
the conditions under which the Brownian particle is consid- 

TABLE 1. Measured values of the contact radial distribution function 
g> (2~) compared to the Carnahan-Starling (Ref. 16) results for 0~4~ ~0.5 
and to Song and co-workers (Ref. 17) for & = 0.6. 

Our measured Previous 
values results 

0.1 1.31 1.31 
0.2 1.78 1.78 
0.3 2.53 2.53 
0.4 3.70 3.70 
0.5 6.02 6.00 
0.6 22.70 23.24 

ered to be in the small neighborhood of the interface and 
hence when the mean time T, and probabilities p, and pz 
need to be computed. An imaginary thin concentric shell of 
radius u ( 1 + S, ) is drawn around each sphere of radius a. If 
a Brownian particle enters this thin shell, then we employ the 
first-passage-timeequations (17)-(19), (20), or (21). The 
radius of this first flight R is virtually always taken to be the 
distance to the next-nearest interface boundary or some pre- 
scribed smaller distance S,a. However, in the rare instances 
in which two or more interface boundaries are very close 
together, R would be less than S, a, and hence it would take a 
large amount of computation time for such a random walker 
to move even a small distance. Therefore, in these rare in- 
stances, we take R = &a, and instead of using Eqs. (17)- 
(19), (20), or (21), we use Eqs. (22)-(23), which when 
applied to two-phase media are given by 

0; 
Pi = A,a, +A,a, ’ 

(22) 

for the probability of a random walker jumping into phase i 
(i = 1,2), and 

7, =T, (RI 
V,a, + V20, 
V,a, + V,a, ’ 

(23) 

for the mean hitting time. Here, A, and V, are the total sur- 
face area and the total volume of ith phase, respectively. 
Note that since the separations between these interface 
boundaries are very small and the distance from the random 
walker to the nearest interphase boundary is also very small, 
then it will not make any significant difference to center the 
first-flight sphere at x (the position of the random walker) 
instead of the nearest interface boundary (as in the prepon- 
derance of situations-see Sec. II), and hence using Eqs. 
(22) and (23) should still give accurate results. Further- 
more, note that such infrequent events will make a very 
small contribution to the total mean time for the entire ran- 
dom walk. 

After a sufficiently large total mean-square displace- 
ment, Eq. (10) is then employed to yield the effective con- 
ductivity for each Brownian trajectory and each realization. 
Many different Brownian trajectories are considered per re- 
alization. The effective conductivity 0, is finally determined 
by averaging the conductivity over all realizations. Finally, 
note that the so-called Grid method” was used to reduce the 
computation time needed to check if the walker is near a 
sphere. It enables one to check for spheres in the immediate 
neighborhood of the walker instead ofchecking each sphere. 

In our simulations, we have taken 6, = 0.01 and 
6, = 0.1 for the case a = 10 and S = 0.000 1 for the cases 
a = to and 0. We considered 100-200 equilibrium realiza- 
tions and 100-200 random walks per realization, and have 
let the dimensionless total mean-square displacement X ‘/a2 
vary from 5 to 100, depending on the value of I& and cr. 
Compared to previous simulation techniques, the Brownian 
motion simulation algorithm yields accurate values of a, 
(within 2%) with a reasonably fast execution time (e.g., on 
average, the calculations for a = 10 and CQ, respectively, 
required 10 and 5 CPU hours on the CRAY Y-MP), espe- 
cially considering the large system sizes used here. It is im- 
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portant to emphasize, however, that a reduction of the num- 
ber of realizations by an order of magnitude reduces the 
computing time proportionally, but with little loss in accura- 
cy (i.e., approximately 5% accuracy level). It is noteworthy 
that even at high values of the volume fraction & and the 
conductivity ratio a, a, can be estimated accurately with 
relatively small computation cost. Most of the computa- 
tional time is spent generating Brownian trajectories, and 
hence increasing the system size (i.e., increasing N) adds 
negligibly small computational cost. 

Our calculations were carried out on a VAX station 
3 100 and on a CRAY Y-MP. 

IV. RESULTS 
Our simulation data will be compared to the best avail- 

able rigorous bounds on the effective conductivity, i.e., 
three-point bounds due to Beran’ and Milton’ that depend 
upon a microstructural parameter lZ2, which is a multidi- 
mensional integral over a three-point statistical correlation 
function. This parameter was first compared to all orders in 
& for equilibrium hard spheres by Torquato and Lade” in 
the superposition approximation. More recently, it was com- 
puted from Monte Carlo simulations by Miller and Tor- 
quato. I9 The superposition results were found to be accurate 
for & (0.4. However, since the superposition results were 
found to overestimate g2 for $2 > 0.4, we shall utilize Miller 
and Torquato’s evaluation of c2 for this range. 

