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Improved rigorous bounds on the effective elastic and transport properties of a transversely 
isotropic fiber-reinforced material composed of oriented, infinitely long, multisized circular 
cylinders distributed throughout a matrix are computed. Specifically, we evaluate such bounds 
on the effective axial shear modulus (which includes, by mathematical analogy, the transverse 
conductivity), effective transverse bulk modulus, and the effective transverse shear modulus. 
These are generally demonstrated to provide significant improvement over the Hill-Hashin 
bounds which incorporate only volume-fraction information. Although the upper bounds 
diverge from the lower bounds when the cylinders are much stiffer than the matrix, the 
improved lower bounds still yield relatively accurate estimates of the effective properties. 
Generally, increasing the degree of polydispersivity in cylinder size increases the effective 
transverse conductivity (or axial shear modulus) and effective transverse bulk modulus, and 
decreases (slightly) the effective transverse shear modulus for cases in which the fibers are 
more conducting or stiffer than the matrix. 

1. INTRODUCTION 
Rigorous upper and lower bounds on the effective prop- 

erties of composite materials are useful because’.2 (i) they 
enable one to test the merits of a theory or computer experi- 
ment; (ii) as successively more microstructural information 
is incorporated, the bounds become progressively narrower; 
and (iii) one of the bounds can typically provide a relatively 
accurate estimate of the property, even when the reciprocal 
bound diverges from it. 

For transversely isotropic two-phase composites, Hill” 
and Hashin4V5 obtained the best possible bounds on the effec- 
tive axial shear moduluspu, (or, equivalently, effective trans- 
verse conductivity a, ), effective transverse bulk modulus k,, 
and effective transverse shear modulus G,, given the phase 
properties and volume fractions ~+5~. Although bounds which 
improve upon these second-order bounds have been avail- 
able for some time now, 6-S their application has been, until 
recently, very slow because of the difficulty involved in as- 
certaining the statistical correlation functions involved. 

In the last few years, improved bounds on the aforemen- 
tioned effective properties”’ have been evaluated for nontri- 
vial model microstructures consisting of random arrays of 
infinitely long, oriented cylinders in a matrix9-‘4 by utilizing 
the analytical representations of the correlation functions 
derived by Torquato and Ste11.‘5V’6 In particular, Torquato 
and Beasley’*” and Joslin and Stell” independently com- 
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puted improved bounds due to Silnutzer’ and to Milton’,’ 
for identical overlapping (i.e., randomly centered) cylin- 
ders. Joslin and Stell” evaluated the same bounds for po& 
dispersed overlapping cylinders and showed that the bounds 
were insensitive to polydispersivity for this microgeometry. 
Torquato and Lado,13.14 and Smith and Torquato” calcu- 
lated these improved bounds for identical nonoverlapping or 
impenetrable cylinders. This is a useful model of unidirec- 
tional fiber composites. For impenetrable cylinders, the ef- 
fect of polydispersivity in cylinder size on these effective 
properties has heretofore not been rigorously studied. Un- 
like the case of overlapping cylinders, the effect of polydis- 
persivity in cylinder size for impenetrable cylinders is gener- 
ally expected to be significant. 

The purpose of this paper is to compute improved 
bounds onp< (or uC), k,, and G, for composites consisting 
of random distributions of infinitely long, oriented, impen- 
etrable cylinders with a polydispersivity in size. Such an in- 
vestigation will enable us to study the effect of polydispersi- 
vity on the elastic and transport properties of such 
unidirectional composites. 

