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The purpose of the present article is to review recent advances made in the determination and 
calculation of improved bounds on the effective properties of random heterogeneous media 
that depend upon the microstructure via n-point correlation functions. New breakthroughs 
made in the quantitative characterization of the microstructure of heterogeneous materials 
are also reviewed. The following four different effective properties shall be studied: (i) 
effective conductivity tensor (which includes, by mathematical analogy, the dielectric constant, 
magnetic permeability, and diffusion coefficient); (ii) effective stiffness tensor; (iii) diffusion-
controlled trapping constant; and (iv) fluid permeability tensor. It shall be demonstrated that 
improved upper and lower bounds can provide a relatively sharp estimate of the effective 
property even when the bounds diverge from one another. Although this article reviews state-
of-the-art advances in the field, an attempt will be made to elucidate methods and principles for 
the nonexpert. 
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1. INTRODUCTION 

In the most general sense, a heterogeneous material consists of 
domains of different materials (phases) or the same material in dif
ferent states. This article focuses attention on the many instances 
in which the "microscopic" length scale (eg, the average domain 
size) is much larger than the molecular dimensions (so that the do
mains possess macroscopic properties) but much smaller than the 
characteristic length of the macroscopic sample. In such circum
stances, the heterogeneous material can be viewed as a continuum 
on the microscopic scale (thus is subject to classical analysis) and 
macroscopic or "effective" properties can be ascribed to it. Such 
heterogeneous media abound in nature and in man-made situations: 
Examples include aligned and chopped fiber composites, porous 
and cracked media, polycrystals, polymer blends, foams, fluidized 

Transmitted by Associate Editor George J Dvorak. 

beds, photographic emulsions, cermets, soils, rocks, blood, and an
imal and plant tissue. 

In light of the manifest technological importance of determin
ing the effective properties of heterogeneous media, a vast body of 
literature has evolved based upon direct measurement (either exper
imentally or computationally), semiempirical relations, and theoret
ical techniques (see Refs 1-12 and references therein for general 
reviews of the field). The time and cost to attack this problem by 
performing measurements on each material sample for all possible 
phase properties and microstructures is clearly prohibitive. Suc
cessful empirical relations tend to be more useful for correlating 
data rather than predicting them. Inasmuch as the effective prop
erty depends not only on the phase properties but is sensitive to 
the details of the microstructure (ie, phase volume fractions; ori
entations, sizes, shapes, and spatial distribution of the domains; 
connectivity of the phases, etc), it is natural to take the broader 
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approach of predicting the effective property from a knowledge of 
the microstructure. One can then relate changes in the mierostrue-
ture quantitatively to changes in the macroscopic property. This 
program, if successful, has important practical implications .such as 
providing a cost-effective means of optimally designing composite 
materials for a particular application and of determining the effec
tive properties of real materials from cross-sectional images of the 
sample. 

Unfortunately, in most situations, the details of the microstruc
ture are not completely known. This naturally leads one to attempt 
to estimate the effective properties from partial statistical informa
tion on the sample in the form of correlation functions and, in 
particular, to establish the range of possible values the effective 
properties can take given such limited morphological information, 
that is, to determine rigorous upper and lower bounds on the prop
erties. 

In this article advances made largely in the last 5 years on 
the determination and calculation of "improved" bounds on effec
tive properties of two-phase random heterogeneous media shall be 
reviewed. Improved bounds are by definition bounds that depend 
nontrivially upon two-point and higher-order correlation functions. 
They therefore contain information beyond that embodied in the 
volume fractions. In the instances of the conductivity and elastic 
moduli of isotropic two-phase media, for example, improved bounds 
are those that are more stringent than the well-known Hashin-
Shtrikman bounds [13,14). Although some improved bounds have 
been in existence for almost 30 years, they were not evaluated until 
recently because of the difficulty involved in ascertaining the sta
tistical correlation functions. Significant advances have been made 
recently in the quantitative characterization of the microstructure 
of two-phase disordered media, enabling investigators to compute 
rigorous bounds on the effective properties for the first time for 
nontrivial models and real materials. These new breakthroughs in 
the description of the morphology of heterogeneous media are also 
reviewed. Although this article reviews state-of-the-art advances in 
the field, an attempt will be made to elucidate methods and princi
ples for the nonexpert. 

A variety of phenomena governed by linear partial differential 
equations that are self-adjoint shall be considered. Specifically, im
proved bounds on the following effective properties will be studied: 

Effective conductivity tensor, <r, 
Effective stiffness tensor, C 
Diffusion-controlled trapping constant, 7 
Fluid permeability tensor, k 

Knowledge of the effective thermal (or electrical) conductivity ten
sor a, (and mathematically analogous properties described in the 
ensuing section) and/or the effective stiffness tensor € is of im
portance for a host of composites and porous media (eg, polymer 
composites, insulation, advanced reentry vehicles, fiber-reinforced 
materials, geologic media, etc). The trapping constant 7 is propor
tional to the rate at which a diffusing species gets trapped by static 
sinks (traps) when the process is diffusion-controlled. Diffusion-
controlled processes play an important role in combustion, polymer 
chain growth kinetics, heterogeneous catalysis, radiation damage, 
and cell metabolism. The flow of a fluid through a porous medium 
arises in a variety of technological problems such as oil and gas 
recovery, hydrology, gel chromatography, filtration, and biological 
membranes, to mention but a few examples. A key macroscopic 
property for describing slow viscous How through such media is the 
fluid permeability tensor k. 

Although previous reviews have discussed bounds to varying 
degrees [2-5,7,8,10,12|, heretofore none have been written which 
focus exclusively on improved bounds and microstructure character
ization, and which deal with the wide variety of effective properties 

described above. Indeed, a unified treatment of these various prob
lems (which, are not mathematically identical) will be emphasized 
throughout this article. 

For these classes of problems, the random microstructures are 
static, that is, do not evolve in time. Nonetheless, many of the 
methods described here can be generalized to dynamical situations 
(eg, flow of suspensions). Perfect bonding will be assumed across 
the two-phase interface. Again many of the techniques reviewed 
here can be extended to treat imperfect bonding. The limitation to 
two-phase media is also not restrictive since similar methods can be 
employed to study heterogeneous media with three or more phases. 
This does preclude any discussion of polyerystals. however, which 
can be considered to be a composite with an infinite number of 
anisotropic phases, each phase being defined by the erystallographic 
orientation of the individual grains. The reader is referred to the 
work of Avellaneda et al [15| and of Avellaneda and Milton [16| 
and references therein for a description of recent developments in 
the study of bounds on the effective properties of polyerystals. It 
should also be noted that variational principles, similar to ones 
described below, may be employed to study the problem of wave 
propagation in random media (see the review of Willis [8|). 

Bounds which incorporate mierostructural information up to 
the //-point level shall be referred to as "^-point" bounds. It will 
be demonstrated that improved //-point upper and lower bounds can 
be quite sharp and provide significant improvement over volume-
fraction dependent bounds for an appreciable range of phase prop
erties and volume fractions. For a certain range of parameters the 
bound widths can be very large and, as a result, have been deemed 
by some to have no utility under such conditions. To the contrary, 
it will be shown that one of the bounds can yield a good and some
times excellent estimate of the effective property, even when the 
reciprocal bound diverges from it. This last point has yet to be 
fully appreciated. 

Whenever possible, theoretical results will be compared to 
available experimental and computer-simulation data. In general, 
//-dimensional media shall be considered (d = 2 and d = 3 being 
the cases of greatest physical interest). The instance d = 2 models 
media whose phase boundaries are cylindrical surfaces, with gen
erators parallel to one axis. Examples of such media include long, 
oriented fibers (such as glass, carbon, graphite, and boron) in a 
polymer matrix. This classification also includes thin films [17[. 

Although this review foeusses on the study of the mi
crostructure and improved property bounds for heterogeneous me
dia, it should be mentioned that there are now available ef
ficient means of computing "exactly" effective properties for 
nontrivial model microstructures. For example, in the cases 
of diffusion in random media (eg, conductivity and trapping 
problems), Brownian motion simulation techniques which make use 
of first-passage time analysis are clearly superior to standard finite-
difference or finite-element techniques in terms of computational 
speed and accuracy [see, for example, Torquato and Kim (18] and 
references therein]. Indeed, such "computer experiments" will be 
employed in section 5 to access the accuracy of the rigorous bounds 
of the effective diffusion properties. 

2. LOCAL AND AVERAGED EQUATIONS 

The random medium is a domain of space V(OJ) € 'K (where 
the realization w is taken from some probability space) of volume 
V which is composed of two regions: the phase 1 region V of 
volume fraction 0 and the phase 2 region V, of volume fraction 
0,. Let OV denote the surface between V and V,. The medium is 
assumed to be .statistically homogeneous, ie, stationary. It is useful 
to introduce the characteristic function /(x; u>) of phase 1 defined by 
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7{x:o,'): l. s e v , M. 
0. x € V\ (w). 

(2.1) 

The local governing equations and the average constitutive re
lations associated with the conduction, elasticity, trapping, and flow 
problems are now described. 

2.1. Conductivity 

Let phases 1 and 2 have isotropic thermal conductivities cr and a 
respectively. The equations governing steady-state heat conduction 
at some local position xin the sample are the following: 

Local differential equation: 

V • Q(x) = 0 in V (i = 1,2). 

Q and T continuous across i)V . 

Local constitutive relation: 

Q(x) = -o-(x)V'Ax), 

(2.2) 

(2.3) 

(2.4) 

Table 1. The four different classes of effective media problems consid
ered here." 

Class 

A 

B 
C 

D 

General 
effective 
properlv 

K* 

thermal conductivity 
electrical conductivity 
dielectric constant 
magnetic permeability 
diffusion coefficient 
elastic moduli 
inverse trapping 
constant 
fluid permeability 

Generalized 
averaged 

(or applied) 
gradient 
< G > 

temperature gradient 
electric field 
electric field 
magnetic field 
concentration gradient 
strain field 
species production rate 

applied pressure gradient 

Generalized 
averaged 

flux 
< F > 

heat flux 
electric current 
electric displacement 
magnetic induction 
mass flux 
stress field 
concentration field 

velocity field 

" c ¥ ;.> x KC < Cs ..> . where K' is the general effective property, < V3 > is 
ttie averaged generalized gradient, and < F > is the averaged generalized flux. 
Class A and B problems share many common features and hence may be attacked 
using simitar techniques. Class C and D problems are similarly related to one 
another. 

where 
<T(X) = IT / ( X ) + <T,(1 - [{%)). (2.5) 

Here Q(x) is the local heat flux vector, Q t is the normal component 
of Qat the interface. 7*(x) is local the temperature field, and <r(x) is 
the local conductivity. 

The following ensemble-averaged constitutive relation defines 
the symmetric, second-rank effective conductivity tensor a, [2]: 

Averaged constitutive relation: 

<Q(x) -or, • < VT(x ) (2.6) 

Angular brackets denote an ensemble average. This refers to an 
average over an ensemble, that is, a collection of a large number 
of systems which are identical in their macroscopic details but are 
different in their microscopic details. (See section 4.1 for a quan
titative definition of an ensemble average for particulate systems.) 
Relation (2.6) has been derived using a two-scale method of homog-
enization by, among others, Papanicolaou and Varadhan |19]. The 
tensor a, describes the macroscopic behavior of the system in the 
limit as the ratio of the microscopic length scale to the macroscopic 
length scale Sends to zero. Macroscopic anisotropy (ie, the tensor 
nature of the effective conductivity) can arise out of asymmetry in 
the niicrostrttclure, ie, due to statistical anisotropy (eg, a distribution 
of oriented, nonspherical inclusions in a matrix, layered media such 
as sandstones and laminates, etc) [20]. Definition (2.6) applies also 
to instances in which the composite possesses anisotropic phases. 
As noted above, however, the present discussion treats isotropic 
phases only. 

It is well known that, for reasons of mathematical analogy, 
the general results given here for the effective thermal conductivity 
translate immediately into equivalent results for the electrical con
ductivity, dielectric constant, magnetic permeability, and diffusion 
coefficient. This class of problems is summarized in Table 1 along 
with the three other classes of problems examined here. 

2.2. Elastic Moduli 

Let phases 1 and 2 be isotropic with moduli A",, G{ and K1. G,, 
respectively, where K is the bulk modulus of phase / and G is 
the shear modulus of phase i. The equations governing the elastic-
behavior of linear composite materials at some position xare the 
basic relations of elastostatics: 

Local differential equation: 

T and u continuous across DV. 

Local constitutive relation: 

r(x) = A(x)tr[e(x)|U + 2G(x)e(x), 

where 

r(x) = i[Vo(x) + (Vu(x)) r], 

A(x) = A,/(x) + A1(l - 7(x)), 

G(x) = G, i(x) + G',(l - /(x)). 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Here the r(x) is the symmetric, second-rank local stress tensor, T is 
the interface traction, e(x) is the symmetric, second-rank local strain 
tensor, u(x) is the local displacement, A(x) and G(x) are the local 
Lame constants (K = X + 2G/d). where d is the space dimension), 
and Uis the unit dyadic. 

The following averaged equation defines the symmetric, 
fourth-rank effective stiffness tensor C : 

Averaged constitutive relation: 

< T ( X ) >= C :< e(x) > (2.13) 

Relation (2.13) has also been derived using the homogenization 
method; see, for example, the work of Sanchez-Palencia [211. As 
in the conduction problem, C describes the macroscopic behavior 
of the system in the limit that the scaled microscopic length tends 
to zero. For macroscopically isotropic media, C is expressible in 
terms of two independent effective parameters, namely, A( and Gr, 
that is, 

< r >= A tr < e > U + 2G < e >, (2.14) 

with 

K = A + 2-G 
' d ' 

(2.15) 

V • r(x) = 0 in V (»' = 1, 2); (2.7) 

For transversely isotropic fiber-reinforced two-phase materials, Hill 
[22J showed that it is only necessary to determine three of the 
five effective elastic moduli that characterize the composite since 
the other two can then be easily calculated. Here the effective 
transverse bulk modulus k , transverse shear modulus G , and axial 
shear modulus /< shall be considered. Hashin [23] demonstrated 
that the problem of determining /; is mathematically equivalent to 
determining the effective transverse thermal conductivity. 

It is noteworthy that the equations governing the slow viscous 
(low of an incompressible fluid are identical to those governing the 
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elastic behavior of an incompressible material [7|. Thus, the de
termination of (lie effective viscosity of a suspension of perfectly 
rigid particles in an incompressible lluid (under creeping (low con
ditions) is equivalent to the determination of the effective shear 
modulus of a composite composed of the same perfectly rigid par
ticles in an incompressible matrix for a specified arrangement of 
particles. However, in the flow problem at nondilute conditions 
(ie, when interparticle interactions are nonnegligible), the particle 
arrangement changes with time and is not known in advance; thus, 
the effective viscosity and shear modulus generally will not be the 
same [24]. In the lluid suspension instance, the bulk motion will 
greatly affect the spatial arrangement of particles, whereas in the 
elastic composite case the infinitesimal strain has a negligible ef
fect on the particle distribution. Nonetheless, the determination of 
the effective shear modulus for such a suspension can serve as a 
good approximation of the effective viscosity of the lluid suspen
sion at all particle concentrations [25). At dilute conditions, the 
effective behavior is necessarily isotropic and independent of par
ticle arrangement, and hence the effective viscosity and effective 
shear modulus are identical. 

2.3. Trapping constant 

Let phase 2 be the trap (sink) region and phase 1 be the trap-free 
region through which reactive particles may diffuse. The reactant 
diffuses with diffusion coefficient D in the trap-free region but is in
stantly absorbed on contact with any trap (concentration field c = 0 
on (TV). At steady state, the rate of production .s of the reactant (per 
unit trap-free volume), is exactly compensated by its removal by 
the traps. The equations governing this diffusion-controlled process 
at some local position x in the sample are the following: 

Local differential equation: 

Au(x) = - 1 in V,, (2.16) 

•</ = 0 on dV. (2.17) 

A denotes the Laplacian operator. Note that »(x) is a scaled con
centration field [see Eq. (2,19)]. It is important to emphasize that, 
unlike the previous two problems of conduction and elasticity, there 
is no local constitutive relation for the trapping problem. This is 
also true of the fluid permeability described below. Thus, the trap
ping and permeability problems are fundamentally different than 
the conduction and elasticity problems. 

Rubinstein and Torquato [26] have used a two-scale homoge-
nization method to derive the ensemble-averaged equation for the 
trapping constant 7: 

Averaged constitutive relation: 

.s = 7/J < c{x)I(\) >, (2.18) 

where 
c=D~xxu. (2.19) 

The trapping constant 7 is proportional to the average rate of trap
ping which is equal to -jD<t>v Note that 7 is a scalar quantity even 
for statistically anisotropic media [27]. The trapping constant 7, 
unlike a, or C(, describes the macroscopic behavior of the con
centration field divided by the second power of scaled microscopic 
length scale (ratio of microscopic to macroscopic length scales) in 
the limit that the scaled microscopic length scale tends to zero [26]. 

2.4. Fluid permeability 

Let phase 2 be the impermeable solid region and phase 1 be the 
pore or void region through which the slow viscous, incompressible 
fluid with viscosity // flows. The fluid motion satisfies the tensor 
Stokes equations [28]: 

Local differential equations: 

Aw(x) = Vp(x) - Li in V,, (2.20) 

V-w(x) = () in V,. (2.21) 

w(x) = 0 on OV. (2.22) 

Here w = [w ] is the rth component of the velocity field due to a 
unit pressure gradient in the jth direction, equal to the null tensor in 
V,, and p is the associated scaled vector pressure field. Again note 
that a local constitutive relation does not exist in the permeability 
problem. 

There have been many derivations of Darcy's law for the lluid 
permeability [29-31]. Rubinstein and Torquato [28] gave another 
derivation based upon an ensemble-average approach. They related 
the symmetric lluid permeability tensor kto the tensor was follows: 

V = — • V / v (2.23) 
/' 

where 
k = < w(x)A(x) > . (2.24) 

Here V is the average velocity and V/)(| is the applied pressure gra
dient. Macroscopic anisotropy (ie, the tensor nature of the perme
ability) again arises from statistical anisotropy of the microstructure. 
The fluid permeability tensor k, similar to 7, describes the macro
scopic behavior of the velocity held divided by the second power 
of the microscopic length scale in the limit that the length scale of 
the fine structure tends to zero [28-30], 

2.5. Relationship between trapping constant and fluid 
permeability 

The problems of diffusion-controlled reactions among perfectly ab
sorbing traps and of slow viscous flow through beds of particles 
share a common feature: Screening effects, at small solid volume 
fractions, lead to expansions for 7 and A: which are nonanalytie 
in the solid volume fraction ©̂  [32—35 ]. No one ever considered 
investigating the possibility of a deeper relationship between these 
two different physical parameters. Torquato [27J has very recently 
proved a theorem regarding a rigorous relation between 7 and the 
permeability tensor A:. 