In addition to rigorous bounds, we shall compare our 
data to an approximation of o, for dispersions obtained by 
Torquato’” which also depends on the microstructural pa- 
rameter fz , namely, 

0‘. 1+24,8--2(1-42X2L3’ -= (24) 
Cl 1-4,B-2(1-42X28” ’ 

where 

a-l p=-. 
a+2 

(25) 

Relation (24) should provide an excellent estimate of oc 
provided that the dispersed phase 2 does not possess large 
connected substructures.‘3 This condition will be met for 
periodic and equilibrium arrays of hard spheres, except near 
their respective close-packing volume fractions. Indeed, re- 
lation (24) was shown to yield an excellent estimate of the 
effective conductivity of regular arrays of hard spheres for 
virtually all dz, even in the case of superconducting particles 
(a = CO ) .I3 Torquato also compared Eq. (24) for equilibri- 
um hard spheres to fluidized bed data for gc. However, these 
results were inconclusive since the experimental system did 
not correspond to the model system. Based upon the agree- 
ment found for regular arrays, relation (24) in conjunction 
with the recent accurate determination of cZ for equilibrium 
hard spheres” should yield an excellent estimate of a, for 
this model. 

A. Simple cubic array results 
In order to assess the accuracy of our Brownian motion 

algorithm in three dimensions, we have computed a, for a 
simple cubic array of hard spheres with a = 10 and CO and 

TABLE II. Brownian motion simulation data for the scaled conductivity 
oJor of simple cubic array of hard spheres ofconductivity a, in a matrix of 
conductivity ff, for a = az /o’, = 10 for selected values of the sphere vol- 
ume fraction in the range 0 <: 4s $0.5. Included in the table are the exact 
results of McKenzie and co-workers” and the simulation data of Bonnecaze 
and Brady.h 

Exact 
42 results” 

0.1 1.24 
0.2 1.53 
0.3 1.89 
0.4 2.36 
0.5 3.11 

.’ Reference 14. 
h Reference 22. 

Brownian motion Bonnecaze-Brady 
simulation results simulation resultP 

1.24 1.24 
1.53 1.53 
1.89 1.87 
2.36 2.29 
3.13 2.80 

compared these data against exact results available for this 
idealized model.14 A wide range of sphere volume fraction 
values were considered. Tables II and III and Fig. 6 compare 
our simulation data with the exact results of McKenzie, 
McPhedran, and Derrick.14 Note that their results for 
a = 10 were obtained from an analytical expression and for 
a = CO were taken from their numerical tabulation. From 
Tables II and III and Fig. 6, it is quite apparent that our 
simulation results are in excellent agreement with the exact 
numerical results, for both finite and infinite values of a. 
Each datum for o,, accurate to within l%, required, on 
average, only about 0.5 CPU hours on a CRAY Y-MP. 

Note that we have computed the conductivity for 
a = CO and a volume fraction 42 = 0.52, which is slightly 
below the percolation threshold of 42 = r/6-0.5236 (i.e., 
at the close-packing value). The excellent agreement in the 
near-critical region indicates that our procedure can be em- 
ployed to study percolation behavior. 

Near the completion of this paper we learned of the sim- 
ulation results of Bonnecaze and Brady.” These results are 
also included in Tables II and III. They formed the “capaci- 
tance” matrix which relates the monopole, dipole, and quad- 

TABLE III. Brownian motion simulation data for the scaled conductivity 
oJa, ofsimplecubic arrayofhardspheresofconductivity o, in amatrixof 
conductivity o, for LI = u>/u, = w for selected values of the sphere vol- 
ume fraction in the range 0 < e$ ~0.52. Included in the table are the exact 
results of McKenzie and co-workers.’ and the simulation data of Bonnecaze 
and Brady.h 

44 
Exact Brownian motion Bonnecaze-Brady 

results” simulation results simulation result$ 

0.1 1.33 1.32 1.33 
0.2 1.76 1.75 1.76 
0.3 2.33 2.34 2.36 
0.4 3.26 3.26 3.33 
0.5 5.89 5.85 6.10 
0.52 8.86 8.89 . . . 

a Reference 14. 
h Reference 22. 
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FIG. 6. Scaled effective conductivity g/o, of a simple cubic array of hard 
spheres in a matrix for a = a,/~, = 10 and CO. Solid lines are the exact 
results of McKenzie and co-workers (Ref. 14), and the circles are our simu- 
lation data. 