II. IMPROVED BOUNDS ON THE EFFECTIVE ELASTIC 
MODULI 

For a two-phase, transversely isotropic fiber-reinforced 
material, Hill3 and Hashin4*5 derived the best possible 
bounds on pet k,, and G, given only the phase volume frac- 
tions 4, and &2, bulk moduli K, and K, , and shear moduli 
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G, and G2. These are referred to as second-order bounds 
since they are exact through second order in the difference in 
phase properties. Silnutzer6 derived improved third-order 
bounds on pC,, k,, and G, that depend upon two integrals 
over certain three-point correlation functions. The Silnutzer 
bounds were simplified by Milton’ and are, respectively, giv- 
en for the axial shear modulus, transverse bulk modulus, and 
transverse shear modulus by 

pp<pc G&j’, (1) 

where 

d,&(l/G2 - l/G, )’ 
(l/G> + (l/G), ’ 

k F’<ke <k c’, 

where 

and 

(l,k)-C,Cz(l/k,-l/k,)2 
’ 

Gy’<G <Gc3’ e u 9 
where 

4, $2 (l/G, - i/G, 1’ 

8 = [ 2(k jg(G )’ + (k )*(G ),]/(k + 2G >‘, 
E=2(l/k); + (l/G),,. 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
Here we define (b) =b,#, +b,#,, (6) =b,& +b,4,, 
(b ); = b,C, -I- bd2, and(b),, = b,q, + b,v,.Thequan- 
tity kj is the transverse bulk modulus of phase i for trans- 
verse compression without axial extension and may be ex- 
pressed in terms of the isotropic phase moduli as 
k, = Kj + G,/3 (i = 1,2). The parameters cZ = 1 - 5, and 
r], = 1 - 7, are integrals over the two- and three-point 
probability functions S, (r) and S, (r,s,f), and are defined by 

i2 =-&-~“$~“$s”dQ 

x s, (r,s,t) - 
s* (r)S, 0) 

42 

cos 28, (12) 

and 

77* =*l,e@Jwf[de 

x ( s, (r,s,r) - 
s2 (r)S, (s) cos 4e 

42 > 
(13) 

The quantities S, (r) and S, (r,s,f) are, respectively, the 
probabilities of finding in phase 2 the end points of a line 

segment of length r and the vertices of a triangle with sides of 
length r, s, and f; 8 is the included angle opposite the side of 
length f. 

For c2 = v2 = 0, the above third-order bounds coincide 
and equal the corresponding second-order Hill-Hashin low- 
er bounds for cases in which phase 2 is stiffer than phase 1. 
For l2 = v72 = 1, the bounds coincide and equal the corre- 
sponding Hill-Hashin upper bounds for instances in which 
phase 2 is stiffer than phase 1. The third-order bounds al- 
ways improve upon the second-order bounds of Hill and Ha- 
shin, since both 5; and 17; lie in the closed interval [O,l]. 
Hashin’ showed that the problem of determining the effec- 
tive axial shear modulus y, is mathematically equivalent to 
determining the effective transverse thermal or electrical 
conductivity a,. Hence, results for p, can be immediately 
translated into equivalent results for uC. 

Milton8 derived fourth-order bounds on the effective 
axial shear modulus ,LL~ or transverse conductivity a, of 
transversely isotropic fiber-reinforced materials that depend 
upon the phase properties &, J2, and an integral over the 
four-point probability function S, . Milton showed that by 
utilizing a phase-change theorem, the integral involving S, 
can be expressed in terms of & and c2 only. For the case 
G, >G, , the fourth-order bounds are given by 

(4) 
pL qu, q4J’, (14) 

where 

(4) = G (G, +G,)(G, +(G))-M,(G, -G,)* 
Pu 

* (G, +G2)(G2+(~))-~2~,(G,-Gl)2 > ’ 

(15) 

(4) = G (G, + G2)(G2 + (G)) -q$&(G, -G, 1’ 
PL 

’ (G, +G,)(G, +(&,-+,&,(G, -Gil2 ’ 

(16) 

III. EVALUATION OF THE MICFlOSTRUCTURAL 
PARAMETERS FOR RANDOM ARRAYS OF 
POLYDISPERSED CYLINDERS 
A. The three-point probability function S, 