Theorem: For an anisotropic porous medium of general 
topology having a fluid or trap-free region of porosity 4> [27], 

k^1 > 7U. (2.25) 

In other words, the inverse permeability tensor k (or fluid 
"resistance" tensor) minus the rotationally invariant trapping con
stant tensor 7U is positive-semidefinite. Thus, for isotropic media, 
A:-1 > 7, where k = A'U. [Note that according to definitions (2.18) 
and (2.24), both A: and 7""1 have dimensions of (length)2 .] 

Inequality (2.25) should prove to be a useful relation since in 
some cases one property may be easier to measure or predict than 
the other. How sharp is the inequality? It has been shown [27[ that 
there is a certain class of microgeometries in which the difference 
k - ' — 7U can have a zero eigenvalue, that is, the equality of (2.25) 
is achieved for one of the eigenvalues. Assume, without loss of 
generality, that the coordinate frame is aligned with the principal 
axes of the medium. An equal eigenvalue is achieved for transport 
in parallel channels (in the x1,-direction) of constant cross section 
dispersed throughout a solid or trap region with porosity 0y For 
example, for identical channels of arbitrary cross-sectional shape 
in three dimensions, it is easily shown that A',, = 7" ' = (i,/V,T, 
where c is a shape-dependent constant (eg, c. = 2 for circles, c = 
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5/3 for equilateral triangles, and c. = 1.78 for squares), and s is 
the specific surface (interface area per unit volume). The part of 
the above expression relating A; to 4>x and s is the well-known 
Kozeny equation which for flow in real isotropic porous media 
is a useful empirical relation (c = 5 models many porous media 
well) [1,6]. However, this relation is new in the context of the 
trapping problem primarily because previous investigators usually 
considered modeling a dispersed or disconnected trap phase. Note 
that since there is no flow in the other principal directions for this 
anisotropic geometry, that is, k^1 = k^2

l = oc, the bound of (2.25) 
is clearly satisfied for these eigenvalues. The observation that there 
are microstructures that achieve the equality of (2.25) for one of 
the eigenvalues is new and may have important implications for 
simulating How through porous media [27]. 

Apparently, for porous media in which the solid phase is com
posed of distributions of particles, the sharper bound 

KJk ^ ll% (2-26> 
exists [27, 36], where ktl and 7 are the infinitely dilute limits of 
k and 7, respectively. Torquato [36] has conjectured the inequality 
(2.26) based upon a number of known results for the flow and 
trapping problems. It was shown in Ref 36 that bound (2.26) can 
be quite sharp for low to moderate values of </>,. 

2.6. Remarks 

In order to determine the effective conductivity tensor a,, effective 
stiffness tensor C , trapping constant 7 and fluid permeability ten
sor k, one must evaluate ensemble averages of the local fields as 
defined by relations (2.6), (2.13), (2.18), and (2.23), respectively. 
Except for a few special idealized random microstructures, such 
evaluations require knowledge of an infinite set of statistical corre
lation functions, which is generally never known and thus an exact 
analytical solution for the effective property for random media is 
generally not possible. 

In order to underscore this last point it is useful to briefly re
view some analytical studies for the simplest of the problems con
sidered here, i.e., the case of conduction. Brown [37], in a pioneer
ing paper, showed the precise connection between the effective con
ductivity of any niacroscopically isotropic three-dimensional (<7 = 3) 
two-phase medium (ie, a, = a Li) and the details of the microstruc-
ture by developing an exact series representation for the former 
explicitly in terms of functionals of the set of /(-point probability 
functions 5(,)(x1 x ). The latter quantity gives the probability 
of finding n points at positions \x,... x;j in phase i. The S(!) are de
scribed in full detail in Section 5. Thirty years later, Torquato [38] 
generalized this formalism for (/-dimensional isotropic media. More 
recently, Sen and Torquato [20] obtained corresponding series rep
resentations of the effective conductivity tensor for (/-dimensional 
anisotropic media of arbitrary topology. It is useful to present some 
of their results [20] for this discussion and for later use; they found 

{(i&fio,, - ( ^ . U n V , + ( ( i - DcTj.U] 

= ©,/^U-- ^ T V ' / f , %i:h (2.27) 

where 
a — a 

J ' J : / : /n 00\ 

and the symmetric, second-rank tensor coefficients A '̂1 (which gen
erally do not possess common principal axes) are multidimensional 
integrals over the set of /(-point probability functions S'J" 5*''. 
(Note that the indices of (2.28) do not imply fi is a tensor quan
tity; /i( is a scalar quantity involving the phase conductivities ar) 
Using a shorthand notation, 

A<" = A^'tS,". S]'% (2.29) 

The explicit version of (2.29) is given in Ref 20. The coefficient A!," 
is given explicitly in section 3.1.2. (For niacroscopically isotropic 
media, A\" = 0, thus A1,'' is the first nonzero parameter in such 
instances. Consequently, the lowest level of anisotropic informa
tion enters through the two-point parameter A!,".) The methodology 
leading to the n-point tensor integrals A(,) of (2.29) is free of the 
well-known conditional-convergence problems which arise in re
lated perturbation expansions [2,8]. 

For the subsequent discussion of bounds, it is useful to expand 
07 in powers of the scalar 

(o'/ - a ) 
* ' , • • • = - J~, i ¥ j (230) 

.1 

so that 

— = U + <A.UA..+ V a ^ " . ijj (2.31) 
a 1 • J L—1 " './ 

Sen and Torquato [20] used (2.27) to relate the ,V" to the a1/'. The 
expression explicitly relating A1;" to a," is given in section 3.1.2. 

It is worth noting in passing other expansion techniques for 
a, and expansion techniques for the three other properties examined 
here. When one of the phases consists of well-defined inclusions 
(eg, spheres, ellipsoids, cylinders, etc), one may obtain so-called 
"cluster" expansions for cr, in which successive terms take into ac
count interactions between successively larger clusters of particles 
[39-42]. The coefficients of this expansion are integrals over the 
solution to the //-particle heat conduction boundary-value problem 
weighted with the /(.-particle probability density function p (de
fined in section 4). Since the analytical solutions for the conduc
tion and structure problem are already not easily obtainable at the 
two-particle level, cluster expansions can only yield information 
about dilute systems. For the elastic moduli of random composites, 
perturbation expansions [2,8,43] of the type (2.27) and cluster ex
pansions 13,7,8,24] have been obtained. In the cases of the trapping 
constant and fluid permeability, expansions like (2.27) of course do 
not exist, but low-density expansions for transport around beds of 
random particles have been derived [32—35]. 

The remarks made above enable one to draw two important 
general conclusions about any effective parameter: 

1. The effective property is indeed sensitive to the details of 
the microstructure by virtue of its dependence on an infinite 
set of statistical correlation functions. 

2. An exact solution for the effective property of a random 
medium is generally unobtainable since presently available 
knowledge and technology can not generally yield five-point 
and higher-order correlation functions (see discussions of 
sections 4 and 5). 

However, as shall be shown in the subsequent sections, bounds pro
vide a rigorous as well as practical means of estimating the effective 
properties by utilizing limited but nontrivial statistical information 
on the heterogeneous medium. 

3. BOUNDING PRINCIPLES AND IMPROVED 
BOUNDS 

Inspection of the local and averaged equations for the conduction 
and elasticity problems reveals the close mathematical similarities 
between the two problems. Thus, the same techniques can be used 
to derive bounds on the effective conductivity tensor cr, and the 
effective stiffness tensor C,.. Several methods have been developed 
to derive bounds on these effective parameters. The oldest and 
most well-known technique is the use of variational principles and 
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was largely developed by Hashin and Shtrikman [13,14], Prager 
[44], and Beran [45]. There are two types of variational principles: 
classical variational principles (ie, energy minimization principles) 
12,44,451 and Hashin-Shtrikman principles [13, 14]. The varia
tional method, described in detail below, has been employed by 
numerous investigators [23,46-64]. The analytic method, initiated 
by Bergman [65,661 for a, and by Kantor and Bergman [67) for 
C(, exploits the analytic properties of these effective properties as 
a function of the phase properties; it has also been applied by oth
ers |68-711. One of the advantages of the analytic method is that 
it is easily extended to produce bounds on a, when a, and <r, 
are complex [66,68-70]. The method of Patle approximants devel
oped by Milton and Golden [72] is closely related to the analytic 
method as a consequence of the fact that the conductivity tensor a, 
is a Stieltjes function. The translation method and closely related 
compensated-compactness technique has been initiated by Tartar 
and Murat [73-75] and by Lurie and Cherkaev (76,771 to bound a, 
and C(. This method was subsequently applied by Franc fort and 
Murat'[78], Milton |64], Kohn and Milton (59], and others. Finally, 
the field equation recursion method was developed by Milton [79]. 
The reader is referred to Milton [64,80,81] for a detailed review of 
the last few methods. 

For the trapping and flow problems only variational principles 
are available to derive bounds on the trapping constant 7 and fluid 
permeability tensor k. Prager and his co-workers [82-84) pioneered 
the use of variational principles to bound these properties. Since 
these initial papers, variational principles have been applied to those 
problems by a number of investigators [26,28,85-89]. In all cases 
the bounds are obtained from energy minimization principles. 

In light of the fact that variational principles, specifically, en
ergy minimization principles, represent the only method which can 
be utilized to derive bounds on all four properties studied here, en
ergy minimization principles are described in some detail below. 
In each case, various specific improved bounds which have been 
obtained are explicitly stated. 

3.1. Conductivity 

The classical variational principles for the effective conductivity 
tensor a, are as follows: 

Minimum potential energy: 

< v r > -cr, • < v r > < < E • aE >, VE e Ar. (3.i) 

,4,. = {stationary ®(x); V x E = 0. < E >=< V7" >} . (3.2) 

In words, the trial field E must be irrotational and the ensemble 
average of E must equal the ensemble average of the actual tem
perature gradient VT |cf. (2.2)-(2.4)[. Thus, any E satisfying these 
admissibility conditions gives an upper bound on a, when substi
tuted into the right-hand side of (3.1). 

Minimum complementary energy: 

Q • C , Q : < j - r r ' j > , vje/4,_. (3.3) 

A = {stationary J(x); V • J = 0, < ,1 >=< Q > } . (3.4) 

Here as in (3.1), a(\) is the local conductivity defined by (2.4). 
The variational principle (3.3) yields a lower bound on cr, when the 
trial heat flux vector J meets the admissiblity conditions of (3.4). 
These variational principles are quite old; see, for example, Beran 
|2| and references therein. The proofs of (3.1) and (3.3) have been 
given by Milton and McPhedran ]90] among others. 

3.1.1. Macroscopically isotropic media 

The first and one of the simplest conductivity bounds were ob
tained by Wciner [911, showing that ai always lies between the 
weighted arithmetic and harmonic means of the phases, that is, 

< <r~ >"'< a < < a >. These one-point bounds are easily 
generated from the variational principles (3.1) and (3.3) by taking 
the admissible temperature gradient and heat flux to be constant 
vectors and correspond exactly to the eigenvalues of anisotropic 
composites composed of alternating slabs parallel or perpendicu
lar to the applied field. Using variational principles which involve 
the polarization fields, Hashin and Shtrikman [13] and Hashin [23] 
obtained the best possible bounds on a for the cases d = 3 and 
</ = 2, respectively, given only volume-fraction information (</>.). 
These bounds actually depend upon the two-point probability func
tion Si" in a trivial manner and thus are two-point bounds. They are 
exact through second-order in the difference (a. -a.), that is, they 

give the coefficients aj'' and a1,'1 of (2.31). These bounds are the 
best possible bounds given <•/>. since they are exactly realized for 
certain space-filling composite-sphere (cylinder) assemblages de
scribed below. Since the Hashin-Shtrikman and Hashin bounds are 
special cases of three-point bounds about to be described they are 
not given here explicitly. 

Using trial fields based upon the first few terms of the per
turbation expansion of the fields and the principles (3.1) and (3.3), 
Beran [45] derived three-point bounds on a for d = 3 which are 
exact through third-order in (a. - a.). Torquato [92] and Mil
ton [931 independently showed that the three-point Beran bounds, 
which involve sixfold integrals of certain three-point correlation 
functions, can be expressed terms of volume fractions (j>j and a sin
gle three-fold integral over S^" defined below (see also Torquato 
and Stell [94]). Silnutzer (53| obtained two-dimensional analogs of 
the Beran bounds for transversely isotropic fiber-reinforced materi
als which Schulgasser (951 and Milton [96] simplified in a similar 
fashion. For d = 2 and 3, these three-point bounds are given by 

<J[ < v, < < ; (3.5) 

V 
1+|(// - l)(l+0)2)-C2]/J2 |+(rf- !)[(</- l )0,-C2]^2, 

\-m^^-(d-\))ft1,+{\4>1-(d~\)(l>.K1-{d-\)<t>^3l[ 
(3.6) 

' u _ 
a, 
l +[(rf- l)(0,-Ki)--i] /J |2+^-l){t(rf- 1)0, -<?>,K|-<P|}/J|2 

1H l + * , - ( r f - l K ^ p + l ® , M d - O s Y l / ^ 
(3.7) 

where jj depends only on the phase conductivities as given by 
(2.28). Note that (3.5) depends not only on (p. but on a three-point 
microstructural parameter (2, = 1 — CP which is an integral over the 
n-point probability functions Si2).S^} and Sf} defined in section 
2.6. For statistically homogeneous media, the Sl,} are functions of 
the relative positions of the n points and so, for example, 5'j'' = 
<t>.. The three-point parameter £, in two and three dimensions is 
respectively given by 

,>= ds 

dO cos(26») sr'ir, s, t) 
AYV)S'n«) 

(3.8) 

and 

<;, 2(1>,<b~, 

x / d(c,of,0)P1(cotiO)\S';'(i\s.t) 
S\2)(r)S?\s) 

(3.9) 

Downloaded From: http://appliedmechanicsreviews.asmedigitalcollection.asme.org/ on 09/17/2013 Terms of Use: http://asme.org/terms



Appl Mech Rev vol 44, no 2, February 1991 Torquato: Random heterogeneous media 43 

where /', is the Legendre polynomial of order 2 and 6 is the angle 
opposite the side of the triangle of length I:. For isotropic media, the 
S'" depend upon the relative distances of the n points. Specifically, 
S'"(r, A1, f) is the probability of finding in phase 2 the vertices of 
a triangle with sides of lengths r, a, and f, when randomly thrown 
into the sample. S\~'(r) is the probability of finding in phase 2 the 
endpoints of a line segment of length r. That (," must lie in the 
closed interval [0,1 J implies that the bounds (3.5) always improve 
upon the two-point Hashin-Shtrikman or Hashin bounds. When 
(,, = 0, the bounds (3.5) coincide and equal the two-point Hashin-
Shtrikman or Hashin lower bound (for a2 > <r ). When (, = 1, 
the bounds (3.5) coincide the equal the aforementioned two-point 
upper bound (for <r, > rr ). It is important to emphasize thai the 
three-point bounds (3.5) are valid for any isotropic microgeometry. 

In eases in which one of the phases is composed of well-
defined inclusions, it is desired to derive bounds from (3.1) and 
(3.3) that incorporate such specific microstructural information. The 
so-called nth-order "cluster" bounds of Torquato (581 accomplish 
this by utilizing admissible fields which exactly account for inter
actions between n inclusions. (This class of bounds is now some
times referred to as "multiple-scattering" bounds—see discussion 
below on bounds on the trapping constant and fluid permeability.) 
Such bounds are therefore exact through nth-order in the inclusion 
volume fraction. Weissberg [49) actually was the first to employ 
cluster or multiple-scattering bounds and, in particular, derived such 
bounds for a system of perfectly insulating ((7,/CT. = 0), fully pen
etrable spheres of equal radius. Fully penetrable spheres refers 
to a distribution of spheres in which sphere centers are randomly 
centered (ie, Poisson distributed) and thus completely uncorrelated. 
(This model is discussed fully in section 4.) DeVera and Strieder 
[55) extended Weissberg's results for this model to the entire range 
of ajav All of these bounds are special cases of the general 
first-order multiple-scattering bound derived by Torquato [58] for 
distributions of equi-sized spheres with an arbitrary degree of im
penetrability (see section 4) and in compact notation are given by 

af[(7vav(p-,.GrG}i\ < (J, < a{
l
>,)[arar(l)2,GrGJ. (3.10) 

where the point/ry-partitie function G (x;r '0 is the (n = 1 + q) 
correlation associated with finding a point at xexterior to the spheres 
and a configuration of q spheres with centers at r'1 = r, r . 
(Note that Ref 58 uses slightly different notation for Gn.) The first-
order cluster bounds (3.10) are clearly three-point bounds as they 
involve Gv In general, mh-order cluster bounds are (ti + 2)-point 
bounds. Interestingly, Beasley and Torquato [97] showed that for 
the instance of totally impenetrable spheres, the multiple-scattering 
bound (3.10) is identical to the three-point Beran bounds (3.5). As 
described in section 5, the multiple-scattering bound (3.10) is of 
a functional form which is easier to calculate from Monte Carlo 
computer simulations from than the Beran bounds. 

Milton [98] has derived a three-point lower bound on <r , for 
the case (/ = 3 and <r, > af, which improves upon the Beran lower 
bound: 

of1 1 +(1 +2c£,)/V„ - 2(0.Q - 0,)/);, 
L __ v • 2 A 2 1 v • i ^2 ' 2'' 21 /-i i t \ 

a, ~ 1 +«,rf2i - (26^ + 0,)'^ 

This actually is the best possible lower bound on a given <j> and (2, 
since it is exactly realized for space-filling doubly-coated composite 
spheres (see Fig 1 for a two-dimensional analog). 