rupole of the particles to the potential field of the system and 
used accurate near- and far-field approximations to this ma- 
trix. Table II for cr = 00 gives their results using the inverse 
potential matrix M  - ‘, which excludes exact two-body inter- 
actions. For 0.1 & ~0.3, their results are in excellent agree- 
ment with our simulation data and the results of McKenzie 
and co-workers. For & = 0.4 and 0.5, their results underes- 
timate LT,/(T, ; for example, at CJ$ = 0.5, their results are 10% 
lower than the exact result of ~,/a, = 3.11, whereas our 
datum is within 1% of the exact result. For the supercon- 
ducting case ((x = CO ), Table III shows their results using 
M  - ’ plus exact two-body interactions. Again, all the results 
given in the table are excellent agreement for O.l+,& ~0.3, 
but at higher volume fractions the results of Bonnecaze and 
Brady slightly overestimate a,/~, . For example, their re- 
sults are 3.5% higher than the exact result. (For other lat- 
tices, their corresponding results are even higher.) By sys- 
tematically improving their approximations, the method of 
Bonnecaze and Brady will yield increasingly accurate re- 
sults. In contrast, in our formulation no such approxima- 
tions are made. 

B. Equilibrium hard-sphere results 

Here, we report computer-simulation data for the effec- 
tive conductivity crC of equilibrium distributions of hard 
spheres for CT = 0, 10, and CO, and for 0 < & ~0.6. Tables IV- 
VI and Figs. 7-9 summarize our findings for the scaled con- 
ductivity a/a,. Included in the tables and figures are the 
rigorous three-point bounds due to Beran and Milton’ and 

TABLE IV. Brownian motion simulation data for the scaled conductivity 
a,./~, of equilibrium distributions of hard spheres of conductivity a, in a 
matrix of conductivity o, for a = ~,/a, = 10 for selected values of the 
sphere volume fraction in the range 0 < & $0.6. Included in the table are 
Torquato’s” expression (24), the simulation data of Bonnecaze and Bra- 
dy,” and Milton’s three-point lower bound.’ Relation (24) and the three- 
point lower bound were computed using the microstructural parameter c2 
for I$* $0.4 as obtained by Torquato and Laded and for +L > 0.4 as obtained 
by Miller and Torquato.’ Note that for 41 (0.4 the Torquato-Lado and 
Miller-Torquato results are in good agreement. 

42 
Torquato’s 
expression” 

Brownian 
motion 

simulation 
results 

Bonnecaze-Brady 
simulation Three-point 

result? lower bound’ 

0.1 1.25 1.25 1.25 1.25 
0.2 1.55 1.54 1.54 1.54 
0.3 1.93 1.93 1.89 1.89 
0.4 2.39 2.41 2.30 2.33 
0.5 2.97 3.02 2.82 2.86 
0.6 3.76 3.87 3.59 3.57 

i( Reference 13. 
h Reference 22. 
‘Reference 7. 
’ Reference 2 1. 
‘Reference 19. 

the expression (24) due to Torquato,‘” all of which depends 
upon a microstructural parameter &. 

Table IV and Fig. 7 for a = 10 show that our simulation 
data lie between the tight three-point bounds, with the data 
lying closer to the three-point lower bound, as expected. Tor- 
quato13 has argued that lower-order microstructure-sensi- 
tive lower bounds will provide a good estimate of aJo, for 
a > 1, even when as 1, provided that there are no large con- 
ducting clusters in the system. This condition is certainly 
satisfied for our model for the reported range 0 < #2 ~0.6. 
Note that relation (24) provides generally excellent agree- 
ment with the data. 

Table V and Fig. 8 give similar results for superconduct- 
ing spheres (a = CO ). The upper bound becomes infinite 
here. However, the three-point lower bound, not surprising- 

TABLE V. As in Table IV, except for superconducting, equilibrium hard 
spheres (a = a). 

42 
Torquato’s 
expression” 

Brownian 
motion 

simulation 
results 

Bonnecaze-Brady 
simulation Three-point 

resultP lower bound’ 

0.1 1.35 1.34 1.35 1.34 
0.2 1.82 1.83 1.82 1.77 
0.3 2.46 2.48 2.53 2.34 
0.4 3.36 3.42 3.59 3.11 
0.5 4.69 4.78 4.97 4.2 1 
0.6 7.15 8.32 8.85 5.96 

a Reference 13. 
b Reference 22. 
‘Reference 7. 
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TABLE VI. As in Table IV, except for perfectly insulating, equilibrium 
hard spheres (a = 0). Bonnecaze and Brady” did not give data for this case. 

Torquato’s Brownian motion 
expressiotP simulation results 

Three-point 
upper bound’ 

0.2 0.723 0.124 0.724 
0.4 0.490 0.49 1 0.493 
0.6 0.293 0.287 0.299 

a Reference 22. 
’ Reference 13. 
‘Reference 7. 

ly, provides a reasonable estimate of cr,/o, . Again, relation 
(24) generally provides excellent agreement with our simu- 
lation data. 