To evaluate the integrals (12) and (13) for a polydis- 
persed array of infinitely long, oriented, hard cylinders 
(disks in two dimensions), the three-point probability func- 
tion S, must be determined. An exact infinite-series repre- 
sentation of the general n-point probability function S, has 
been given by Torquato and Stel115 for a two-phase system of 
d-dimensional identical spheres (phase 2) distributed 
throughout a matrix (phase 1). The S, for random, polydis- 
persed arrays of d-dimensional spheres can be determined by 
a straightforward generalization of the explicit expressions 
of the S, derived by Torquato and Stell.” For statistically 
isotropic distributions of impenetrable disks, it has been 
shown16 that the infinite series for S, terminates with the 
nth term; for a system of impenetrable disks having a dis- 
crete distribution ofM diameters a, (i = 1 ,...,M), in the case 
n = 3, it is given by 
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s3 (r12,r,3,r23) =s:')(r,2,r,3?-23) 

+ S:2'(r12,r,3,r23) 

+S:3'(~127~,3,~23), (17) 
where 

si” = z pi 
J 

mi(r14)m,(r24)mi(r34)dr4, (18) 
i= 1 

X g, ( r45 > dr, dr, + PiPj 
JJ 

mi(ri4>mj(r2,) 

Xm, (r34 >g, (r45 )dr, dr, +pipj 
JJ 

mj(ri5 1  

xmi(r24)m,(r34)g, j ( r4,)dr4 dr,  , 
> 

(19) 

SY)=~$,~~, kzlPiPjPk J J Jm,(rld)m j(r25) 

with 

Xm, cr36 kijk (r45pr46yr56 )dr4 dr, dr,, (20) 

(21) 

Herep, is the number density of disks (cylinders) of radius 
a;, and therefore the disk area fraction (or cylinder volume 
fraction) +2 is given by the relation 

(22) 

g, is the pair (radial) distribution function associated with 
particles of radii a, and a,, and gi,, is the triplet distribution 
function for particles of radii a,, a,, and ak, with 
ru = ]r, - ri (. The domain of integration in each of the above 

The three-dimensional analog of (17) through two- 
body terms (i.e., up to S {*)) was utilized by Thovert et al.,” 

integrals in ( 18 )-( 20) is the infinite area of the macroscopic 

but was not stated explicitly by them. Torquato’ has given a 

sample. Note that S, can be obtained from the expression for 

general discussion on correlation functions for polydis- 
persed inclusions, and Lu and Torquato” have extended the 

S, [Eq. (17)] by letting two of the three points coincide. 

formalism of Torquato” to obtain the so-called general n- 
point distribution function H,, for polydispersed suspen- 
sions, which contains result ( 17) as a special case. 

B. The microstructural parameter c2 
It is clear from ( 17)-( 20) and ( 12) that fivefold, seven- 

fold, and ninefold integrations must be carried out in order 
to evaluate the microstructural parameter gl. Torquato and 
Lado13 have greatly simplified these “cluster” integrals by 
expanding the angle-dependent terms in Chebyshev polyno- 
mials and &ng the orthogonality properties of these circu- 
lar harmonics. We  shall follow this procedure to compute cZ 
for impenetrable disks with a polydispersivity in disk diame- 
ter. 

We  shall first exploit an important property of c1 for 
distributions ofd-dimensional spheres that only recently has 

fully come to light; namely, the low-volume-fraction expan- 
sion of Jz provides a remarkably accurate approximation to 
the exact c2 for a wide range of 42, with the term linear in +2 
being the dominant one2’ (see also Ref. 2). This property, 
also true for the parameter v2, has recently been employed 
by Thovert et aZ.,18 Torquato,20 and Torquato and Lado14 
in related problems. Such behavior has been verified by the 
computer simulation study of Miller and Torquato” for im- 
penetrable spheres for virtually the entire volume-fraction 
range. It is also supported by the simulations of Smith and 
Torquato ” for the nonequilibrium, random-sequential ad- 
dition of hard disks. This implies that the calculation of c2 in 
the superposition approximation by Torquato and Lado13 
(although accurate and approximately linear for &2 (0.45) 
overestimates l2 for large 42 (i.e., #2 > 0.45). The fact that 
c2 is approximately linear for a wide range of e$ makes our 
task considerably easier since we only need to compute c2 to 
leading order in #2, a result obtainable analytically. Thus 
our strategy is to evaluate (12) through first order in &, 
implying that we need to substitute only the first two terms 
of ( 17) (i.e., up to two-body terms). After simplification, we 
find that 