Milton [69] has formally derived /(-point bounds on <r for 
d = 2 and d = 3 which are exact through mh-order in (a. — a.). For 
even values of n, the n-point bounds ol Milton are exactly realized 
for space-filling multicoated cylinders (disks in two dimensions) 
where each multicoated cylinder (disk) has n/2 coatings and is 
similar, within a scale factor, to any other multicoated cylinder in 
the composite. Since the coated cylinders fill all space, there is a 

FIG 1. The double-coated cylinder geometry associated with the four-
point Milton [69] lower bound (3.13) for a2 > a\. Here phases 1 
and 2 are the white and black pttases, respectively. The ratio of the 
core volume to the core plus inner shell is ©1(2- The analogous sphere 
geometry ((/ = 3) corresponds to the three-point Milton [69] lower bound 
(3.11). The reciprocal four-point tipper bound (3.14) for d = 2 and 
(72 > ""1 is realized for this geometry with the phases interchanged. 

distribution in their sizes ranging to the infinitesimally small. In 
the case of n = 4, explicit representations of these bounds may be 
written for a2 > a] in the following form [38]: 

<?f < V, < <7?:\ (3-12) 

?JL=
 l ~l(d l)<j>- ~ v ^ i + ( 1 ~d M^+^vc,!/^ 

(3.13) 

"dL= ' - K ' * - 1)^, -T | /C, 1/̂ ,2+ (' - ^ ) [ ^ C | + 0 I 7 I / C , ] 4 
<r, ! - ( < * , + 7 1 / C 1 ] / ^ 1 , + [ < Z ' , ( l - ' 0 C 1 + v i I 7 1 / C 1 ] ^ , 

'(3.14) 
and 

7, - 7 2 = (rf-2)(C2-C,)- (3.15) 

Note that the four-point bounds (3.12) depend upon <r>;, C,. and a 
four-point parameter 7 [defined in Ref 38 and related to A '̂1 of 
(2.29)], which depends upon S[n, 5'^", S^\ and 5j° . The geome
tries corresponding to the four-point bounds are depicted in Fig 1 
for the case d = 2. When the radius of the inner cylinder goes to 
zero, Q —> 0 (?' = 1,2), and one recovers the singly-coated cylinder 
assemblages corresponding to the Hashin [70] two-point bounds. 
Elsewhere Milton [99] has shown that any effective conductivity 
tensor function for d = 2 is realized by some sequentially layered 
laminate material and by some hierarchical elliptical cylinder as
semblage. 

Keller [100], Dykhne [100], and Mendelson [102] proved that 
the effective conductivity ar = (T(.((T, , <r,) for (7 = 2 has the follow
ing property: 

(Tf((J (T,)(T ( ( 7 , . O",) = fT|(T,. ( 3 . 1 6 ) 

Milton employed (3.16) to show that all even-order coefficients of 
the expansion of a( in powers of at — a Xi ^ j) could be expressed 
in terms of ail lower-order coefficients for the case d = 2. This has 
been shown to imply that 7. = 0 for d = 2 [38]. Note that for d = 3, 
phase-interchange relations are inequalities [15,69,103]. 

Torquato [38] has observed that the formula 

- = ! -±2^J^2L. (3.17) 

yields an accurate approximate expression for the effective con
ductivity of three-dimensional dispersions, provided that the mean 
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cluster size of the dispersed phase (phase 2) is much smaller than 
the macroscopic length scale. This relation is mentioned here be
cause it is, for IT > a Milton's four-point lower bound, (3.13), 
with 7, set equal to zero. It also can be obtained by truncating the 
expansion (2.27) after third-order terms. 

3.1.2. Macroscopically anisotropic media 

In the case of macroscopically anisotropic media, correlation func
tion independent extensions of the Hashin-Shtrikman isotropic 
bounds have been obtained by various workers—see, for example, 
Murat and Tartar [74-75], Lurie and Cherkaev [76,77], and Milton 
and Kohn [63 J. Since the main concern of this review is improved 
bounds, that is, correlation function dependent bounds, the reader 
is referred to the above cite references for further details. 

Hori [104,105] developed perturbation expansions and bounds 
for the effective conductivity tensor a, in the case of macroscopi
cally anisotropic media. The n-point tensor microstructural parame
ters involved unfortunately are, in general, conditionally convergent 
integrals and involve derivatives of the correlation functions rather 
than the correlation functions themselves. Willis [54] derived two-
point bounds on af. for composites containing aligned, spheroidal 
inclusions. More recently, Milton [79] employed the elegant and 
powerful field equation recursion method to obtain an infinite hi
erarchy of bounds on the effective conductivity tensor a,. His 
bounds are given in terms of symmetric, positive-semidefinite matri
ces called "weights" and "normalization factors" that depend upon 
the microgeometry. However, Milton did not express these ma
trices explicitly in terms of integrals over the «-point correlation 
functions. Sen and Torquato [20] subsequently derived a new per
turbation expansion for 07 of d-dimensional two-phase media of 
arbitrary topology which was given earlier by (2.27). The ».-point 
tensors A10 of that expansion were shown to be related to Milton's 
weights and normalization factors, and thus the latter quantities 
have been given in terms of integrals over the SU) for the first time 
[20]. Sen and Torquato then derived, using the method of Pade 
approximants and expansion (2.31), new n-point bounds on a, for 
d-dimensional media of arbitrary topology that depend upon the 71-
point parameters Aj" or a1'* [defined by (2.29)] for n = 2, 3 and 4, 
and contain, as special cases, the isotropic Hashin-Shtrikman and 
Hashin two-point bounds [13,23], isotropic Beran-Silnutzer three-
point bounds [45,53], and the isotropic Milton four-point bounds 
[69]. 

The Sen-Torquato two-point bounds are given for an > a 
by 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

<T("' < a, < J2> 

U + <t>,U — — a . , 
(p7 ~ K 

U + ( ( i , U - — a,)6 

-a,* , , 

U — — a,r) | 3 

where 

a, = a1," = ai,2'= -</>, 0 , A ; , 

A ; = u A, 
0.0, 2 

A, = A'," = A f 

d 

2 7 T ( f / - 1) 
dx 

xxd — x~U 
[ i f (x) - 0;] : (3.23) 

and (V is given by (2.28). The subscript f on the integral of (3.23) 
indicates that it is to be carried out with the exclusion of an in-
finitesimally small d-dimensional sphere centered at x. The nota-

are positive-semidefinite. It has been shown that the conductiv
ity functions (3.19) and (3.20) are realized for a variety of models 
[69,74,99,106], one of which is an assemblage of singly-coated, 
oriented d-dimensional ellipsoids, that is, a generalization of the 
Hashin-Shtrikman singly-coated sphere assemblage. 

The two-point parameters A,, a.,, and A* given above have 
been shown [20] to possess general properties worth noting. First, 
for macroscopically isotropic media, 

: O, 3, = 
d 

A! = 

Second, for general anisotropic media, 

tr(A,) = 0, tr(a,) = -<i>,<i>T, tr(A*) = 1. 

(3.24) 

(3.25) 

Third, the two-point parameters are bounded from above and below 
as follows: 

- (d - \)4>x4>2 < (A2)H. < <i>ltpv (3.26) 

- 4>x4>1 < (a2)kk < 0, 

o<(A;)kk< 1, 

(3.27) 

(3.28) 

where Xkk (k = 1 , . . . . d) denote the diagonal elements of a tensor 
X. Note that the correlation-function independent Milton-Kohn 
bounds [63] are obtained essentially by extremizing over (3.26)-
(3.28). 

As noted earlier, the two-point parameters are related to Mil
ton's |79] first normalization factor N r In terms of the "polariza
tion" A*, this relation is given by 

A,* = (U + N,)~ (3.29) 

Thus, (3.29) along with (3.21)—(3.23) gives N, explicitly in terms 
of S j" . Milton [79] gave the general properties of all of the nor
malization factors and weights. 

Explicit representations of the Sen-Torquato three-point and 
four-point bounds on a, as well as the general properties of the 
A^" are given elsewhere [20,107]. 

3.2. Elastic moduli 

As in the conduction problem, classical variational principles for 
the effective stiffness tensor C (of a two-phase composite are stated 
here explicitly. 

Minimum potential energy: 

< e > : C :< e > < < e : C : e > . V e e B (3.30) 

Dv = {stationary e(x), satisfying compatibility; < e > = < e > } . 
(3.31) 

The last condition of (3.31) states that the average of the trial strain 
field e(x) must equal the average of the actual strain field e(x) [cf 
(2.10)]. Thus, (3.30) yields an upper bound on C ( . 

Minimum complementary energy: 

< T >: CT1 :< T > > < s : C" : s > , V s G / 3 , . (3.32) 

D! = { stationary s(x) ; V = 0 , < s > = < T > } . (3.33) 

tion of (3.18) signifies that the tensors (af and (<7, 

The last condition of (3.33) requires that the increase trial stress 
field s equal the average of the actual stress field r [cf (2.9)]. 
Relation (3.32) along with an admissible stress field s(x) yields a 
lower bound on C . The variational principles, as in the conduction 
case, are old; see, for example, Ref 2 and references therein. The 
proofs of these theorems follow in precisely the same manner as 
that for the conduction problem—see Ref 90, for example. 
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3.2.1. Macroscopically isotropic media 

In analogy with the conduction problem, the first and one of the 
simplest elastic moduli bounds on the effective bulk modulus A" 
and effective shear modulus Gt of three-dimensional isotropic me
dia were the weighted arithmetic and harmonic means of the elastic 
moduli proved respectively by Hill (46) and Paul [47]. These one-
point bounds, which have come to be known as the Voight-Reuss 
bounds, are easily generated from the variational principles (3.30) 
and (3.32) by taking the admissible strain and stress lields to be 
constant tensors. 

Employing variational principles which involve the polariza
tion lields, Hashin and Shtrikman (HS) [14| for d = 3 obtained the 
best possible bounds on A" and G given only volume fraction in
formation. These bounds were subsequently generalized by Walpole 
[51]. Hill [22] and Hashin [48] obtained corresponding bounds on 
the effective transverse bulk modulus k and effective transverse 
shear modulus G'( for transversely isotropic liber-reinforced two-
phase materials in which 

G 
k = A' + - i - (3.34) 

is the transverse bulk modulus of phase ; for transverse compres
sion without axial extension. All of the aforementioned two-point 
bounds [14,22,48,51] are exact through second order in the differ
ence of the respective phase moduli and are not stated here ex
plicitly since they are special cases of the three-point bounds de
scribed below. The bounds on 1\ and k are achieved for the same 
composite-sphere and cylinder assemblages described already for 
the conduction problem. The corresponding shear moduli bounds 
are, however, not realized by such assemblages. Recently, Milton 
[108], Norris [109|, and Lurie and Cherkaev [110], independently 
showed that the Hashin-Shtrikman bounds on G were attained by 
hierarchical laminates, thus demonstrating, for the first time, their 
optimality. In other independent work, Francfort and Murat [78) 
found a realization of these bounds using laminates of finite rank. 

Employing the principles (3.30) and (3.32) and admissible 
fields based upon the first few terms of the perturbation expression 
of the fields, Beran and Molyneux [50] and McCoy [52] derived 
three-point bounds on A'( and G for d = 3. Silnutzer [53] ob
tained two-dimensional analogs of these bounds on A" and G . 
Milton [93,96) subsequently simplified each of the above three-
point bounds, showing that the bounds on the effective bulk moduli 
for </ = 2 or 3 can be expressed in terms of ©, and the three-point 
parameter C, defined by (3.8) and (3.9) and that the bounds on the 
effective shear moduli for d = 2 or 3 can be expressed in terms of 
©,, (,, and another three-point parameter //,. The microstructural 
parameter A/, for il = 2 and d = 3 is respectively given by 

Before presenting the three-point bounds, it is useful to intro
duce some shorthand notation for any arbitrary properly b: 

where, as before, 

and 

< b > = b^Q + 6,0,, 

< b > = / ^ p , + ?',0,, 

< b >. = b^. +/>,(". 

<b>„ = V/.+'vv 

o = i - c2 

>h >h 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

T 
effecti 

'he simplified forms of the Silnutzer three-point bounds on the 
ve transverse bulk and shear moduli are respectively given by 

A:, < A', < Jk|. . (3.43) 

and 

(-): 

< \/k 

Af = 

0 , 0 , ( 1 / / A - 1/A',)2 

< 1/A: > + < 1/G >. 

0 o,(A:, - k f 
< k > i------= ! 

</,:> + < G >.. 

c f < c < G;3). 

< « / 

G'1-" -
Lr f . 

r . . 0 , 0 , ( 1 / G 2 - 1/G,)2 

< 1 / G > + E 

" 0 , 0 2 ( G 2 - G , ) 2 ' 

< G > + 0 

[2 < A.->c< G > 2 + < A->2< G >n 

- i 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(1 AQ\ 
< k + 2G > 2 

H = 2 < 1/A: > . + < 1/G > . (3.50) 

As noted in section 2.2, the effective axial shear modulus /i( is 
equivalent to detennining the effective transverse conductivity <x . 
Thus, the bounds described above for a are also bounds on // (. 

The simplified form of the three-point Beran-Molyneux 
bounds on the effective bulk modulus K for (/ = 3 are given 
by 

Kf < A < A | A (3.51) 

and 

dr / r/.s 

x / dO cos(46/) s?H,,.n-^^^ (3.35) 

Rf = < 1/A' > -

A'" 

4 0 I 0 1 ( 1 / A 1 - 1/A,)2 

< A' > -

4 < 1/A > + 3 < 1/G > ( 

30,<-/-,(A\- K,)1 

3 < A' > +4 < G > . 

(3.52) 

(3.53) 

'/, 
50, 150 

21 70,02 J() 

xPAcosO) 

<!>' I ds , 
— / d(cosO) 

S';\r.s.l)-
,Sf,(r)5t'(-'.') 

(3.36) 

where P is the Legendre polynomial of order 4. The parameter 
i)^ lies in the closed interval [0,11, as does O- Milton and Phan-
Thien [56[ obtained three-point bounds on the shear modulus G( 

for (/ = 3 with the same microstructural information but which are 
sharper than the McCoy bounds. 

The three-point Miltoii-Phan-Thien bounds on the effective shear 
modulus G for d = 3 tire given by 

Gf = 

G'l' < G < G«3) 

G 

G > 

6 0 , 0 2 ( G 2 - G , ) 2 

_6< G> + EZl 

6 0 , 0 , ( G 2 - G,)2 

6 <~GrT+ (-) 

(3.54) 

(3.55) 

(3.56) 
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where 

5<a< 
< 

3 < G 
-

6 1 \ / n 

1,^G), + \G 
/ 128 9 9 \ 

> < 6/\ + 76' > . 

> . < * • * > . . 

\ 6' / „ 

- 5 < 6 > ; 

2 < A' + 5 < G > 

(3.57) 

(3.58) 

Note that the effective shear modulus for il = 2 and d = 3 are both 
denoted by Gt |cf (3.46) and (3.54)]. 

Milton and Phan-Thien [56] also derived four-point bounds 
on the elastic moduli of three-dimensional two-phase composites. 
These results are not explicitly given here, however. 

3,2,2. Macroscopically anisotropic media 

Correlation function independent extensions of the Hashin-
Shtrikman elasticity bounds to anisotropic composites were first 
obtained by Kantor and Bergman [67] using the analytic-function 
method and by Franc fort and Murat [781 via the translation method. 
Milton and Kohn (63] obtained such elasticity bounds that improve 
upon these earlier results and are shown to be attained by sequen
tially layered laminate materials. 

Willis [8,54] derived two-point bounds on Ci for n-phase com
posites using anisotropic generalizations of the Hashin-Shtrikman 
variational principles. These bounds are dependent upon the two-
point probability function S[" and, for two-phase materials, are the 
elasticity analogs of the Sen-Torquato two-point bounds on the ef
fective conductivity tensor given by (3.18)—(3.20). The bounds of 
Willis are considerably more involved then the former bounds and 
hence are not given here. The reader is referred to Willis [8,54] for 
explicit representations of these two-point bounds. 

3.3, Trapping constant 

Reek and Prager [83] and Doi [85] were the first to employ varia
tional principles to derive bounds on the diffusion-controlled trap
ping constant 7. Subsequently, Rubinstein and Torquato [26) 
derived general variational principles from which one can derive 
all previous bounds and generate new classes of bounds. Their 
variational principles, based upon minimizing energy fimetionals, 
are now summarized. 

Variational upper hound: 

< Vf • Vvl 
Vc /), (3.59) 

D = {stationary n(x); v = 0 on i)V. < vl >=< 11I >} . (3.60) 

The last condition of (3.10) states that the average scaled trial con
centration field c in Vt must equal the average of the actual scaled 
concentration field 11 in V given by (2.16). 

Variational lower bound: 

Vc- Vc / >" D, 

D, { stationary e(x); Ac = - 1 in V, 

(3.61) 

(3.62) 

Rubinstein and Torquato also gave volume-average versions of these 
bounds. The proofs of (3.59) and (3.61) were given by them. 

Rubinstein and Torquato [26] and Torquato and Rubinstein 
|88|, using the principles (3.59) and (3.61), derived four differ
ent classes of rigorous bounds on the diffusion-controlled trapping 
constant 7: (i) two-point interfacial-surface lower bound; (ii) three-
point multiple-scattering lower bound; (iii) two-point void lower 
bound; and (iv) two-point security-spheres upper bound. These 
bounds are given in terms of relatively simple functionals of the 

FIG 2. Schematic representation of the two-point correlation functions 
,S'V'(X|,Xj) = FVV(X|.X2), /'"svfXi.Xi) and Fss(X|.Xi) defined in the 
text. For isotropic media they depend upon [he relative distance between 
the two points. These functions are general, applying to particulate 
media (as shown here) as well as to nonpartieulate media. 

correlation functions involved and therefore are worth stating ex
plicitly. 

Interfacial-surface lower hound: 

1 
4TH-

_i / . ' ( r ) - —!•/-• (r) + F ,(r) dr (3.63) 

Here /•' , F , and /•" , = S'2" are the surface-surface, surface-
void, and void-void correlation functions defined more precisely in 
section 4 and depicted in Fig 2. <f> is the volume fraction of the 
trap-free region (porosity) and ,s is the specific surface (interfacial 
surface area per unit volume). For large r, F —» s~, F —> .vc ,̂ 
and F —> 4>\- The bound (3.63) is valid for general statistically 
homogeneous but anisotropic media and was first derived by Doi 
185] using a different procedure than Rubinstein and Torquato [26]. 

Multiple-scattering lower hound: 

4 _ 
P-

6\(y.)|VC7(y.)|-dy, 

Q,(ypy2)Vc?(.y,) • V£(y,)dy, rfy. (3.64) 

where 

Q)iy r y2> = GM'> ri • r
2) ~ PG

2(X, r,) - /JG,(X; r2) + f<i>y, (3.65) 

y. = x — r . (3.66) 

Q(r) = 
1 

4rr7 
(3.67) 

is the Green's function of the Laplacian operator. This three-point 
bound applies to media composed of random distributions of equi-
sized, possibly overlapping, spherical traps at number density /; and 
volume fraction (/>,. The Gn(x;r'r) are the poinl/y-particle distri
bution functions described briefly in (3.10) and in detail in section 
4. The two-point quantity 6 \ is schematically given in Fig 3. This 
bound is the analog of the multiple-scattering (or cluster) conduc
tivity bound derived by Torquato [58]. 