Table VI and Fig. 9 show our simulation data for per- 
fectly insulating spheres (a = 0) satisfying the three-point 
upper bound (the lower bound goes to zero in this limit). 
The data closely follow the upper bound and relation (24) in 
this instance. As is well known, the effective conductivity of 
dispersions of perfectly insulating nonoverlapping spheres is 
not sensitive to the microstructure and, as a result, even sim- 
ple approximate expressions capture the salient behavior for 
such microstructures. 

Tables IV and V also include the recent simulation re- 
sults of Bonnecaze and Brady,22 using M - ’ without and 
including two-body interactions, respectively. For a = 10, 
their results underestimate the effective conductivity for 
0.4<@, ~0.6. Indeed, for 42 = 0.4 and 0.5, the Bonnecaze- 
Brady data dip slightly below the three-point lower bound 

- Torauato Relation 

0.5 1 
42 

FIG. 7. Scaled effective conductivity c,./(T~ ofan equilibrium distribution of 
hard spheres in a matrix for a = crZ /a, = 10. Solid line is Torquato’s (Ref. 
13) expression (24), dotted lines are three-point lower (Refs. 7, 19, and 21) 
and upper bound (Refs. 6, 19 and 2 1 ), respectively, and the circles are our 
simulation data. 

t 

g-T& Lower 

l Data 
I 

fJe I 1. 

0 0.5 1 
@2 

FIG. 8. Scaled effective conductivity ~,/a, ofan equilibrium distribution of 
superconducting hard spheres in a matrix (a = 00 ). Solid line is Torquato’s 
(Ref. 13) expression (24), dotted line is three-point lower bound (Refs. 7, 
19, and 21), respectively, and the circles are our simulation data. 

and at c+& = 0.6 are barely above the three-point upper 
bound. For a = CO, their results appear to overestimate 
~,/a, for 0.4@, (0.6, especially at c$* = 0.6, where they 
question whether the system is truly in the metastable state. 
This overestimation in the case a = CO is consistent with 

1 

ue 

01 

0.5 

C 

- Torquato Relation 

3-Pt. Upper Bound 

I  I  I  I  I  

0.5 
$2 

FIG. 9. Scaled effective conductivity CJ<,./(T, ofan equilibrium distribution of 
perfectly insulating hard spheres in a matrix (a = 0). Solid line is Torqua- 
to’s (Ref. 13) expression (24), dotted line is three-point upper bound, 
(Refs. 6, 19, and 21), respectively, and the circles are our simulation data, 
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their overestimation of cr,/(T, for perfectly conducting, peri- 
odic spheres described earlier. 

Besides statistical errors, the sources of errors in our 
first-passage-time calculations are (i) the finite number of 
random walks employed and (ii) the finite length of the ran- 
dom-walk trajectories. The number of random walkers and 
the walk lengths employed (described above) are sufficient- 
ly large to ensure that our estimations of a,/cr, of random 
arrays of hard spheres are on average accurate to within 2%. 

V. CONCLUSIONS 

The new and general first-passage-time technique devel- 
oped by the authors earlier’ has been applied for the first 
time to compute the effective conductivity a, of periodic and 
equilibrium arrays of hard spheres having arbitrary phase 
conductivities. It is shown that our Brownian motion simu- 
lation method yields accurately the effective conductivity 
with a comparatively fast execution time, for finite as well as 
infinite values of the conductivity ratio a, even near the per- 
colation threshold. Our effective conductivity data for con- 
ducting (a > 1) and insulating (a < 1) are shown to be al- 
ways lie near the three-point lower bound and upper bound, 
respectively, consistent with the arguments of Torquato.‘” 
Moreover, Torquato’s analytical relation (24) is found to 
generally yield excellent estimates of (T, of random hard- 
sphere distributions for a wide range of & and a. 

In a subsequent paper, we shall compute the effective 
conductivity of d-dimensional overlapping (i.e., spatially 
uncorrelated) spheres (a prototypical model of continuum 
percolation) for various a. Since our algorithm can accu- 
rately yield behavior near the percolation threshold, we shall 
also compute transport percolation exponents for these 
models. 

Finally, we note that our methodology can be extended 
to treat macroscopically anisotropic composite media with 
an effective conductivity tensor u,. For example, in the case 
where the individial phases are isotropic, but the microstruc- 
ture is anisotropic, instead of keeping track of X 2, one must 
compute the dyadic X,X,, where Xi is the ith component of 

the displacement X. This would add negligible computa- 
tional cost since we already keep track of the components of 
the displacement for each first-passage sphere in the statisti- 
cally isotropic cases focused on in this study. When the indi- 
vidual phases are anisotropic, then appropriate first-pas- 
sage-time equations would have to be derived. 
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