C2 = 2 b, , 

where 

b22$fJmJ= da db a2b ‘f(a)f(b) 
2 0 0 

X 
J 

m 

dr ra*s, ( r) 
o+b (rZ - b2)2 ’ 

(23) 

(24) 

where f( a) is the given (continuous) size distribution for 
particles of radius a, p  is the total number density of disks, 
and g, is the pair (radial) distribution function for particles 
of radii a  and 6. Equation (24) is a polydispersed generaliza- 

Now g, (r) in (24) is generally a complicated function 
of density. However, since c2 is to an excellent approxima- 

tion of the monodispersed result first given by Torquato and 

tion linear for a wide range of 42, we need only employ the 
exact low-density limit (4, 

Lade.” Torquato and Lado also gave the monodispersed 

-0) of the radial distribution 
function, 

three-body term. 

g, (r) = 
0, r-cat 6, 
1, r>a+b, 

(251 

in relation (24). As & -0, combination of (23), (24), and 
(25) yields 

,2=$tJx J= da db a’b ‘f(a)f(b)A; 
2 0 0 

(26) 

where 

Ai(+)=21-b ,,:1;2,2 = l+ia/b' (27) 

Note that the term rpa* above will lead to a factor of +2 
when integrated over a. When (26) is integrated over both a 
and 6, a factor of 4: will arise, making the first term in (26) 
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of order (5* rather than of order 4; ’ as it may appear. For 
discrete distributions ofM different disk radii,f(a) takes the 
form 

f(Q) = 2 +-a,) 
r=l p 

where S(a) is the Dirac S function. For a monodispersed 
distribution of disks, M = 1 and a = b, (26) yields the 
O( & ) result of Torquato and Lade’” for equisized disks: 

Torquato and Lado actually evaluated cZ exactly through 
O( 4: ), but found that the linear term was by far the domi- 
nant one. The effects of polydispersivity are greatest for sus- 
pensions of fibers with widely separated radii, i.e., b/a-+0. 
For a bidispersed suspension with widely separated fiber 
radii (M = 2) and a polydispersed suspension ofM different 
(M- CQ ) and widely separated fiber radii, (26) yields, re- 
spectively, 

52 = &J?$ + a$:), (30) 

52 =$+a(&,. 
Note that (3 1) is identical to that found in three dimensions 
by Thovert ef al.‘” for a polydispersion of impenetrable 
spheres with widely separated sizes. Further, observe that 
(30) lies exactly midway between the monodispersed result 
(29) and (31). 

Following Torquato and Lado,14 we shall apply these 

‘3 

(2 

$2 
FIG. I. Three-point parameter cl, defined by Eq. ( 12), for three hard-cyl- 
inder microgeometries: identical hard cylinders (IHC) [ Eq. (28) 1, bidis- 
persed hard cylinders with widely spaced cylinder radii (BHC) [ Eq. (30) 1, 
and polydispersed hard cylinders with widely spaced radii (PHC) [Eq. 
( 3 1) 1. Also included are CL for a symmetric-cell material (SCM) with cy- 
lindrical cells (see Refs. 7 and 23) and identical overlapping cylinders 
(IOC) (seeRefs.gandll). 

low-density expansions for l2 in the fiber volume-fraction 
range 0~5, ~0.7. The volume fraction 4, = 0.7 corresponds 
to about 87% of the maximum random-close-packing value 
for monodispersions. Thus, for polydispersions (which 
have a larger close-packing fraction), the linear results may 
be applied beyond & = 0.7; however, this shall not be done 
here. 

In Fig. 1, we plot the parameter g2 as given in Eq. (26) 
for the three hard-cylinder cases noted above in (29 )-( 3 1)) 
i.e., the monodispersed case, the bidispersion with widely 
separated cylinder sizes, and the polydispersed case for 
widely separated cylinder sizes. For purposes of comparison, 
Fig. 1 also includes c2 as calculated for symmetric-cell mate- 
rials2”.24 and identical “fully penetrable” or “overlapping” 
cylinders’*’ ’ (i.e., spatially uncorrelated cylinders), each of 
which involves no approximation. 