Void lower hound: 

(IK 4TH 
[S?(J) - Irfr (3.68) 
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HP(r) 

FIG 3. Schematic representation of the iwo-point functions. //,,(;•), 
the nearest-neighbor distribution, and G'jO/), the point/particle function 
(.1/ = |x - r | | ) . for an isotropic distribution of disks defined in the text. 
Particle B is nearest to particle A at the radial distance r. The remaining 
particles lie outside this radial distance. 

This two-point bound, derived by Torquato and Rubinstein [88], 
is weaker than the interfacial-surface bound (3.63) but has the ad
vantage that it depends only on the simpler two-point probability 
function Si," for the void phase or, equivalently, the void-void cor
relation function F,,(r). It is valid for any statistically anisotropic 
medium with porosity <b and trap volume fraction », . 

Security-spheres upper bound: 

f'i'3 + 9(!>-1r.-ci 

C; + l8</>;<", (•(:, + 81t>ic;c: 
(3.69) 

where 

e , = 2 i ? / e(tW !,(>!) d;i. (3.70) 

1 - R<; fUf)Hr(jl)<h] 

R_ 

90 
,:3 = 5H / yiiMrWM-

g(x) = 4x 

e(.r) : 

f(x) = 

- 5x4 -

x - 1 

.(•(./•+1), 

- 5xJ + 5;i 

3®, 

+ 5.c - 4, 

(3.71) 

(3.72) 

(3.73) 

(3.74) 

(3.75) 

(3.76) 

This security-spheres upper bound (88] improves upon an earlier 
security-spheres upper bound [26], all of which are valid for equi-
sized, impenetrable spherical traps of radius R at number density 
p. (Note that in each of these references the integrals involving 
Hr should have been multiplied by a factor of 2.) Thus, the trap 
volume fraction is </>, = p4wR}/3. The quantity 7(), (3.76), is 
the Smoluchowski dilute-limit trapping constant for spheres. Here 
H,,(>') is the probability density associated with finding a nearest 
neighbor at a radial distance r from a particle located at the origin 
and is described fully in section 4. In relations (3.70)-(3.72), rf 
is the dimensionless distance r/2R. Figure 3 gives a schematic 
representation o f /7 / ; . Note that'it should not be confused with the 
well-known radial distribution function which is proportional to the 
probability density associated with finding any particle at a radial 
distance ;• from a particle at the origin. 

Observe also that clji), (3.73), has a simple pole at :i = 1 
and therefore the integral r ( of (3.70) generally diverges, yielding 
the trivial upper bound 7 < ex. However, if II ,,(<i) vanishes as 
(;i — 1)' at ti = 1, where c > 0, the integral (3.70) converges and 
(3.69) gives a finite, positive upper bound on 7. 

3.4. Fluid permeability 

Pragcr [82J and Weissberg and Prager [84] were the first to em
ploy variational principles to derive upper bounds on the isotropic 
fluid permeability. Doi [85] derived a different upper bound on 
the permeability using what he thought was a different variational 
principle: in actuality, he used a minimum energy principle as did 
Prager et al. Berryman and Milton [86] subsequently, using a 
volume-average approach, corrected a normalization constraint in 
the Prager variational principle. Torquato and Beasley [87] red-
erived the Weissberg-Prager upper bound on the permeability us
ing an ensemble-average approach. More recently, Rubinstein and 
Torquato [28] derived new variational principles for upper and lower 
bounds on the isotropic permeability (k = IM) from which one can 
derive all previous bounds and generate new classes of bounds. 
Their ensemble-averaged bounds are given by 

Variational upper hound: 

Vq e E, (3.77) k > < V q : V q / > . . ^ ^ 

Er = {stationary q(x); V x (Aq + e) = 0 in V,}. (3.78) 

Variational lower hound: 

k 
< w • e/ >~ 

; V q : Vc iT 
Vq e E. (3.79) 

{stationary q(x); q = 0 on OV. 

and < q • ef > = < \v • c / > } . 

q = 0 in V.. 

(3.80) 

Here e is an arbitrary unit vector and w is the actual velocity field 
that satisfies (2.20)-(2.22). Rubinstein and Torquato also derived 
volume-average bounds. Note that these variational principles for 
the upper and lower bounds on A- share a close resemblance to the 
lower and upper bounds, (3.61) and (3.59), respectively, on the 
trapping constant 7. The proofs of (3.77) and (3.79) are given in 
Re I" 2sT 

Rubinstein and Torquato [28J, via the principles (3.77) and 
(3.79), derived four different classes of rigorous bounds on the fluid 
permeability k: (i) two-point interfacial-surface upper bound; (ii) 
three-point multiple-scattering upper bound; (iii) two-point void up
per bound; and (iv) two-point security-spheres upper bound. These 
are now explicitly stated. 

Interfacial-surface upper hound: 

3 ^KSr) - / • ' ( ' • ) + /•;.,.('•) (3.81) 

The correlation functions involved here are the same as those de
scribed below relation (3.63). Doi [85] derived (3.81) using a dif
ferent procedure. 

Multiple-scattering upper hound: 

k < j ^ _ J G2(y,)t(y1):t(y,)(/y1 

where 

Q,(y 1 • y^W.v 1) : t(y2) dy, </yr (3.82) 

t = V ( S - e ) + V ( S - e ) r . (3.83) 
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S(r) = ( l + ±A)il>(r). 

4>(r) = 
8« 

L) r r 
_ + __ 

(3.84) 

(3.85) 

This three-point bound, first derived by Torquato and Beasley [87| 
in a slightly different form, applies to porous media in which the 
impermeable solid phase is composed of random distributions of 
equisized, possibly overlapping spheres of unit radius at number 
density />. The distribution functions involved are identical to those 
that arise in (3.10) and (3.64). 

Recently, Beasley and Torquato (89j derived an optimized 
three-point multiple-scattering upper bound (not stated here) which 
improves upon bound (3.82). 

Void upper bound: 

2 

3«^ 
r S ! " ( r ) - f l ; dr. (3.86) 

Here o] = I - o, is the porosity and S\u is the two-point proba
bility function for the fluid phase. This bound was first given by 
Prager [82] and subsequently corrected by Berryman and Milton 
[86] whose result agrees with (3.86). 

Security-spheres lower bound: 

2/? / h(/r')Hl,(li)d;i 

where 

"^"-^n-T*T4«! 

k,= nr 

(3.87) 

(3.88) 

(3.89) 

This is valid for random beds of equisized, impenetrable spheres of 
radius R at number density p so that the sphere volume fraction is 
<i>2 = jAi\R: /3 . The quantity k{) of (3.89) is the Stokes dilute-limit 
permeability for spheres. Hp(r) is the nearest-neighbor distribution 
function defined below (3.76). Note that this security-spheres bound 
is identical to one derived by Rubinstein and Keller [111] for the 
related inverse drag problem. (Note that the integrals of Refs 28 
and 111 which involve Hjt should have been multiplied by a factor 
of 2.) 

Observe from (3.88) that //(/i"1) has a pole of order three at 
:i = 1. Therefore, the integral (3.87) generally diverges and yields 
the trivial lower bound k > 0. However, if Hp(ii) vanishes faster 
than (i'i - I)" at fj = 1, the integral converges and (3.87) gives a 
positive lower bound on k. 

3.5. Remarks 

It is useful to comment on the utility of lower-order bounds, such as 
two-, three-, and four-point bounds, when the bounds diverge from 
one another. To fix ideas, consider the isotropic conduction prob
lem. Similar arguments will apply to the elasticity problem and, 
in a generalized sense, to the trapping and flow problems. More
over, the same arguments are easily extended to the corresponding 
anisotropic bounds in the cases of a,, C , and k. 

The fact that upper and lower bounds on a diverge from 
one another in eases where the phase conductivities a and a1 are 
drastically different does not mean the bounds have no value in 
such instances. It has been observed by Torquato [38] that, because 
of the correspondence between //-point bounds on o and certain 
realizable geometries, lower-order lower bounds are expected to 
yield good estimates of crja] for <r, > a , provided that the 
volume fraction of the highly conducting phase p, < <£ (where $ ' 

is the percolation-threshold value) and the characteristic (duster size 
of phase 2, A„ is much smaller than the macroscopic length scale 
L. (The percolation threshold <:>' of phase i is the volume fraction at 
which the first sample-spanning cluster of phase ;' appears. A cluster 
of phase / is defined as that part of phase / which can be reached 
from a point in phase / without touching any part of phase ;/, / i- )•) 
For heterogeneous media composed of distributions of particles. A, 
can be roughly estimated from the well-defined mean cluster size 
[112] or mean number of clusters [1 13|, which have been studied 
in continuum percolation theory (see section 4.7). Note that the 
condition A, <C L alone implies <i, < <//,. For spatially periodic 
arrays of impenetrable d-dimensional spheres or for equilibrium 
distributions of impenetrable d-dimensional spheres, the condition 
A, -C L is satisfied for all ©, except very near the close packing 
value which corresponds to <j>', for such systems. In summary, for 
general media, even though the upper bounds on ai are much larger 
than the lower bounds for o\ "S> a[ (and, in fact, goes to infinity in 
the limit oJo] —> oc), the lower-order lower bounds should give 
good estimates of rrJo ^ provided that A, -C L. Of course the 
accuracy of the lower-order lower bounds increases as n increases. 
Similarly, lower-order upper bounds are expected to yield useful 
estimates of cja for a, » <T given that o>, > </\ and A t « L. 
Above the threshold of phase 2, the last condition A, <C L is 
actually not necessary and can be relaxed without comprising the 
accuracy of the estimate on a . Note that very similar arguments 
apply to lower-order elastic moduli bounds when one phase is much 
stiffer than the other [114] and to the corresponding anisotropic 
bounds |1071. 

Although such statements regarding the utility of lower-order 
bounds on the trapping constant 7 and fluid permeability tensor k 
have heretofore not been made explicitly, if is clear that similar 
arguments can be put forth. For simplicity, consider the isotropic 
permeability A' (the same comments will apply to the principal com
ponents of k in the direction of the principal axes, respectively). 
The true permeability k will lie much closer to the lower-order up
per bounds (rather than the lower bounds) provided that A, -C L, 
where phase 2 is the impermeable solid phase. The lower bounds 
should yield good estimates of k whenever h. « [ is obeyed since 
in such situations k = 0. Here A( is the characteristic cluster size 
of the fluid or void phase. Similarly, the true trapping constant will 
lie much closer to the lower-order lower bounds when A, « L and 
lower-order upper bounds when A{ -C L. 

The general claim that one of the improved bounds can pro
vide relatively sharp estimates of the effective property for a wide 
range of conditions is corroborated by specific calculations given 
in section 5. 

In the study of random media it is not only useful to seek the 
range of possible values that the effective property can take given 
limited morphological information (ie, rigorous bounds) but to iden
tify the microstruetures that correspond to the extreme values, that 
is, to determine whether the bounds are optimal. Such investigations 
have important implications for structural optimization [115,116], 
This topic was touched upon in this section but an in-depth discus
sion is beyond the scope of the present review. It is useful to make a 
few comments, however. First, results concerning the realizability 
and optimality of bounds exist only for the effective conductiv
ity tensor at and effective stiffness tensor C (13,14,23,48,59-69, 
73-81,100,106,108-1 10]. Microgeometries which realize the afore
mentioned bounds on the trapping constant ~; and fluid permeability 
A' have not been identified. Second, an extensive literature has de
veloped which describes the realizability of bounds on a, and C 
by laminates [60-64.75,100,108-1 10], indicating the importance of 
laminates in modeling composites. Third, in addition to the bounds 
corresponding to the aforementioned coated-sphere assemblages and 
laminates, certain bounds are achieved by hierarchical coated as
semblages of ellipsoids (ellipses) [66,69,74-77,106). 
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4. ADVANCES IN MICROSTRUCTURE 
CHARACTERIZATION 

The previous section described the various types of statistical corre
lation functions (Sn, Gn, Fsv, F , Hr) that have arisen in rigorous 
bounds on the effective conductivity tensor a,, effective stiffness 
tensor C(, diffusion-controlled trapping constant 7, and the fluid 
permeability tensor k. S^\x") gives the probability of simultane
ously finding n points with positions x" = { X , , . . . , X M } in phase 
•/ for statistically inhomoeeneous media. Now since the 5(2) are 
easily obtained from the S'(" [117], only the latter quantity, de
noted by S , will be referred to in much of the subsequent dis
cussion. The n-point probability functions S arise in conductivity 
[20,45,53,57,69,79,98,106], elastic moduli [50,52,54,56], trapping 
constant, and fluid permeability [28,82,85,86] bounds. For exam
ple, see bounds (3.5), (3.11), (3.12), (3.18), (3.43), (3.46), (3.51), 
(3.54), (3.63), (3.68), (3.81), and (3.86). For inhomogeneous par
ticulate media, the poinl/ty-particle distribution function Gn(x |;r' ') 
(n = 1 + q) gives the correlation associated with finding a point 
with position x, in the space exterior to the particles (phase 1) and 
any q particles with coordinates (center of mass and orientation) 
r''. This function arises in the conductivity [58] bounds (3.10), 
trapping constant [26] bound (3.64), and fluid permeability [28] 
bounds (3.82) and the ones of Refs 87 and 89. The surface-void, 
F (x.,xA and surface-surface, F (x,.x,), correlation functions 

s v \ 1 2 " s s v 1 ' 2' 

arise in the trapping constant [26,85] bound (3.63) and fluid per
meability [28,85] bound (3.81). F (x,.x2), for example, gives the 
correlation associated with finding a point at x on the two-phase in
terface and another point x, on the interface. Yet another statistical 
quantity, the nearest-neighbor distribution function Hp(r), arises 
in the trapping constant [88] bound (3.69) and the fluid permeabil
ity [28] bounds (3.87). Given a random suspension of identical 
(/-dimensional spheres, Hlt(r)dv gives the probability of finding a 
nearest neighbor at a radial distance r from a sphere located at the 
origin. 

For statistically homogeneous media, each type of 71-point cor
relation function described above depends upon the relative po
sitions of the n points. Thus, for example, S (x") = 5 (x12, 
. . . ,x h i ) , where x,. = x. — x(. Furthermore, if the medium is 
statistically isotropic, then the n-point functions depend upon the 
relative distances, e.g., F^XpX,) = F s(:rp) where a:|2 = Jx|2|. 

There are several comments that need to be made here. First, 
until recently, application of the aforementioned bounds was vir
tually impossible because of the difficulty involved in ascertaining 
the statistical correlation functions, both theoretically and experi
mentally. Second, Torquato and Stell [117-121] were the first to 
offer a systematic means of computing and representing the n-point 
probabilities Sll>. However, such a formalism for the other types 
of correlation functions had been lacking. Third, are these different 
types of correlation functions related to one another? Fourth, can 
one write down a single expression which contains complete sta
tistical information? As shall be demonstrated, the answers to the 
last two queries are in the affirmative. 

4.1. Unified theoretical approach 

For simplicity, consider first a statistical distribution of N iden
tical (/-dimensional spheres of radius R (phase 2) in volume V 
distributed throughout a "matrix" (phase 1). (More complicated 
models are described below.) Such a model is not as restrictive as 
one might initially surmise, especially since the particles may be 
allowed to overlap in varying degrees, thereby allowing interparti-
cle clustering and thus the generation of interesting microstructures 
with long winding chains or large clusters with voids such as shown 
in Fig 4. Thus, the matrix need not be continuous. The case d = 1 
(rods) is a useful model of certain laminates. The instance d = 2 
(disks) can be employed to model a general class of fiber-reinforced 

FIG 4. A distribution of identical, fully penetrable cylinders (disks) 
at a cylinder volume fraction <h ~ 0.7 which is slightly higher than 
she percolation-threshold value of (ft, ~ 0.68 [126,127]. This model 
generally goes by many names, including "overlapping particles," "ran
domly centered" particles, "penetrable" particles, and the "Swiss-cheese" 
model. 

FIG 5. A distribution of identical, totally impenetrable cylinders (disks) 
at 02 ~ 0.35. This model is generally also referred to as "impenetrable" 
or "hard" particles. 

materials and thin films. The case d = 3 (spheres) can be used to 
model unconsolidated media (eg, suspensions) as well as consoli
dated media (eg, sandstones, sintered materials, cermets, etc). See 
Fig 5 for a two-dimensional example of the former. 

The (/-dimensional spheres are spatially distributed according 
to the specific Ar-particle probability density P v ( r ) which nor
malizes to unity. The en.semble average of any many-body function 
F(rA ) is then given by 

< F ( r v ) >= / F ( r v ) P v ( r v ) ( / r v . 

The reduced rj-particle generic probability density is defined by 

P„(r")= 7T^—77 /P v(r- v)rfr„+ l . . .</r v . (4.1) 

' (A — n)\ J 
Thus, pn(x") characterizes the probability of finding any n spheres 
with positions r". If the medium is statistically homogeneous, the 
pn(r") will depend upon the relative displacements r p r ln, 
where r l ; = r; — r r In such instances, it is understood that the 
"thermodynamic limit" has been taken, that is, N —> oc, such that 
the number density p = N/V = P|(r,) is some finite constant. 
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Torquato [122) has introduced the general n-point distribution 
function 7/;((x"'; x''~'"; r''), which is defined to be the correlation 
associated with finding in points with positions x"' on certain sur
faces within the medium, p — m with positions x''~'" in certain 
spaces exterior to the spheres, and q sphere centers with positions 
r'', n = p + q, in a statistically inhomogeneous medium of N iden
tical ^/-dimensional spheres. Torquato found a series representation 
of H for such media which enables one to compute it; namely, he 
found that 

11 (x'"; x" '"; r") = (-l) '" 
0 
da, 

l (x": r"). 

where 

= ]P (-ifC'V; r'O, G (x'1 

( = 1 A - 1 "' 

>cff/»"V;r.,f/r.. 