It is of interest to note that the effect of polydispersivity 
is to increase g2 relative to equisized disks. One might initial- 
ly expect the converse to be true since <2 would then be 
approaching cZ = 0, the value corresponding to the well- 
known polydispersed composite-cylinder assemblage of Ha- 
shin4q5 for the transverse conductivity (axial shear modu- 
lus) and transverse bulk modulus in the cases of more 
conducting or stiffer inner cylinders. These assemblages rea- 
lize the second-order bounds. As noted by Torquato,’ how- 
ever, because the average separation distance between the 
inner cylinders in the composite-cylinder assemblage is larg- 
er than in the polydispersed, equilibrium hard-cylinder 
model examined here, the former construction inhibits clus- 
tering, and therefore cz for the present model should in- 
crease, rather than decrease, relative to the monodispersed 
result. This implies that the lower bounds on,u‘, (or a,) and 
k,, which turn out to yield good estimates of the effective 
properties in these instances,2.‘“*‘4.25.‘b will increase with in- 
creasing polydispersivity. 

As seen in Fig. 1, the symmetric cell material result for 
g2 = 42 appears to be an upper bound on c2 for cylinders in 
all the geometries studied, be they overlapping or totally im- 
penetrable equisized disks, or polydispersed disks; i.e., 

f2 942. (32) 
This was first noted by Torquato and Lado,13 but has yet to 
be rigorously proven. Torquato’ has conjectured (32) to be 
true for a class of distributions of d-dimensional spheres. If 
shown to be rigorously true, then c2 would be restricted to 
the closed interval [ O,C$, ] for this class of geometries of cyl- 
inders rather than the wider interval [ 0,l ] which generally 
applies. 

C. The microstructural parameter qz 
As was done in the previous section, q2 is evaluated for 

polydispersed hard cylinders by first simplifying the cluster 
integrals which result after substituting ( 17)-( 20) into 
( 13). Again, using the circular-harmonics-expansion tech- 
nique of Torquato and Lado,13 the integral ( 13) can be sig- 
nificantly simplified (after considerable algebra). As in the 
case ofc2, the linear term of the low-volume-fraction expan- 
sion of v2 should serve as a very good approximation to Q 
for a wide range of 42. Thus, we need only substitute the first 
two terms of (17) into (13) to obtain 
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7J2 =*c2, 
4’ 

where 

Ii+?’ - m 
c’=3y o ss 

da db a2b ‘f(a)f(b) 

(33) 

X drrg, (r) W(r), 

W(r)= n-a2 l- 3a2 
(r2 -b)’ (r2-b2) 

9 a2b ’ -- 
2 (r2-b2)2 

+2 a4 
4 (r2-b2)2 

(34) 

I 0 a4b ’ , 15 a4b4 \ 
T7 (r2-b2)3 T2 (r2-b2)4j* 

(35) 

Relation (33) is the polydispersed generalization of the 
monodispersed result first obtained by Torquato and 
Lado; I4 the three-body term (not given here) was also de- 
rived by them for monodispersions. 

Combination of (25), (33), (34), and (35) yields 
through first order in 4, that 

q12=* cc ss 42 0 0 
cs da db a26 2f(a)f(b)A,, 

(36) 
where 

A,? (+)=81rbrWr)dr 

= 8 ( 1 3 
2(1+26/a) -4(1+26/a)” 

3 (b/a)’ 1 -- 
4 (1 + 2b/a)’ 

+3 
8 (1 + 2b/a)3 

+9 
(b/u)’ 

8 (1 +2b/a)4 
+3 (b/al4 

> 4 (1+2a/b)’ ’ 
(37 

Figure 2 compares the functions AC and A,, as a function of 
the size ratio b/a. 

Employing Eq. (28)) one can then examine the behavior 
of 7,~ for the three cases noted above for c2, namely, the 
monodispersed result, and the widely spaced bidispersed 
and polydispersed suspensions. For these three cases, one 
finds, respectively, 

772 = &52 + oc& 1, (38) 

172 = $42 + OC& 1, (39) 

7/72 = 442 + O!&>. (40) 

As before, the result (38) recovers the result of Torquato 
and Lado14 for a random distribution of equisized hard 
disks. For the aforementioned polydispersed microgeome- 
tries, v2 (unlike g2 ) decreases as the degree of polydispersi- 
vity increases, although the effect is much smaller than the 
increase observed for cZ. The polydispersed result (40) is 
identical to that found by Thovert et a1.18 for the analogous 
three-dimensional case, and again we note that the result 
(39) for a bidispersed suspension of fibers with widely sepa- 

OX 

A(b/a) 

0.4 

0.2 

I 

b/a 
FIG. 2. The functions A+ (27) and A,, (37) as a function of the cylinder size 
ratio a/b. 

rated fiber radii lies exactly midway between (38) and (40). 
In Fig. 3, we plot the preceding three results as well as the 
result for symmetric-cell materials23*24 and random arrays 
of identical overlapping cylinders.“.” 

We note that Torquato* has conjectured that for a class 
of distributions of d-dimensional spheres (e.g., symmetric- 

1 

0.8 

0.8 

72 

0.4 

I- 

“0 0.2 0.4 0.6 0.6 

$2 

FIG. 3. Three-point parameter r,~?, defined by Eq. (13), for three hard- 
cylinder microgeometries: identical hard cylinders (IHC) [ Eq. (38) 1, bi- 
dispersed hard cylinders with widely spaced cylinder radii (BHC) [Eq. 
(39) 1, and polydispersed hard cylinders with widely spaced radii (PHC) 
[ Eq. (40)]. Also included are l> for a symmetric-cell material (SCM) with 
cylindrical cells (see Refs. 7 and 23) and identical overlapping cylinders 
(IOC) (seeRefs. lOand 11). 
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cell materials with spherical or cylindrical cells, overlapping 
and impenetrable disks or spheres), 

712 x=2 * (41) 
He based this conjecture on observations for known results. 
He also noted that if (32) is true, then q2 for d-dimensional 
spheres will lie in the more restricted closed interval [ 5; ,& ] 
rather than the interval [ 0,l ] which generally applies. 

Note that the results above differ from the analogous 
results for hard spheres in two ways. First, for hard cylin- 
ders, increasing polydispersivity decreases q2 from 
172 = 56/8142 for monodispersions [Eq. (38)] to 
r], = 0.$5, for polydispersions with widely spaced cylinder 
radii [ Eq. (40) 1, while for hard spheres, q2 increases from 
the monodispersed result q2 = 0.482 744, to v2 = 0.54, for 
polydispersed hard spheres with widely spaced radii.‘* Sec- 
ond, the relative difference between the polydispersed and 
monodispersed values is considerably greater for hard cylin- 
ders than for hard spheres. This will lead to a significant 
difference in the behavior of the effective shear modulus for 
dispersions of hard spheres and the effective transverse shear 
modulus for suspensions of oriented hard cylinders. 

A parameter v1 which decreases as the degree of poly- 
dispersivity increases can have the effect of lowering the 
third-order bounds (7) on the transverse shear modulus G, 
relative to the monodisperse result. [Note that unlike sec- 
ond-order bounds on ,uu, (a,) and k,, the second-order 
bounds on G, are not achieved by composite-cylinder assem- 
blages.’ ] In the case of perfectly rigid cylinders in an incom- 
pressible matrix, the results (38)-(40) and bounds (7) im- 
ply that G, exactly, through third order in (G, - G, ), must 
decrease as the polydispersivity increases for the hard-cylin- 
der model. 