•w(")(x'';rj)= 1 -Jl [1 -iii(y..;a.)], 

(4.: 

(4.3) 

m(y -a) • 
1 . il- < a, 

0 , otherwise. 

e((/„;o)= 1 - m(-iy;.;a), 

)/.. = |x. — r.l. 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

The key idea in arriving at (4.2) is the consideration of adding 
p "test" particles of radii b ,bi in the system of N spherical 
inclusions of radius R, with p « N, Since the ith test particle 
is capable of excluding the centers of the actual inclusions from 
spheres of radius a. (where, for b > 0, a. - R + b and, for b = 0, 
«. = R - c... 0 < c. < /?), then it is natural to associate with each 
test particle a subdivision of space into two regions: Dr the space 
available to the ith test particle (ie, the space outside N spheres of 
radius a centered at rN) and the complement space D". Let S 
denote the surface between D and D'. Then, more specifically, 
H (x"';x/'-'"; r'') gives the correlation associated with finding the 
center of a test particle of radius b[ at x( on <S, and the center 
of a test particle of radius b at x on S , and the center of a test 
particle of radius b . at x and the center of a test particle 
of radius b at x in D . and of finding any q inclusions with 

configuration, r'', where x''~'" = {x , x } and n = p + q. 
Note that it is only in the limit b —> 0 or a. -^ R that Di is the 
space exterior to the actual inclusions, ie, the matrix phase. 

Note that the factor multiplying the integral of (4.4) is by 
definition equal to unity when </ = 0. Given the pn(r") for the 
ensemble one can, in principle, compute H t for distributions of 
identical spheres of variable interpenetrability. According to re
lations (4.2)-(4.4), one needs to know the /(-particle probability 
densities p in order to compute the general /(-point distribution 
function H . The pn have been extensively investigated in the con
text of the statistical mechanics of liquids and solids [ 123]. Here of 
course the microscopic scale refers to the arrangement and motion 
of molecules. Thus, the powerful machinery and results of statis
tical mechanics can be brought to bear on the problem of charac
terizing the microstructure of random heterogeneous media. One 
first specifies the Hamiltonian (energy) of the system of particles; 
for example, it may be assumed that the total potential energy is a 

sum of pairwise additive potentials incorporating attractive as well 
as repulsive interactions. The p however, are not uniquely given 
from the Hamiltonian, since one must specify whether the system 
is in "equilibrium" (ie, characterized by macrosopic equilibrium 
properties, such as the pressure) or in the infinitely many possible 
nonequilibrium states. 

From the general quantity II one can obtain all of the afore
mentioned correlation functions as follows: 

S„ (x") = 6'iV) = lim 11 (0; x"; 0). 

G„(x, r ' ) = lim 11 (0; x,: r"). 
« , - it " ' ' 

Fsv(x r x2) = lim H-,{Xy x,; 0). 

I\M, 

and 

Hr(r) = lim 

,) = 

0 

lim H\(x,. x,: 0; 

lim 11S; x,; 
|x,-r,|-o -

0) 

« - . ) • 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

Here 0 denotes the empty set. For particulate media the Sn are 
termed the »-point matrix probability functions. Note that the se
ries for ,S'n obtained in this way is identical to the one derived by 
Torquato and Stell [117|. Representations of the remaining quan
tities (point/n.-particle quantities, surface correlation functions, and 
the nearest-neighbor distribution functions) were obtained for the 
first time from (4.2). 

Note that Torquato [122] has also given the asymptotic prop
erties of the general 11 for cases in which a subset of the n points 
are far from one another and has given successive upper and lower 
bounds on the H The reader is referred to this reference for 
further details on these topics. 

The concept of a distribution of particles is very general if 
it is not restricted to impenetrable particles (see Fig 4). The in
tersection of particles need not have any physical meaning, but is 
simply a device for generating complex shapes from simple el
ements. An example of an interpenetrable-sphere model is the 
so-called penetrable-concentric-shell (PCS) model or "cherry-pit" 
model [42,58,124]. Here each /J-dimensional sphere of diameter 
2R is composed of an impenetrable core of diameter 2A/?, encom
passed by a perfectly penetrable shell of thickness (1 — X)R (cf Fig 
6). The extreme limits A = 0 and 1 correspond, respectively, to 
cases of fully penetrable and totally impenetrable spheres (see Figs 
4 and 5). In some instances these limits shall be simply referred to 
as overlapping and impenetrable (hard) spheres, respectively. This 
is a versatile model in that it enables one to vary the degree of 
"connectedness" of the particle phase by varying the impenetrabil
ity index A. 

If the overlapping spheres have a distribution of sizes, even 
more interesting microstructures are possible (see Fig 7). This 
microstructure most qualitatively resembles ones found in cer
tain ceramic-metal (cermet) composites. An example of a silver-
magnesium fluoride cermet is depicted in Fig 8 [125]. 

For fully penetrable spheres (A = 0) at number density p (ie, 
number of particles per unit volume), there is a complete absence of 
spatial correlation between the particles and thus one has the exact 
simple relation valid for all rt: 

Pn(r") = /'" Vr (4.14) 

For d = 2 and d = 3, the particle phase percolates at $ ' ^ 0.68 
(126,127] and d>, ~ 0.3 [126,128], respectively. For d'= 3, the 
medium is actually bicontinuous for the range 0.3 < (f>, < 0.97, 
where <p^ = 0.97 or 0 = 0.03 corresponds to the percolation thresh
old of the matrix [128,129], ie, for <!>i < 0.03 the matrix is discon
nected. Thus, three-dimensional overlapping spheres may serve as a 
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FIG 6. A distribution of identical disks of radius 11 in the penetrable-
amcentric-shell model 142,58). Each disk is composed of an inner im
penetrable core of diameter 2\Ii (indicated by the black circular re
gion, encompassed by a perfectly penetrable concentric shell of thick
ness (1 - A)/?. 0 < A < I. This system is also referred to as the 
"cherry-pit" model. 

FIG /. A distribution of overlapping disks with a polydispersivity in size. 

FIG X. Reproduction of a micrograph of a silver-magnesium lluoride 
cermet |I25|. The inclusions arc metallic and form a variety of shapes 
from simple globules to long lilaments. 

useful model of bicontinuous media such as sandstones. Note that 
unlike general three-dimensional random media, two-dimensional 
random media can never be bicontinuous. 

For totally impenetrable spheres (A = 1) at number density 
f), the impenetrability condition alone does not uniquely determine 
the ensemble. To fix the ensemble, one must specify further in
formation about the process of manufacture. For example, stating 
that the hard-sphere system is also in thermal equilibrium (which, 
roughly speaking, may be regarded as the most random distribu
tion of spheres subject to the impenetrability constraint) completely 
specifies the distribution. Vastly more is known about the equilib
rium pn than about the infinitely many nonequilibrium pn 1123). 
In light of this knowledge and because the former is a reasonable 
model of heterogeneous media, many of the results for the H 
(about to be described) were obtained for equilibrium ensembles. 

The most important of the /(-particle densities is the two-
particle quantity / ; , ( r r r , ) ; for isotropic, equilibrium distributions 
of spheres, which interact with an arbitrary interparticle potential, 
it exactly obeys the Ornstein-Zernike integral equation [123]: 

/ ( ( / • ) = (•(/•) + /; / r( | r \)h(r,,)di\ 

where the "total" correlation function 

h(r) = 
/>,('•) 

(4 .15) 

(4.16) 

(4.17) 

and <(i ) is the "d'uect" correlation function. Relation (4.15) may be 
legatdcd as the definition of e(r | 2 ) which measures the direct effect 
ol putlH 1c 1 on panicle 2. The total correlation function / i ( ' ' p) 
(which «ocs to /c io lor large separation distances) measures the 
total cltcct (direct and indirect) of particle 1 on particle 2. Figure 
9 shows /;(/ ) ioi haul spheres in equilibrium al the sphere volume 
hactions (j = 0 3 and 0.5. Although it is clear that c(r) = 0 for 
/ — x the behav ioi for small ;• is not obvious. Thus, (4.15) in 
piacticc is solved by employing approximate expressions for <:(r). 
For hard spheres (A = 1) a widely employed and accurate expression 
is the Percus-Yevick approximation, which has been solved analyt
ically (see Ref 124 and references therein). Note that /•;,(•/•; A) for 
the penetrable-concentric-shell model for an arbitrary impenetrabil
ity index A is easily obtained from the totally impenetrable result 
Pj(r:\ = 1) using a simple scaling of its arguments [42], 

Integral equations for the three-particle and higher-order equi
librium probability densities (n > 3) have been obtained [123J. 
but they become increasingly difficult to solve as n increases for 
general interparticle potentials. Often approximations for the p for 
ii > 3 are given in terms of the two-particle densities. For example, 
the superposition approximation 

/ M ' ' i 2 - ' ' i . r ' V 
/•»,('',,)/^('' l3V'2(>r,) 

i>-
(4.18) 

is commonly employed [ 123]. Relation (4.18) is known to be accu
rate for low densities and for equilateral triangular configurations, 
especially al high densities. For more sophisticated approximations 
to /;, the reader is referred to Stell [130]. Note that exact low-
density expansions are available for the pn ]123|: see. for example, 
relations (4.19) and (4.20) below. 

For subsequent discussions, it is useful to review some prop
erties of totally impenetrable sphere systems (A = 1) under equilib
rium. For d = 3 and d = 2, the distributions undergo a fluid-solid 
phase transition at ft, ~ 0.5 and <;> ~ 0.7, respectively [123,131], 
between a state which is characterized by no long-range order (fluid 
phase) and a distinctly different state, which is characterized by 
some degree of long-range order (solid phase). (Here o, is the 
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h(r) 

= 0.5 

= 0.3 

FIG 9. The total correlation function /(('') for isotropic hard spheres of 
unit diameter in equilibrium at (i» = 0.3 and 0.5 generated from Monte 
Carlo simulations. For r < I. h(r) ~ — 1 and in the limit r —> oc, 
li(r) —> 0. Note that g(r) = /;(/')+1 is the well-known radial distribution 
function. 

particle volume fraction.) For rf = 3, for example, the solid branch 
ends at 0., = TT\/2/6 ~ 0.74, which corresponds to closest packing 
for a face-centered-cubic lattice. Above the fluid-solid transition, 
the disordered metastable branch ends in the random close-packing 
state, which for rf = 3 and rf = 2 are given by <t>1 ~ 0.63 and 
© , -0 .81 , respectively [132,133]. 

An important and useful nonequilibrium distribution of 
arbitrary-shaped particles is one known as random sequential ad
dition [134-137], For the moment consider mutually impenetra
ble particles. Random sequential addition is an irreversible process 
which consists of placing particles, one by one, into a rf-dimensional 
volume V under the following conditions: (i) Once a particle has 
been placed, its position and orientation is permanently fixed, and 
(ii) no two particles overlap. The process continues until there is 
no remaining space for additional particles, satisfying the impene
trability condition. The final state is known as the "jamming" limit. 
For hard disks, the jamming limit corresponds to c6, ~ 0.55 [136], 
This model for rf = 1 (known also as the "parking" problem) has a 
fairly long history and exact results are available for all quantities 
of interest (see, eg, Widom [134,135]). Higher dimensions have no 
analytical solutions for the coverage at the jamming limit and thus 
random sequential addition for d = 2 and d = 3 has been studied 
mainly by computer simulations [136,137]. Interpenetrable-sphere 
models can be generated under a random sequential addition pro
cess [138]. For example, for the penetrable-concentric-shell model, 
overlaps of the inner impenetrable cores of radius XII are prohib
ited. For A = 0 (fully penetrable spheres), the random sequential 
addition and equilibrium ensembles are obviously identical. For to
tally impenetrable spheres (A = 1) of radius R these two ensembles 
are the same through third-order in p [134]: the two-particle and 
three-particle densities given by 

p2(r,,) = P
2G(ri2 - 2R)l\+pi^rn;2R)] + 0(p4), (4.19) 

p,(r•,,. r lv7v,) = p 3 e ( r p - 2/?)0(r,, - 2i?)0(r„ - 2R) + 0(p4). 
(4.20) 

where 

B(D= ! ! / ' ' > ! ! (4.21) 

('-,"(r; a, a) = 2a cos 

4na~ 
v2 (•/•; a, a) = 

• ( ' • 

... / 

2a 2a \ 

3 r 1 r3 

4a+ 16 a-1 

.,.2 \ 'A>-

4a-J 
6(2« - ;•) 

(d = 2) (4.23) 

) 9 (2« - r) (rf = 3) 

0 . r < 0, 

i<(r; a. a) = (2a - r )9 (2a - r) (rf = 1) (4.22) 

(4.24) 
are identical for these ensembles. Here '(;,(;•; a. a) represents the 
intersection volume of two identical (/-dimensional spheres of radius 
a w4io.se centers are separated by the distance v. At fourth order 
in p, the random sequential addition and equilibrium ensembles are 
known to be different [134], 

In summary, relation (4.2) provides a means of represent
ing and computing the general a-point distribution function Hn 

for rf-dimensional interpenetrable spheres. Lower-order Sn have 
been computed for various distributions of identical rf-dimensional 
spheres [119-121,138-145]. For the same class of models, lower-
order G [58,146], surface correlation functions, Fsv and f's 

[147,148], and Hp [133,149,150] have been calculated''Recently, 
the formalism of Torquato leading to the expression (4.2) for the 
Hn has been extended to treat spheres with a polydispersivity in 
size 1151]. Lower-order correlation functions have been evalu
ated for such polydispersed systems [152-155|. Generalizations 
to anisotropic distributions of particles have been given [106] and, 
as a result, lower-order functions have been calculated for random 
arrays of oriented cylinders [106] and ellipsoids [156]. More re
cently, series representations of the S for certain cell models have 
been given [157]. These and other developments will be described 
in the subsequent subsections. 

4.2. Computer simulation techniques 

In the last five years, considerable progress has been made on the 
determination of statistical correlation functions from computer sim
ulations [138,142,145,148,150,157]. From a theoretician's point of 
view, simulations may be regarded as "experiments," against which 
theories for specific models of heterogeneous media may be tested. 
Computer simulations also offer a means of studying model systems 
which may be too difficult to treat theoretically. Obtaining statis
tical measures such as H from simulations is a two-step process. 
First, one must generate realizations of the disordered medium. Sec
ond, one samples each realization for the desired quantity and then 
averages over a sufficiently large number of realizations. 

Haile, Massobrio, and Torquato [ 142j appear to have been 
the first to compute correlation functions from simulations. They 
employed the molecular dynamics method [123|. Since this ini
tial work, the preponderance of simulation investigations made use 
of the Monte Carlo method introduced by Metropolis et al [158]. 
This procedure can be used to study the behavior of equilibrium 
systems of particles that interact with an arbitrary potential. For 
economy of space, the procedure is briefly outlined for a system of 
rf-dimensional hard spheres at number density p in the canonical 
ensemble (generally, fixed number of particles N, fixed volume V, 
and fixed temperature T). (Equilibrium hard-sphere configurations 
are independent of temperature.) Particles are initially placed, with 
no hard core overlaps in a cubical cell of volume V = I! on the 
sites of a regular lattice (eg, body-centered cubic for rf = 3). The 
cell is surrounded by periodic images of itself. Each particle is then 
moved randomly (by some small amount) to a new position which 
is accepted or rejected according to whether or not hard cores over
lap. Periodic boundary conditions are employed, that is, anytime a 
particle exists, the face of the central cell, its periodic image from a 
replicated cell, enters the opposing face of the central cell. Periodic 
boundary conditions are imposed to simulate an infinite, random 
system (ie, a statistically homogeneous medium) while employing 
a small number of particles (50 < N < 1000) in the central cell. 
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Equilibrium is achieved after moving each of the particles a suf
ficient number of times. The equilibrium distribution is a unique 
state. Each equilibrium configuration or realization is then sampled 
for the desired statistical measure. For example, a crude method 
to determine the one-point probability function S = (1>I (the matrix 
or void volume fraction) is to randomly throw many points into 
the sample and record the ratio of the total number of successes 
(points in the matrix) to the total number of attempts [145]. Gen
erally, periodic boundary conditions must be used when sampling 
for quantities such as Hn. 

The following is a summary of the problems that have been 
studied using computer simulations. The one-point probability 
function 4>i (porosity) has been determined for the cZ-dimensional 
penetrable-concentric-shell or cherry-pit model for d = 2 and d = 3 
and selected values of the impenetrability index A [145], The two-
point probability function S2(r) has been computed for totally im
penetrable spheres (d - 3 and A = 1) [148] and for the cherry-pit 
model (d = 2) for various A [138], The surface correlation func
tions, F (r) and F(r), have been computed for totally impenetra
ble spheres (d = 3 and A = 1) [148]. Certain functionals of the 
three-point quantities 5, and G3 have been calculated for distribu
tions of disks in the cherry-pit model [159] and for totally impene
trable spheres [160], respectively. A statistical measure analogous 
to the two-point correlation functions described above which reflects 
topological information about clustering and percolation in particle 
systems (described in section 4.1.7) has recently been obtained us
ing simulations [161]. Some of the aforementioned findings will be 
compared to theoretical results in the ensuing subsections. 

4.3. Identical d-dimensional spheres: 

Theoretical and computer-simulation determinations of the n-point 
distribution function Hn for isotropic distributions of identical d-
dimensional spheres are described. Virtually all of the results re
ported will be either for fully penetrable particles, totally impene
trable particles, or spheres in the penetrable-concentric-shell model. 

For this discussion and subsequent discussions, it is convenient 
to introduce, for systems of identical particles of arbitrary shape at 
number density p, the dimensionless density 

Relation (4.31), proved below for spheres, actually applies to ob
jects of general shape. 

4.3.1. Fully penetrable spheres 

The H are particularly easy to determine for fully penetrable 
spheres by virtue of the simplicity of relation (4.14) for the pn. 
Substitution of (4.14) into (4.2) yields the exact relation [122] 

H (x'";x"-'";r") 

= (-l)'V»exp[-/w i i(x")l 
da. 

d 
da •ii n>w ; <^ 

+ ( - ! )'"p" n n ee%;v d d 

da, da 
-expf-py/x'')] 

(4.32) 

Here v (x''; a , a ) is the union volume of p d-dimensional 
spheres of radii a,, . . . , a(, centered at x , , . . . , x t, respectively. 
(The reader is referred to Ref 58 for an explicit expression of 
v7(xl,x1;a],a1) for the case d = 3.) To summarize, Hn for fully 
penetrable spheres is expressible in terms of the purely geometrical 
quantity v t. 

Letting m = q = 0 in relation (4.32) yields 

ff„(x") = exp t -^Cx" ; a , , . . . , a,,)], (4.33) 

which is the probability of inserting n spheres of radii at,..., a 
into a system of Ar spheres of radius R at positions xr...,x , 
respectively (ie, into the available space or the region exterior to 
the excluded space). Taking the limit a. —> R, Vi in (4.33) enables 
one to recover the n-point matrix probability function derived by 
Torquato and Stell [119], that is, 

SH(x") = exp[-pvn(x"; a, = R , . . . , an = R)]. (4.34) 

The union volume of two identical spheres of radius a is given by 

V-,{r; a, a) = 2vl — y,*(r; a, a), (4.35) 

V = pv,, (4.25) 

where u is the volume of a particle and for rf-dimensional spheres 
of radius R is given by 

vt(R) = 2R 

vl(R) = nR2 

ul(r)=TRi 

(d=D, 

(d = 2), 

(d = 3). 

(4.26) 

(4.27) 

(4.28) 

For totally impenetrable particles, the reduced density ?| is exactly 
the particle volume fraction (p-,, that is. 

where the intersection volume v* for one-, two-, and three-
dimensional spheres is given by (4.22)-(4.24), respectively. 
The union volume of three identical spheres of radius a, 
v^x, y, z; a, a, a), has been given, among others, by Rowlinson 
[162] for d = 2 and by Powell [163] for d = 3. Note that letting 
n = 1 in (4.34) gives that S{ = <pt = exp[—?/|, which proves rela
tion (4.31). Figure 10 shows 5,(r) for d = 3 for particles of unit 
diameter at <j>2 = 0.6. 

Letting m = 0 and p = 1 in (4.32) and taking the limit a{ —> R 
yields the point/q-particle function as first given by Torquato [58]: 

Gn(x,;r') = p^ 1 j i e(yu,R), (4.36) 

i] = ri>, = l — 4>,. (4.29) 

This equality is not obeyed if the particles can overlap and, in 
particular, for the penetrable-concentric-shell or cherry-pit model 
with impenetrability index A, one generally has the inequality 

VW > ©,(A), (4.30) 

with equality applying when A = 1 (totally impenetrable particles). 
For the special limit of fully penetrable particles (A = 0), it is well 
known that the matrix volume fraction is 

1 — (i>2 = exp[—7/]. (4.31) 

where (4.31) has been used and yl( is defined by (4.8). 
The surface correlation functions s, F , and F and their gen

eralizations for fully penetrable spheres can be obtained from (4.34). 
For example, the prescription (4.12) gives the specific surface as 

s^p^S^v^R) (4.37) 

where <j> is given by (4.31) and the surface area of a d-dimensional 
sphere is dv{(R)/dR, where v^R) is given by relations (4.26)-
(4.28). Note that, for impenetrable spheres, one has the relation 

P^im. (4.38) 
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(4.43) is not possible (see the ensuing discussion regarding totally 
impenetrable spheres). 

4.3,2. Totally impenetrable spheres 

For distributions of totally impenetrable particles (not necessarily 
spherical in shape), many of the series representations of the afore
mentioned (i-point correlation functions truncate exactly after n-
body terms (ie, terms which involve correlations between n bodies) 
[122]. For example, at the two-point level for isotropic arrays of 
totally impenetrable spheres one has exactly from (4.2) that 

S,(r) = 1 — 20 , + pm. Q9 in + p , •• 

G,(r) = e{r;R)\p - / ) , « ' « ! • 

(4.45) 

(4.46) 

FIG 10. The two-point matrix probability function Sz(r) versus the 
r, the distance between the two points, for isotropic distributions of 
spheres of unit diameter at a sphere volume di = 0.6 as compared by 
Torquato and Stell [121|. The solid and dashed curves represent hard 
and overlapping spheres, respectively. 

For the penetrable-concentric-shell model, the inequality 

•s(A)<,v(l) (4.39) 

holds for lixed reduced density ;/. Letting in = 1, p = 2 and q = 0 
in (4.34) leads to 

F ( x , . x J = - lim - — e x p [ - u , ( x , . x •« , . /?)!. (4.40) 
s v ' - «, it 0at - i- - i 

Letting m = 2, p = 2 and q = 0 in (4.34) yields 

F (x, .x,) = 

/'' .(/') = A- — pb 0 m — p, Ci b <S in. 

lim - — e x p [ - u , ( x . . x , ; a . . a , ) ] . (4.41) 
«,-«. v; da. da, ' - ' -

Relations (4.40) and (4.41) were first given by Doi [85]. Three-point 
and higher-order surface correlation functions are easily obtained 
from (4.34); for example, letting in = 2, p = 3 and q = 0 gives 

F ( x . x 2 , x , ) = lim - exp[ — c,(x . x.,. x,; a. R)\. 
d o_ 

-it.vi dal da, 
(4.42) 

For general statistically homogeneous distributions of spheres, 
Torquato, Lu, and Rubinstein (133|, among other things, found 
an exact series representation of the nearest-neighbor distribution 
function Hr(r): 

//,(!•> = L ( - l ) s 0 Pt,K') J | r / ( ( | r , - r | ; r ) ( / r ( 
/,:! Or J p 

(4.43) 
They also found exact relations for the associated cumulative and 
conditional-pair distributions. These were termed "particle" quan
tities and this explains the subscript P. Torquato et al [133] also 
investigated related "void" nearest-neighbor functions. Substitution 
of (4.14) into (4.43) yields the exact relation 

Or.(r) //(.,.) = / > _ L _ c x p [ _ / , r (,.))] 
' or 

(4.44) 

where c^r) is given by (4.26)-(4.27). Hertz [164] apparently was 
the first to consider the evaluation of Hjt for a three-dimensional 
system of "point" particles, that is, particles whose centers are Pois-
son distributed. For spheres with hard cores, an exact evaluation of 

F (r) = pb»b + p, : < * ! . 

(4.47) 

(4.48) 

where p is the number density, <j>, is the sphere volume fraction, 
,s- is the specific surface given by (4.38), /?,(?•) is the two-particle 
probability density, •/»(/•; /?) is the step function given by (4.6) 
with a = /?, b(r — R) is the Dirac delta function, and the symbol 
C<; denotes a convolution integral that is, for any pair of functions 
/ . ( • ;•) a n d / , ( • / • ) 

/ , » / . = / /,(/-)/2(|r-r'|)f/r '. (4.49) 

It is useful to employ the general relationship between the two-
point probability functions for phase 2 (particle phase) S[2> and for 
phase 1 (matrix phase) 5'!,11 = S1 [1 17] for any two-phase isotropic 
medium, 

S{?)=l-2(b,+S\l). (4.50) 

in conjunction with (4.29) and (4.45) to yield 

Here 

S\~\r) = pt:'(r\ R: R) + p,(?j in ® in. 

ti,"(r; R; R.) = m (x: 

(4.51) 

(4.52) 

is the intersection volume of two identical spheres of radius R as 
general given by (4.22)-(4.24). The terms of (4.51) have simple 
probabilistic interpretations: (i) pv~ is the probability that both 
points fall in a single sphere, and (ii) /;, & inQni. is the probability 
that each point falls in two different spheres. The terms involved 
in the other two-point correlation functions have similar interpreta
tions. For particles which can interpenetrate one another, however, 
such simple interpretations are generally invalid because of the al
lowability of overlap. Examination of (4.45)-(4.48) reveals that the 
different two-point correlation functions are related to one another 
[122], 

For d = 1 the convolution integrals of (4.45)-(4.48) can be 
solved analytically [140,147]. The one-body convolutions are eas
ily evaluated analytically for any d. The two-body convolution 
integrals for d = 2 and d = 3 have been evaluated numerically for 
equilibrium distributions at arbitrary density p or particle volume 
fraction a>, using Fourier transform techniques and Percus-Yevick 
and related approximations to /?, [121], Thus, theoretical determi
nations of 5 , , G, , F and F have been obtained for such models 
[121,140,146,147|. Moreover, ,S',(r) has been calculated from com
puter simulations for equilibrium (142) and nonequilibriuin [138] 
distributions of totally impenetrable spheres. 

Figure 10 compares ,S',(r) for totally impenetrable (hard) and 
fully penetrable (overlapping) spheres (d = 3) of unit diameter at 
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Rubinstein [133] then found the exact relation for rods of unit length 

/ / , . ( ' • ) ^ 

2'/ 
1 

exp 
-2i,(r- 1) 

1 
(4.53) 

where // is the reduced density given by (4.25). For r < 1, //,,(•/•) = 
0 in any dimension. For (-/-dimensional hard sphere with d > 2, an 
exact evaluation of series (4.43) is impossible because the p for 
it > 3 are not known exactly. Thus, for cl = 2 and 3, Torquato et 
al [1331 devised several schemes to approximately sum the series. 
The most accurate scheme yielded 

//,,(/•) = —; i~ exp 
' ( I - / / ) 2 ' 

-A,. 

(i -nr-
r > 1 

T\r - !) + / ; ( / • - 1)] 

(4.54) 

for hard disks (d = 2) and 
FIG 11. The point/particle distribution function GiO'), scaled by its 
long-range value of i>0\, for system of hard spheres of unit radius at 
pi = 0.5 as computed by Torquato [ 1471. 

1 -

0.5 

-

• 

• 

" 1 

F 

s / 

/ / 

/ 

1 ' 1 ' ' ' ' 1 

/ 

/7 
/ 

S02 

i . 1 . . . . 1 

. . , . . . . { . . 

d=3 

(62=0.5 

• 

-

. i i • l i . i . i i i i 

0.5 1.5 

FIG 12. The scaled two-body contributions to the surface correlation 
functions Fsi(r) and l\s(>') for hard spheres of unit diameter at Oi = 0.5 
as calculated by Torquato [I22.147|. Here F sv = pz ""> b * '" and 
Fss = I>1 • <S K 

a sphere volume fraction o , = 0.6 [121]. The function S-,(r) for 
fully penetrable spheres decays exponentially until it achieves its 
long-range value of 6~ at r = 2/? = 1; but the corresponding 
function for impenetrable particles oscillates about its long-range 
value for small r, indicating short-range order due to exclusion-
volume effects that are completely absent in the overlapping case. 
Increasing the dimensionality from unity, for small r, decreases 
5', [ 14-0]. For large r, increasing il decreases the amplitude of the 
oscillations [ 140|. Figure 11 shows the point/particle quantity G',(r) 
for impenetrable spheres (d = 3) of unit radius at a), = 0.5 [146]. 
Figure 12 depicts the scaled two-body contributions to F and F 
for the same model [122,147|. These theoretical calculations of the 
surface functions obtained by Torquato were found to be in excellent 
agreement with the simulations of Seaton and Glandt [148|. 

Corresponding three-point and high-order correlation functions 
for such models have been also studied theoretically [118,122]. The 
reader is referred to these references for further deUiils. 

Unlike the aforementioned functions, the nearest-neighbor dis
tribution function Hf,(r) is not a truncated series for totally impen
etrable spheres. The general expression is an inlinite series given 
by (4.43). For the case of hard rods (d = 1), the p , for all n, 
are known exactly for equilibrium distributions. Torquato, Lu, and 

H,,(r) = 24;;(/, + / 2 r + . /y r 3 ) exp{- - ; / ]24 / | ( r - I) 

+ 1 2 / 2 C r - l) + 8 / , ( r 3 - 1)]} (4.55) 

for hard spheres (il = 3), where 

• ' / " 

and 

./; 

2(1 - / / ) - ' 

-r/(3 + v) 

2(1 

(4.56) 

(4.57) 

(4.58) 

This represents the first time that analytical expressions for the 
nearest-neighbor distribution function Hf,(r) have been given for 
finite-sized hard particles. 

Figure 13 compares the nearest-neighbor distribution function 
Hr(r) for fully penetrable disks (ie, Poisson distributed "point" 
particles) and hard disks of unit diameter as calculated from (4.44) 
and (4.54) at c), = 0.3. Exclusion-volume effects associated with 
the hard cores of the latter model considerably changes the behavior 
of Hr(r) relative to the idealized case of point particles. Figure 
14 compares / / / ( ( r ) for hard spheres (d = 3) of unit diameter at 
0 , = 0.3 and 0.5 to the corresponding Monte Carlo simulation data 
of Torquato and Lee [150]. Observe the excellent agreement of the 
theory with the simulation data. 

It should be mentioned that from Hr(r) one can compute 
other quantities of fundamental interest such as: (i) the exclusion 
probability, Ep(r), the probability of finding no particle centers 
within a sphere of radius r surrounding a particle at the origin; 
and (ii) the mean nearest-neighbor distance, L and (iii) the random 
close-packing density. The first of these quantities is given by 

Er(r) 1 - Hr(r)dr. 

whereas the second quantity is given by 

/ = rHr{r) dv = Fp(r)dr. 

(4.59) 

(4.60) 

The random close-packing density, for hard-sphere systems, can be 
computed from the mean nearest-neighbor distance by determining 
the density at which t becomes a. Torquato et al have studied 
these as well as other related quantities. Finally, we note that Lu 
and Torquato [151] have generalized these results to spheres with 
a polydispersivity in size. 
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FIG 13. Comparison of the nearest-neighbor distribution function for 
penetrable disks (i.e., Poisson distributed "point" particles) and impen
etrable disks of unit diameter as calculated from (4.44) and (4.54), re
spectively, at d>2 = 0.3 [133,149]. 

Hp(r) 

0.5 

02=O.3 

IMPENETRABLE 

= exp 
_ T \ J .2 " 

~ - ? - T [ 2 - 3 A + A J - ( 3 A - 6 A 2 + 3 A 3 ) A 3 r ; J 
2(1 - A 3 r / ) 3 ' 

(4.64) 

In the extreme limits, A = 1 and A = 0, relation (4.61) yields the 
exact results (4.29) and (4.31). Lee and Torquato [145] obtained 
4>x as a function of the reduced density r; and impenetrability index 
A in the cherry-pit model for d = 2 and d = 3. The aforementioned 
theoretical results were shown to be in excellent agreement with 
simulations. 

The two-point probability function 5,(7-) has been determined 
from computer simulations by Smith and Torquato for distributions 
of disks in the cherry-pit model [138]. It was found that, for the 
range 0 < A < 0.5, S1 was negligibly different than S2 for fully 
penetrable disks (A = 0) at the same 07 . For 0.5 < A < 1, the 
amplitude of the oscillations in 5',, for fixed <j>,, increases as A 
increases. The specific surface for this two-dimensional model was 
also evaluated in this study. 

4 .4 . Polydispersed d-dimensional spheres 

Determination of the correlation functions for isotropic distribu
tions of d-dimensional spheres with a polydispersivity in size are 
described. Specifically, the spheres possess a continuous distribu
tion in radius R characterized by a (normalized) probability density 
f(R). The average of any function A(R) is defined by 

A(R) AUl)f(R)dR. (4.65) 

Some results for overlapping as well as hard particles are now given. 

4.4.1. Fully penetrable spheres 

Chiew and Glandt [139] have obtained expressions for the porosity 
<t>. and specific surface s for polydispersed overlapping spheres 
(d = 3) at total number density p (cf Fig 7). The d-dimensional 
generalizations of their results are as follows: 

FIG 14. The nearest-neighbor distribution function Hp(r) for hard 
spheres (d = 3) of unit diameter at 4>i = 0.2 and 0.5 as calculated 
by Torquato et al [133,149] from (4.55). The black circles and squares 
are simulation data due to Torquato and Lee [150]. 

4.3.3. Interpenetrable-sphere models 

Torquato and Stell [120] and Chiew and Glandt [139] obtained ana
lytical approximations for the porosity <f>l and specific surface in the 
"permeable-sphere" model. Subsequently, Rikvold and Stell [141] 
obtained scaled-particle approximations of the same quantities in 
the "cherry-pit" model [42]. For example, their results for 4>Ar), A) 
in d dimensions are given by 

<£,(»?, A) = (1 - A'7?) exp 
A")7/ 
X'lT) 

FM A), 

where 

F . (» j ,A)=l , 

FJij, A) = exp 
AV(1 - A)2 

' ( 1 -A 2 7; ) 2 

(4.61) 

(4.62) 

(4.63) 

(J> -e\p[-pv (R)], 

dv.(R) 
P aR exp[-pu,( .R)] , 

(4.66) 

(4.67) 

where v^R) is given by (4.26)-(4.27). Note that we can obtain 
corresponding results for overlapping spheres with M different sizes 
from the results above by letting 

f(R)=J2^6(R-Ri), (4.68) 

where p and Rt are number density and radius of type-i particles, 
respectively. For example, use relations (4.65)-(4.69) with M = 1 
gives the monodisperse results (4.31) and (4.37). 

Stell and Rikvold [152] and Joslin and Stell [153] found Sn 

for such a model: 

5 (x") = e x p [ - p u ( x n ; / ? , . . . , /?.)], (4.69) 

where v is the union volume of n spheres of radius R defined 
earlier. 

Miller and Torquato [154] obtained the surface correlation 
functions, F and F , for binary mixtures of overlapping spheres 
by extending the general formalism of Torquato [122] given for 
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FIG 15. A distribution of hard disks (cylinders) with a polydispersivity 
in size. 

monodispersed spheres. These results were subsequently general
ized to the continuous case by Torquato and Lu [ 155 J and for d = 
3 are explicitly given by 

Fsy(r) = 4TT{) R2 _ ( | l _ I* ) 0 (27? _ r) 5,(7-) (4.70) 

and 

F (r) = ^ \6n-p- &-\ ¥--rJL)Q(2R-r) 

+ 2^-B2e(2R-r)\s2(r). (4.71) 

From the above discussion it is seen that the polydispersed results 
are simple generalizations of the monodispersed results, For com
pleteness, therefore, it is useful to state the polydispersed general
ization of the monodispersed result for the point/particle function 
G,(r) [relation (4.36) with <?=!]: 

G,(r) = f^.e(R-r). (4.72) 

4.4.2. Totally impenetrable spheres 

For hard-sphere systems with a polydispersivity in size (see Fig 15) 
the porosity and specific surface are respectively given by 

4>. = \ - pv.(R) 

and 

s = p dR ' 

(4.73) 

(4.74) 

In the process of computing conductivity and elasticity bounds 
for polydispersed systems of hard spheres, Thovert, Kim, Torquato, 
and Acrivos [165] determined the associated two- and three-point 
probabilities 5'2 and Sy They did not, however, state these results 
for S, and 5, explicitly. It is useful to give the explicit result for 
the two-point function here: 

S2(r) = 1 - pv2(r; R. R) 

+ I rf/?,,f(/?|) / dRJ(R2) I dr, / dr2p7(r]2;Rv /?,) 

x m(\x - r \;R,)m(|x, - r,\; Rn). (4.75) 

where r = |x, - x,|, m(r;a) is the step function defined by (4.6), 
and f(Rl)f(R2)p2(rn; Rx, R2) is the probability density associated 
with finding a particle with radius Rf at r, and another particle with 
radius R2 at i\,, r p = |r, - r , | . Blum and Stell [166,167] were the 
first to obtain p2 analytically in terms of f(R) in the Percus-Yevick 
approximation (see also Salacuse and Stell [168]). 