IV. CALCULATION OF IMPROVED BOUNDS ON THE 
ELASTIC MODULI OF RANDOM ARRAYS OF 
POLYDISPERSED CYLINDERS 

Here we employ the results (26) and (36) to compute 
the bounds presented in Eqs. ( 1 )-( 11) for suspensions of 
long, oriented, impenetrable cylinders with a polydispersi- 
vity in cylinder radius. We will examine cases in which the 
fiber stiffness (conductivity) is greater that that of the ma- 
trix in the range of fiber volume fractions 0~5, ~0.7. It 
should be noted that for the cases presented here, the lower 
bounds will provide a relatively accurate estimate of the ef- 
fective property,2*‘3*‘4,2s*26 even when the bounds are not 
tight. This has recently been confirmed by exact determina- 
tions of the effective transverse conductivity (or effective 
axial shear modulus) for equilibrium distributions of hard 
cylinders obtained by Kim and Torquato.27 This is due to 
the fact that the stiffer phase (fibers) can never form large 
connected clusters in the range of volume fractions consid- 
ered here. Equilibrium distributions of cylinders do not form 
interparticle contacts until the random-close-packing vol- 
ume fraction22 ( +2 ~0.8 1) is reached. 

In Fig. 4, we present third- and fourth-order bounds on 
the scaled effective transverse conductivity (T,/cT, as calcu- 
lated from Eqs. ( 1) and ( 14) as a function of the fiber vol- 
ume fraction #2 for a composite with a conductivity ratio 

“0 0.2 0.4 0.6 

$2 

FIG. 4. Bounds on the scaled effective transverse conductivity UJ’U, vs the 
cylinder volume fraction e$ for an equilibrium distribution of polydispersed 
impenetrable cylinders with widely spaced cylinder radii [cf. Eq. (31) ] at 
u2/o, = 10; dotted curve, second-order bounds; (see Refs. 4 and 5) dashed 
curve, third-order bounds; (see Ref. 6) and solid curve, fourth-order 
bounds (see Ref. 8). These results can be immediately translated to equiva- 
lent results for the effective axial shear modulus (see Ref. 5). 

a2 /a, = 10 for a distribution of polydispersed impenetrable 
cylinders with widely spaced radii, i.e., with c2 given by 
(3 1). In these bounds we have replaced p‘,, G, , and G, with 
a,, o, , and a,, respectively. Also included in the figure are 
the second-order upper and lower bounds derived by Ha- 
shin.4.5 Observe that the third-order Silnutzer bounds are 
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Ol 
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FIG. 5. As in Fig. 4, with 02/o, = 50. 
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considerably more restrictive than the second-order Hashin 
bounds, and the fourth-order Milton bounds are a further 
improvement over the third-order bounds. The fourth-order 
lower bound provides an accurate estimate of the the effec- 
tive transverse conductivity (or, equivalently, axial shear 
modulus) for the range of fiber volume fractions reported. 

Figure 5 presents the same bounds for the case 
~,/a, = 50. As expected, the bounds are wider than in the 
previous case, but as noted earlier, o, is still accurately esti- 
mated by the fourth-order lower bound.14 

The case of superconducting fibers (~,/a, = CO ) (or 
superrigid fibers in the case of the axial shear modulus) is 
presented in Fig. 6. Here, we present only the fourth-order 
lower bounds since the upper bounds diverge to infinity, but 
include the three cases (29)~( 3 1) corresponding to mono- 
dispersed impenetrable cylinders, bidispersed impenetrable 
cylinders with widely spaced radii, and polydispersed im- 
penetrable cylinders with widely spaced radii, respectively. 
The effect of polydispersivity is to increase the effective 
transverse conductivity or effective axial shear modulus. 

In Fig. 7, we present the fourth-order bounds on the 
scaled effective axial shear modulus ,zJG, [ Eqs. ( 15) and 
(16)] as a function of the fiber volume fraction & for a 
glass-epoxy composite for which G, /G, = 22 for three mi- 
crogeometries of hard cylinders: monodispersed, bidis- 
persed with widely spaced cylinder radii, and polydispersed 
with widely spaced radii [ Eqs. (29)-(31)]. Also included 
are the corresponding second-order bounds.4V5 The fourth- 
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FIG. 6. Fourth-order lower bounds on the scaled effective transverse con- FIG. 8. Third-order bounds (see Ref. 6) on the scaled effective transverse 
ductivity a,,/~, for three microgeometries of hard cylinders, at a, /o‘, = 00; bulk modulus k,/k, vs the cylinder volume fraction qSL for glass-epoxy 
dotted curve, monodispersed hard cylinders using (29); dashed curve, bi- composites for which G,/G, = 22, G, /K, = 0.21, and G,/K, = 0.46; dot- 
dispersed hard cylinders with widely spaced cylinder radii using (30); solid ted curve, monodispersed hard cylinders using (29); dashed curve, bidis- 
curve, polydispersed hard cylinders with widely spaced cylinder radii using persed hard cylinders with widely separated cylinder radii using (30); solid 
(31). Also included is the Hashin (see Refs. Ref. 4 and 5) two-point bound curve, polydispersed hard cylinders with widely spaced radii using (3 1). 
(dot-dashed curve). The corresponding upper bounds are not shown since Includedare the Hashin (see Refs. 4 and 5) two-point bounds (dot-dashed 
they diverge to infinity in this limit. curve). 
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FIG. 7. Fourth-order bounds on the scaled axial shear modulus~,/G, for a 
glass-epoxy composite at G2/G, = 22. Results for three microgeometries 
are given; dotted curve, monodispersed hard cylinders using (29); dashed 
curve, bidispersed hard cylinders with widely spaced cylinder radii using 
(30); solid curve, polydispersed hard cylinders with widely spaced cylinder 
radii using (3 1). Also included are the Hashin (see Refs. 4 and 5) two-point 
bounds (dot-dashed curve). 
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FIG. 9. Third-order bounds on the scaled effective transverse shear modu- 
lus G, /G, for three microgeometries of hard cylinders for which 
G:/G, = 22, G, /K, = 0.21, and GL/KL = 0.46; dotted curve, monodis- 
persed hard cylinders using (38); dashed curve, bidispersed hard cylinders 
with widely separated cylinder radii using (39); solid curve, polydispersed 
hard cylinders with widely spaced radii using (40). Also included are the 
Hill-Hashin two-point bounds (see Refs. 4 and 5) (dot-dashed curve). 

order bounds are considerably tighter than the second-order 
bounds and will yield good estimates of,uu, over a wide range 
of fiber volume fractions dZ. 

In Fig. 8, we compare the third-order Silnutzer bounds’ 
on the scaled effective transverse bulk modulus k,/k, for a 
glass-epoxy composite with G,/G, = 22, G, /K, = 0.21, 
and G2/K, = 0.46 for three microgeometries: equisized 
hard cylinders, bidispersed hard cylinders with widely 
spaced radii, and polydispersed hard cylinders with widely 
spaced radii. The corresponding second-order bounds’.4 are 
presented for comparison. Note that the effect of polydisper- 
sivity is to shift both upper and lower bounds upward. 

Figure 9 presents third-order bounds’ on GJG, with 
the same material properties as in Fig. 8 for equisized hard 
disks, bidispersed hard disks with widely spaced radii, and 
polydispersed hard disks with widely spaced radii. Included 
for comparison are the corresponding second-order 

’ bounds.“.4 In the case of G,, it can be seen that the effect of 
polydispersivity is to decrease the effective property. 

As is clear from the results presented here, the effect of 
polydispersivity in cylinder size can either increase or de- 
crease the effective property. For dispersions of impenetra- 
ble cylinders in general, an increase in polydispersivity will 

increase the effective transverse conductivity u’e (or effective 
axial shear modulus ,LL<,) and the effective transverse bulk 
modulus k, relative to the monodispersed case. In the case of 
the effective transverse shear modulus G,, however, polydis- 
persivity acts to decrease the effective property relative to the 
monodisperse case. This behavior is in contrast to that noted 
for three dimensions, i.e., dispersions of hard spheres. Tho- 
vert et aZ.‘* found that the effect of increasing the polydisper- 
sivity of a distribution of hard spheres increased the effective 
transverse shear modulus G, relative to monodispersions in 
most cases. However, they noted that in certain instances 
when the difference in phase moduli G, and G, was small, 
the polydispersivity may lead to a decrease in the effective 
property G,. This difference between two and three dimen- 
sions is attributed to the different behavior of qz for cylin- 
ders relative to spheres noted in the previous section. 
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