4.4.3. Remarks 

Very recently, the formalism of Torquato [122] initially employed 
to obtain series representations of the general n-point distribution 
function H for monodispersed spheres of variable penetrability 
has been generalized to the polydispersed case by Lu and Torquato 
1151). One arrives at this generalization by still considering the 
addition of p "test" particles into a system of N particles but one in 
which Nt of the particles have radius Rf, JV, for the particles have 
radius / ? , . . . . , and N^ of the particles have radius RM so that 
]rV' Nk = N. The pn for this system of N particles with a dis
crete size distribution generalize accordingly. One easily passes to 
the continuous-size limit by replacing sums over components with 
integrals. Thus, this procedure is relatively straightforward given 
the monodisperse result (4.2) and, not surprisingly, the resulting 
polydispersed expression for Hn is functionally very similar to 
(4.2). For this reason it is not given here explicitly. The poly
dispersed expression therefore contains all of the results of section 
4.3. 

New results immediately follow from this relation. For exam
ple, in the special case of polydispersed hard spheres (4.12) yields 
the appropriate surface-surface function: 

Fs(x,,x2) = dR^r^R^fiRJ 

x / dr^Ox, - r, | - fi,)«(|x2 - r, | - il,) 

dR,f(R.) / dRJ(R,) 

x / rfr, / dr2p2(rvr2;Rt,R2) 

x 6(|x, - r, | - fl,)6(|x2 - r2| - R2). (4.76) 

Comparison of this relation to the monodisperse counterpart, (4.48), 
reveals that there is a simple prescription to map the monodisperse 
result to the polydisperse result. Therefore, the polydispersed equiv
alent of the surface-void function (4.47) is not written here. 

It is instructive to comment on useful choices for the size 
distribution f(R). Commonly employed probability densities are 
the Schulz [169] and log-normal [170] distributions. The Schulz 
distribution is defined as 

f(R) = 
l 

IXz+l) V R 

+1 
R' exp 

- ( 2 + \)R 

R 
> - 1 , 

(4.77) 
where T(x) is the gamma function. The nth moment is given by 

R" = R .(«+D~" 
]> + i)- (4.78) 

Therefore, by increasing n, the variance decreases, that is, the dis
tribution becomes sharper. In the monodisperse limit, z —> oo, 
f(R) - S(R - R). 

The loa-normal distribution is defined as 

f(R) 
\ 

R^fhUfi 
exp 

mR/Rjf 
262 (4.79) 
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FIG 16. A distribution of hard, oriented ellipses (elliptical cylinders). 

and therefore the dlh moments are 

< R" >= l^ c\p(ini2/2) 

As S - 0, / ( / ? ) - HH - / ? „ ) • 

(4.80) 

~or an ellipsoidal inclusion with axes of lengths a. b, and c. 

m(x) = 
1, .rja2 + x;/lr + x~/<-" < 1. 

0. otherwise. 
(4.85) 

Finally, as a last example, the inclusion indicator function for a 
circular cylinder of diameter 2<i and length 2b is 

m(x) = 
1. ;).•: + :r; < «" and 

0. otherwise. 

b. 
(4.86) 

The o-point matrix probability functions Sn for fully penetra
ble particles are again easily given: 

.S'(i(x") = exp[—po (x") (4.87) 

Mere r (x") denotes the union volume of « identical, oriented ob
jects of arbitrary shape centered at x". For example, in (he case 
•;/ = 2, the union volumes of two inclusion regions for the afore
mentioned rectangular and circular cylindrical inclusions are given 
respectively by 

e,(x) = Ssab - (2a - x)(2b - y)B (2a - x)0(2b - (/) (4.88) 

and 

4.5. Anisotropic particulate media 

Here correlation function results are given for statistically 
anisotropic media composed of a distribution of identical, oriented 
particles of arbitrary shape. Torquato and Sen [107| obtained se
ries representatives of the ,S'_ for this microgeometry by a simple 
reinterpretation of the relations developed by Torquato and Stell 
[117] for spheres, namely, the latter results are not only applicable 
to spheres but [after an appropriate generalization of the inclusion 
indicator function m(r), Eq (4.6)) to inclusions in which each con-
figurational coordinate is fully specified by its center-of-mass posi
tion. This class of materials includes oriented rectangles, ellipses, 
and so on for d = 2 and oriented rectangular parallelipipeds, ellip
soids, cylinders, and so on, for d = 3 (see Fig 16). For this class 
of microstructures the inclusion indicator function generalizes as 

m(\) • 
1 . x e D,, 

0 . otherwise. 
(4.81) 

where / ) , is the inclusion region and x a position vector measured 
with respect to the inclusion centroid. 

For (/-dimensional spheres, it is of course given by (4.6). For 
nonspherical shapes, mix) is more complicated. For example, let
ting x (i = 1 (/) denote the components of x in the principal 
axes coordinate frame, one has for a rectangle with sides of lengths 
2n and 2b 

1 . I.e. I < (i a n d !.c 
( ( ( (%)= i n • 

0. otherwise. 

b. 
(4.82) 

For an ellipse with axes of lengths 2a and 2b, respectively, 

1 . x2/a2 + x]/lr < 1. 
( O ( X ) = 

0. otherwise. 
(4.83) 

The inclusion indicator function for a rectangular parallelepiped 
having sides of length 2«. 2b. and 2c is given by 

1, I.e. | < <( and l.rJ < /) and l.r.l < c 
»t(x)= < ' . 2 - (4.84) 

0 otherwise. 

<\(x) = 4?r(( b -

B ( 2 H -

(2b- |.i'cos0|).4(|;r.sin6»|) 

| . rs in0 |K-)(2/ ; - Lrcostfl). 

where 

/1(c) = 2«" cos 
4(, 

(-X7 

(4.89) 

(4.90) 

In (4.88), x and (/ are the distances between the centroids of the 
two rectangular regions in the .<• and ;r, directions, respectively. In 
(4.89), x is the magnitude of the displacement x and f) is the polar 
angle that x makes with the ;c,-axis. 

Actually, using the above prescription, one can not only 
obtain the S for such anisotropic media but also the general 
H (%"':%''"'"':r") with in = 0 , that is. 

lim / / (0;x";r ' ' ) . 
- H . 7 1 " 

n = p + (/. 

In other words, one can obtain all of the H except those in
volving surface information and hence contains as special cases 
S (x"). G (x; r'') and their generalizations. 

The two-point matrix probability function S',(r) = S^(r.O) for 
hard, oriented prolate and oblate spheroids at various spheroid vol
ume fractions o , and aspect ratios b/a litis been determined recently 
by Lado and Torquato [156] using the results given above. Here 
c is the magnitude of r and 0 is the angle that the vector r makes 
with the plane perpendicular to the axis which is parallel to the ori
entation of the spheroids. 2b and 2a are the length and maximum 
diameter of the spheroid. Figure 17 shows the effects of anisotropy 
for /)/« = 5 and &, = 0.6 in the form of cross sections through 
S;(r,0) = S,(r,0) - ex] for 0 = ()", 45'"', and 90°, reading from 
right to left on the main peak of the curves. Note that the distance 
is in units of the major semiaxis b, so that the curve 0 = 0 (the 
outermost of the three) is identical to the hard-sphere limit. 

4.6. Cell models 

There is a wide class of two-phase random media characterized 
by cellular inicrostructure. Cellular systems of practical interest 
include foams, emulsions, and biologic media, to mention but a few 
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s;(r.e) 

FIG 17. Cross sections through the two-point quantity S^(r,0) = 
S2(r,0) - <z>~ for 0 = 0°.45°, and 90° (reading from right to left on 
the main peak of the curves) for oriented, prolate spheroids at an aspect 
ratio b/(i. = 5 and ©i = 0.6 as computed by Lack) and Torquato [156]. 

example. Until recently, knowledge of the correlation functions of 
cell models has been minimal. 

In 1962 Gilbert [171] showed that the two-point probability 
function S.,(r) is given by a double quadrature for a simple d-
dimensional cell model. This medium is constructed in the follow
ing matter: (i) a Poisson pattern of points is generated in TV1 with 
some specified intensity; (ii) the space is partitioned into convex 
Dirichlet regions of the Poisson points, that is, surrounding a given 
Poisson point is a region whose interior consists of all points which 
are nearer to the given Poisson point than to any other Poisson 
point; and (iii) each Dirichlet region is independently made white 
(phase 1) or black (phase 2) with probability </> or d>2, respectively. 

Another interesting and more general model is the symmetric-
cell material due to Miller [172]. Such media are constructed by 
partitioning space into cells of arbitrary shapes and sizes, with cells 
randomly and independently designated as phase 1 or phase 2 with 
probabilities <pi and d>2, respectively. Note that such materials, in 
contrast to distributions of particles, posses topological equivalence, 
that is, the morphology of the system with volume fraction © is 
identical to another with volume fraction 1 — a) • Observe also 
that symmetric-cell materials cannot model dispersions of identi
cal particles since the space couldnot be completely filled by such 
cells. Recently, Bruno [173] has shown that symmetric-cell mate
rials represent a large class of so-called "infinitely interchangeable" 
materials. An important feature of cell materials is that one can 
compute the first few terms of expansion (2.31) for a without ex
plicitly computing the correlation functions [ 172,173]. Nonetheless, 
from a microstructural point of view, it is desirable to ascertain the 
lower-order as well as higher-order correlation functions. 

Recently, Lu and Torquato [157] obtained representations of 
the general S , for any n, for the so-called random lattice model. 
This material is contracted by tesselating a (/-dimensional cubical 
subspace into At'1 identical (/-dimensional cubical cells, with cells 
randomly and independently designated as phase 1 (white) or phase 
2 (black) with probabilities 4> and <i>,, respectively. Figure 18 de
picts a two-dimensional realization. Thus, the random lattice model 
is a special case of the symmetric-cell material and is closely related 
to the well-known Ising model of a ferroniagnet [174], Every cell 
has two possible states: occupied (black) or unoccupied (white), 
corresponding to upward or downward spins in the Ising model in 

FIG 18. A two-dimensional realization of the random lattice model with 
02 = 9.4. Phase 2 is the black phase. 

the noninteracting high-temperature limit. 
The S for the random lattice model were computed by ob

taining the appropriate expressions for the ((-particle probability 
densities p and using the S , pn relations [117] developed for 
distributions of shperes. The occupied or black cells correspond to 
"particles" in the continuum description. Let N < M' denote the 
total number of such hard particles (black cells). Then for a cell of 
unit length, the volume fraction of the black phase is ax, = N/At'1. 
Lu and Torquato found that 

P„(r' ) = 

where 

(At" - n)\ 

(N - 77.)! M''\ 
y^(r,-R,) 
Z__^ ' J 

Od,J): 
0. r = r 

' ./ 
1, otherwise. 

(4.91) 

(4.92) 

and R denotes the position of the ,/ the cell. For the random lattice 
model, the indicator function is given as 

m(x) • 
_ / 1, \xk\ < L(A-= ! . . . . ,< / ) , 

0, otherwise. 
(4.93) 

It is important to note that exterior to the generally finite system, 
pn are identically zero. Substitution of (4.91) into (4.2) in the limit 
described by (4.9) yields the S for this model. 

An important finding is that although S^x) is equal to the con
stant d>t(= 1 - N/At'1) within the system, the higher-order quantities 
(for [joints within the system) depend upon the absolute positions 
r", that is, the medium is statistically inhomogeneous. This is 
true even for an infinitely large system. For example, in the cases 
where x, and x2 lie anywhere in the same white cell, the two-point 
probability function 

5 2 (x p x 2 ) = ( i r (4.94) 

In the instances where x and x, lie anywhere in different white 
cells, 

S-,(x.. x,) = 1 — 2<i7 + <f> 
1IM 

1 1 \/M 
(4.95) 

Using the above formulation, Lu and Torquato derived and 
computed both translationally invariant and rotationally invariant 
((-point functions (71 = 2 and 3). The reader is referred to Ref 157 
for those explicit expressions. Figure 19 compares the theoretical 
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d=3

0.2

FIG 19. Comparison of the theoretical relation for the rotationally in
variant two-point probability function 52(1') for the random lattice model
(d = 3) derived by Lu and Torquato [157] to computer-simulation data
(black circles) for several volume fractions.

relation for the rotationally invariant Iwo-point function, denoted
by 5,(1'), for several volume fractions in the case d = 3, to corre
sponding Monte Carlo simulation data. The agreement is seen to
be excellent.

Note that using (4.91) in conjunction with (4.6) other subsets
of the H" (besides the 8,) can be obtained for the random lattice
model. Moreover, the results given above can be generalized to
Ising-type models for finite temperatures (ie, with cell-cell interac
tions).

4.7. Clustering and percolation

The fOtwation of very large clusters can have a dramatic influence
on the transport and mechanical properties of random media. Recall
that a cluster of phase i is defined as that part of phase i which can
be reached from a point in phasei without passing through phase
j, i oj j. In particular media, for example, clusters may fonn as the
result of intellJarticle contacts [175] (eg, see Fig 20 which shows a
unidirectional tiber composite). In polymer blends, clustering is de
tenllined by the processing conditions and thermodynamics [176].
An important instance is when the cluster spans the entire system.
The onset of this is referred to as the percolation threshold or transi
tion. Figure 21 shows a thin film of gold on an insulating substrate
at a metal concentration near but below the threshold [177]. Note
that the gold clusters are highly "stringy" or "ramified."

The subject of physical clustering and percolation in "con
tinuum" (off-lattice) models of random media has been receiv
ing considerable attention in recent years [see, eg, 112,113,126
130,161,178-194]. In lattice percolation problems one usually
consider the clusters fomed by randomly occupying either sites or
bonds on a lattice [195,1961. Continuum-percolation models (ie,
distributions of particles), although less tractable than their lattice
counterparts, are better able to capture the salient physical features
of real systems.

Unfortunately, lower-order H do not reficct information about
large clusters in the system. It i~' desired, therefore, to introduce
and study quantities analogous to the aforementioned correlation
functions for continuum models that renect information about clus
tering. Such morphological descriptors may be used to obtain better
bounds on effective properties near the percolation threshold.

Torquato, Beasley, and Chiew [190] have introduced the so
called two-point e1uster function C 2(X I , x) defined to be the prob-

IG 20. A micrograph of a DuPon! FP/Alunidirectional fiber composite.
Note the clustering of the cer~lIllic (FP) liber. (black regions). Here ('/
corresponds to <:J2 of the present article. The mi rogr<lph W<lS .upplied by
Y. Bahei-EI-Din of the Department of Civil Enginccring at Rcnssclaer
Polytcehnic Institute.

Fl 21. Thin film of gold (black rcgions) on an insulming substrate
[1771 ncar but below the gold threshold. I otc that the gold c1ustcrs arc
"stringy" or "ramificd:'

ability of finding two points at position XI and x, in the same

cluster of phase 2. Thus, C, is the analog of 8;21 or 5;1 1 but unlike
these predecessors contains topological "connectedne~ss" informa
tion. These authors then obtained series representations of C, for
inhomogeneous distributions of particles (phase 2) by decomposing
the known expression for 8;2) into "connected" and "disconnected"
cluster diagrams. For the special case of isotropic distributions of
spheres of radius H, their result reduces to

C 2(1') = pv; (1'; H, H) + / P2 In Tn + higher-order diagrams,
(4.96)

where v; is the intersection volume of two identical d-dimensional
spheres given by (4.22)-(4.24) and P,(I') is the pair-connectedness

function such that rl P2(r l , r 2) is the probability density associated
with finding two particles centered at r I and r

2
which are connected

(1' == Ir 2 - r II), that is, which are members of the same cluster of size

at least two [112,128,130,182,183,185,188,189,192]. Thus /p,(I')
is the connectedness analog of the two-particle density p,(I'). -

It turns out that one can generally prove that Clr) must be
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long-ranged (ie, decay to zero slower than r for large r) at the 
percolation threshold in contrast to 5',(r) which is always short-
ranged and thus insensitive to physical clustering. Consequently, 
C\(r) is a substantially better signature of the niicrostructure than 
6 \>) . 

For the special case of totally impenetrable spheres of unit 
diameter (which can only form clusters as the result of interparticle 
contacts), one has for d = 3 that 

C2{r) = n - | , , r + ^ + C9(r3). (4.97) 

where /; is the reduced density given by (4.25) and Z is the av
erage coordination number (average number of connected nearest 
neighbors) is, for general sphere distributions, given by 

Z = p 4?rr2P,(r)r/r. (4.98) 

Note that for an equilibrium distribution of hard spheres, the prob
ability of finding pairs of particles in contact (r = 1) is zero and so 
2 = 0. 

Torquato et al [190] computed the two-point cluster function 
C',(r) for "sticky" hard spheres parameterized by a stickiness in
dex r '. The limit r —> oo recovers nonsticky hard spheres in 
equilibrium. In Fig 22 the two-body contribution to the two-point 
cluster function, Cj(r'), (divided by d>l) is given for several <•/> up 
to the percolation value for the case r = 0.35. For fixed r, C*(r) 
increases with increasing cf>,, indicating the presence of increas
ingly large clusters. At $ ' = 0.297, C'^(r) becomes long-ranged, 
as expected. 

Subsequently, Lee and Torquato [16ij computed C-,(r) for d-
dimensional spheres in the penetrable-concentric-shell model for 
(/= 1, 2, and 3. 

4.8. Experimental techniques 

In the late 1950s Debye, Anderson, and Brumberger [196] used the 
angular distribution of scattered X-rays to measure the two-point 
probability function .S\(r) and estimate the specific surface s of 
porous materials. Corson [197] about 15 years later measured the 
three-point probability function S'v He took photographs of cross 
sections of a selected composite material, magnified the photograph, 
superimposed a sampling grid on the photograph, and then recorded 
the relevant values for each grid point. Corson's procedure is not 
automated as it requires that an operator examine each grid point of 
the photograph, decide what numerical value to assign to that point, 
and then type that value onto a computer card. This methodology 
is obviously prohibitively tedious and time-consuming. 

With the advent of modern image processing techniques and 
faster computers, better procedures are available to measure the 
S now than were available to Corson then. Berryman and his 
colleagues [198-201] have pioneered the use of image processing 
techniques to accomplish this goal for synthetic and real porous 
material. Specifically, they have measured S1 and estimated .s of 
glass-bead samples and of sandstones [198,201], Moreover, they 
have devised an efficient means of obtaining and visualizing the 
three-point probabilty function [200,201 J. The reader is referred to 
the above references for further details regarding the implementation 
of the technique and its limitations. 

5. ADVANCES IN THE CALCULATION OF 
IMPROVED BOUNDS 

The aforementioned advances in the quantitative characterization of 
niicrostructure has paved the way to computing improved bounds 

Table 2. The three-point microstructural parameter (2 defined by (3.9) 
versus the particle volume fraction tbi for various random distributions of 
spheres (</ = 3): symmetric-cell materials with spherical cells [96,172]; 
identical overlapping spheres [94,119|, identical hard spheres [160], and 
the polydispersion of hard spheres calculated form (5.7) |165|". 

(pi 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.55 
0.6 
0.7 
0.8 
0.9 
0.95 
0.99 

Symmetric 
spherical 

cells 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.55 
0.6 
0.7 
0.8 
0.9 
0.95 
0.99 

Threc-pi 

identical 
overlapping 

spheres 

0.0 
0.056 
0.114 
0.17! 
0.230 
0.290 
0.320 
0.351 
0.415 
0.483 
0.558 
0.604 
0.658 

int parameter (2 

Identical 
hard spheres 

0.0 
0.020 
0.041 
0.060 
0.077 
0.094 
0.110 
0.134 

(0.0) 
(0.021) 
(0.040) 
(0.059) 
(0.077) 
(0.094) 
(0.102) 
(0.110) 

Polydispersed 
hard spheres 

0.0 
0.05 
0.10 
0.15 
0.20 
0.25 
0.275 
0.30 

" The unbracketed and bracketed values given tor identical hard spheres correspond 
to the simulation data oi' Miller and Torquato [ 160) and relation (5.4). respectively. 

on the effective conductivity, effective elastic moduli, trapping con
stant, and fluid permeability for nontrivial models of two-phase ran
dom heterogeneous materials. These developments have occurred 
largely in the last 5 years. 

5.1. Conductivity 

In the last 5 years, the following conductivity bounds have been 
computed: (i) three-point bounds (3.7) and (3.11) for distri
butions of identical overlapping spheres [94,119,124], polydis
persed overlapping spheres [152], identical impenetrable spheres 
[97,114,124,160,202] and polydispersed impenetrable spheres 
[165]; (ii) three-point bounds (3.10) for distributions of spheres in 
the penetrable-concentric-shell model [58] (for small <i>,) and im
penetrable spheres </>, [97,160]; (iii) three-point bounds (3.5) and 
four-point bounds (3.12) for transversely isotropic distributions of 
aligned, identical, overlapping cylinders [143,144], aligned, poly
dispersed, overlapping cylinders, aligned, identical impenetrable 
cylinders [203], and aligned, identical cylinders in the penetrable-
concentric-shell model [159|; (iv) two-point bounds (3.18) for 
anisotropic distributions of aligned, overlapping cylinders of finite 
aspect ratio [107] and of aligned impenetrable prolate and oblate 
spheroids [204]. Many of these advances are described in some 
detail below. 

5.1.1. Macroscopically isotropic media 

In almost all of the aforementioned calculations of bounds on the 
effective conductivity a , the key microstructural parameter that 
arises is C,, given by (3.8) for d = 2 and (3.9) for d = 3. Tables 
2 and 3 and Figs 23 and 24 summarize many of the results for 
C, for various random distributions of identical and polydispersed 
rf-dimensional spheres. 

Until the early 1980s, the only evaluation of C, was obtained 
for Miller's symmetric-cell material [172]: 

where G is a parameter which depends only on the shape of the cell 
and d = 2 or 3. This result [96] actually follows from the works 
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FIG 22. The scaled nuntriviul contri
bution to the two-point cluster function 
C'i(r) for "sticky" hard spheres for sev
eral values of oi with a stickiness pa
rameter r = 0.35. Here <?,"(/') = / r / V x 
in Vi in. These results are taken from 
Torquato et al [190]. 

Table 3. The three-point parameter (,3 defined by (3.8) versus the par
ticle volume fraction ©2 f°r various random distributions of aligned, 
infinitely long, circular cylinders: symmetric-cell materials with circular 
cells [96,205], identical overlapping cylinders [143,144], and identical 
hard cylinders calculated from (5.5) [203). 

01 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.95 
0.99 

Three-point parameter tS 

Symmetric 
spherical 

cells 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.95 
0.99 

Identical 
overlapping 

cylinders 

0.0 
0.062 
0.123 
0.186 
0.249 
0.312 
0.377 
0.444 
0.514 
0.590 
0.635 
0.687 

Identical 
hard 

cylinders 

0.0 
0.033 
0.064 
0.095 
0.124 
0.152 
0.179 
0.205 

of Miller [172) and of Silnutzer and Benin [205]. For example, for 
spherical (d = 3) or circular (d = 2) cells, Q = 0 , . For platelike 
((/ = 3) or ribbonlike (d = 2) cells, Q = r/> . It should be noted that 
five-point bounds on CTI have been computed for the special case 
of symmetric-cell materials [206,207]. 

The first comprehensive calculation of (,\ for a random model 
other than the symmetric-cell material was given by Torquato 
and Stell [92,94,119,124] for distributions of identical overlapping 
spheres ((/ = 3). Analogous two-dimensional calculations were 
made by Torquato and Beasley [ 143] and by Joslin and Stell [144]. 
Stell and Rikvold [152] and Joslin and Stell [153] showed that 
(,, for overlapping spheres (cylinders), was insensitive to poly-
dispersivity effects. For overlapping spheres, Berryman [208] and 
Torquato [ 114| independently noted that the first term in the volume-
fraction (©,) expansion of (, was a good approximation to (,\ over 
almost the whole range of <?;,. This is also true for d = 2 [ 143,144]. 

FIG 23. The three-point microstructural parameter cj delincd by (3.9) 
versus the particle volume fraction ©;> for various random distributions 
of spheres (d = 3): symmetric-cell materials (SCM) [96,172]; identical 
overlapping spheres (IOS) [95,119]; identical hard spheres (1HS) [160]; 
and polydispersed hard spheres (PHS) [165]. The 1HS result is obtained 
from the simulation data of Miller and Torquato [ 160] and the PHS result 
is obtained from (5.7). 

For (I = 3, for example, Torquato [114] showed that, to first order 
in 07 , (^ = 0.56150,, which is accurate to the number of significant 
figures indicated. The calculation of C for overlapping particles is 
actually relatively straightforward by virtue of the simplicity of S} 

for such models [cf relation (4.34)]. 
The evaluation of (3, for impenetrable particles, on the other 

hand, is considerably more complex. For such models, substitution 
of the appropriate integral relations for S [117] into the three-
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FIG 24. The three-point microstructural parameter (2 defined by (3.8) 
versus the particle volume fraction (> for various random distributions 
of aligned, inlinitely long, circular cylinders: symmetric-cell materials 
(SGY1) [96,205). identical overlapping cylinders (IOC) |143.144| and 
identical hard cylinders (IHC) [203] as calculated from (5.5). 

fold integrals (3.8) and (3.9) result in wi-fold integrals with m as 
large as 12. A general technique has been developed by Lado and 
Torquato [209] and Torquato and Lado [2031 to simplify signif
icantly these multidimensional integrals so that they either could 
be evaluated analytically or could be reduced to at most a man
ageable triple quadrature. The basic idea behind this procedure 
is to expand certain angular-dependent terms of the integrands in 
orthogonal polynomials and exploit the orthogonality properties of 
the appropriate basis set. This technique has been applied to the 
conductivity problem elsewhere [97] and to the problems of de
termining three-point bounds on the shear modulus [210,211] and 
fluid permeability [89]. 

Using a different procedure, Felderhof [202] computed (3, 
through third order in the sphere volume fraction 0, in the su
perposition approximation [cf (4.18)] for an isotropic, equilibrium, 
distribution of hard spheres. Beasley and Torquato [97] calculated 
(3, exactly through third order in ©, for this model and found 

C, = 0.210680, - 0.04693©; + 0.002470"}. (5.2) 

Torquato and Lado [ 114] evaluated (,", to all orders in 0, up to 0, = 

0.6 (ie, up to about 94% of the random-close-packing value) in the 
superposition approximation and noted the approximate linear be
havior for 0 < 0, < 0.4. Recent work by Stell and his colleagues 
(130] employing the more sophisticated "ladder" approximation for 
p, indicates that, at high values of 0, ie, 0, > 0.5), the superpo
sition approximation significantly overestimates (,• Subsequently, 
Miller and Torquato [ 160] carried out Monte Carlo computer simu
lations to determine (3, very accurately for equilibrium distributions 
of identical impenetrable spheres for 0 < 0, < 0.6. (Note that they 
actually simulated Torquato's [58) cluster bound (3.10) which, as 
noted earlier, is isomorphic to the three-point bounds (3.5) for this 
model but is easier to determine from simulations.) The simulation 
results for (3, have been compared to the superposition and ladder 
approximations of (3,, and to the linear and quadratic formulas 

(,=0.210680, (5.3) 

and 
(3 = 0.210680, - 0.046930;. (5.4) 

respectively, which are simply Eq (5.2) truncated after one and two 
terms. Remarkably, the quadratic formula (5.4), exact to second or
der in 0,, follows the simulation data very closely up to and includ
ing 0, = 0.5, which is very slightly above the value of the fluid-solid 
phase transition [123| (see Table 2). This indicates that third- and 
higher-order terms are negligibly small. Note that the linear term 
of (5.4) is actually the dominant one as evidenced by the fact that 
the linear formula (5.3), although not as accurate as the quadratic 
formula (5.5), is a good approximation to the data for 0, < 0.5. 
For 0.5 < 0, < 0.54, values in the metastable region, the quadratic 
formula (5.4) still provides the closest agreement with the data. For 
0.54 < 0, < 0.6, the linear formula (5.3) is the most accurate, with 
the quadratic formula (5.4) being the next most accurate calcula
tion. For the range 0 < 0, < 0.4, the superposition-approximation 
results for (3 are more accurate than the ladder approximation. On 
the other hand, for 0, > 0.5, the ladder approximation to (3, is supe
rior to the corresponding superposition-approximation results which 
significantly overestimate <3, in this high-density regime. Note that 
0, = 0.6 corresponds to about 95% of the random close-packing 
value 0; - 0 . 6 3 [132,133]. 

The significance of the fact that the low-density expansions of 
(,3 for systems of (/-dimensional spheres provide very good agree
ment with simulation data for a wide range of 0, has been discussed 
very recently by Miller and Torquato [160]. It suffices to note here 
that the accuracy of the quadratic formula (5.4) implies that (3 in
corporates primarily up to three-body effects to lowest order, even 
at high volume fractions: A result consistent with the fact that (, 
contains little information about the intrinsically many-body phe
nomenon of percolation. This is expected to be true for general 
statistically isotropic two- and three-dimensional distributions of 
disks and spheres, respectively, with a polydispersivity in size and 
an arbitrary degree of penetrability. This is a very practically useful 
conclusion since the exact calculation of (3, through second order 
in 0, for distributions of impenetrable particles is much easier to 
arrive at than the corresponding full density-dependent calculation 
which necessarily involves the use of some approximation of p, 
whose validity is usually questionable at high densities. 

It is useful to remark on the behavior of closely related 
three-point microstructural parameters. First, it was noted by 
Smith and Torquato [159] that (3 for three-dimensional distri
butions of particles is qualitatively very similar to correspond
ing two-dimensional analogs of (3 for transversely isotropic 
distributions of particles. The results reported in Refs 
93,114,124,143,144,152,153,159,160,203,208,212, and 213 cer
tainly confirm this observation. Second, it is also clear that the 
different microstructural parameter //,, which arises in three-point 
bounds on the effective shear modulus of two-phase composites 
[52,56], also shows the same general trends as <", for two- and three-
dimensional distributions of "particles [25,143465,208,211, 212], 
Accordingly, the exact expansions of all the aforementioned three-
point parameters through second order in 0, for such microgeome-
tries should yield accurate estimates of them for a wide range of 
0,. In all these cases the linear term should be the dominant one. 

Torquato and Lado [203[ computed the three-point Silnutzer 
bounds [53] and the four-point Milton bounds [96] on the effec
tive transverse conductivity a of random distributions of infinitely 
long, parallel, identical, circular hard cylinders in the superposition 
approximation. Torquato and Lado [203] had also computed (3, for 
this two-dimensional model exactly through second order in 0,: 

C = -f- - 0.057070,. (5.5) 

In light of the discussion above, (4.5) should be highly accurate for 
the range 0 < 0, < 0.7, 0, = 0.7 corresponding to about 87% of 
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the random close-packing value for disks (<#' ~ 0.81) [132,133]. 
This is also borne out by the general trends of the simulations of 
Sangani and Yao [214]. The superposition approximation result for 
(3, [203] is approximately linear for 0 < ®, < 0.5 but increasingly 
overestimates (,", for ©, > 0.5. Therefore, the superposition result 
[203] , for ©, > 0.5, is now superseded by relation (5.5) for this 
model. 

Smith and Torquato ] 159] computed the same three- and four-
point bounds for identical, aligned, infinitely long cylinders in the 
penetrable-concentric-shell model and hence computed Q as a func
tion of the impenetrability index A. Unlike most previous studies, 
this work considered the nonequilibrium random sequential addi
tion process. Their results are not included in Table 3 or Fig 24, 
however. For fixed ffl,, the effect of increasing A is to decrease (3,. 
as expected. 

Thovert et al [165] computed (3, exactly through first order in 
<P2 for impenetrable spheres with a polydispersivity in size. For 
the case of a bidispersed suspension with widely separated particles 
sizes, they found 

( ,= 0.35534©,. (5.6) 

For the instance of a polydisperse suspension containing ii different 
(n —» oc) and widely separated particle sizes , they found 

15 

C = 0.50, (5.7) 

This last microgeometry yields the largest effect due to polydisper
sivity. Note that the bidispersed result (5.6) lies exactly midway 
between the monodispersed result (5.3) and result (5.7). Miller and 
Torquato [215] are currently in the process of carrying out analo
gous two-dimensional calculations. They have found that (5.7) also 
applies to the corresponding polydispersed two-dimensional geom
etry. Thus, the effect of polydispersivity is again to increase (,",. 

Except for the case of polydispersed hard spheres, the phys
ical significance of the results for (, given in Tables 2 and 3 and 
Figs 23 and 24 and their interrelationships have been discussed by 
Torquato and Lado [114,203). For example, the reasons why (3, for 
overlapping equisized spheres always lies above the correspond
ing results for hard equisized spheres have been given by Torquato 
[114], Note that the effect of polydispersivity for hard spheres is to 
increase (3, relative to the monodisperse case. One might initially 
expect the converse to occur since (3, would then be approaching 
C, = 0, the value corresponding to the polydispersed composite-
sphere assemblage of Hashin and Shtrikman for a1 > ar Upon 
closer inspection it is clear that the average separation distance 
between the more conducting particles in the composite-sphere as
semblage is larger than in the polydispersed hard-sphere geometry. 
Hence, the latter possesses larger conducting clusters than the for
mer and, for that matter, the monodispersed hard-sphere system. 
Consequently, <3, for polydispersed hard spheres should increase, 
rather than decrease, relative to the corresponding monodisperse 
result. 

Torquato and Lado [203] have observed that (,", for cylinders 
(disks for d = 2), be they overlapping, nonoverlapping, possessing 
polydispersivity in size, and so on, are bounded from above by the 
symmetric-cell material result of <3, = d>1 (see Table 3 and Fig 24). 
Table 2 and Fig 23 apparently reveals the same conclusion for e/ = 3. 
A proof of this for a general class of rf-dimensional distributions 
of spheres has not yet been given. This would be a useful result if 
proven to be rigorously true for a class of sphere distributions since 
<3, would lie in the generally smaller closed interval [0,0,]. 

Before presenting calculations for the bounds on of for var
ious conductivity ratios o = ujav it is useful to discuss the ap
proximation (3.17) of Torquato [38], which will be used to access 
the accuracy of bounds for three-dimensional dispersions. To test 
(3.17), Torquato evaluated it for the benchmark model periodic ar
rays of spheres for the extreme case of superconducting particles 
(o = oo) using the tabulation of (3, given by McPhedran and Milton 

10 

FACE-CENTERED 
CUBIC 

BODY-CENTERED 
CUBIC 

0 A O DATA 
T H E O R Y 

0.0 0.2 0.4 

4»2 

0.6 0.8 

FIG 25. The scaled effective conductivity (T,/(T\ for <t = n1jci\ = oc 
versus the sphere volume fraction <:n for three cubic lattices. Solid lines 
represent predicted values from relation (3.17) and numerical data is 
obtained from Rcfs 217 and 218. 

[216] and compared it to exact numerical results for this idealized 
model [217-221]. These results are summarized in Fig 25, where it 
is seen that (3.17) provides excellent agreement up to the maximum 
volume fractions reported, that is, up to about 95% of the respective 
close-packing volume fractions. Thus, (3.17) does indeed capture 
the microstructure sensitiveness of a for three-dimensional disper
sions. 

Improved three- and four-point bounds on a are depicted in 
Figs 26-29 for distributions of equisized hard cylinders (d = 2) and 
hard spheres (d = 3) for various values of a. Included in these 
figures are corresponding two-point bounds. The figures depicting 
the cases (</ = 2) include new and accurate Brownian-motion simu
lation data for the "exact" effective transverse conductivity af due 
to Kim and Torquato [222], (Reference 222 uses first passage time 
analysis to speed significantly the execution time of the simulations; 
see also Ref 18.) Figure 29 for d = 3 and a = oo includes the ac
curate relation (3.17). For o = 10, the improved bounds are very 
sharp and provide significant improvement over two-point bounds 
(cf Fig 26). For a = 50, the bounds widen, as expected, taking into 
account the possibility of the formation of large conducting clusters 
in the system. However, the best improved lower bound provides a 
very accurate estimate of a (cf Fig 27). This is true because there 
are no large conducting clusters present in (/-dimensional, equilib
rium hard-sphere distributions for the range of volume fractions 
considered. For such models, interparticle contacts occur only at 
the random close-packing densities [see discussion below relation 
(4.18)]. In the extreme cases of superconducting particles (a = oc), 
the improved lower bounds still provide good estimates of ar for a 
wide range of </>, (see Figs 28 and 29). These results confirm the 
comments made in section 3.5 about the utility of bounds. 

Figure 30 compares the three-point bounds on a for the 
overlapping-sphere model to measurements [223] on the conduc
tivity of air-saturated sandstones with a = 80. Here the upper 
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10 

FIG 26. Bounds on <T,../<TI versus d>2 at « = vila\ = 10 for random 
distributions of oriented, infinitely long, hard cylinders: ( - - - ) 
two-point Hashin bounds [23]; (• • •) three-point Silnutzer bounds [53]; 
(—) four-point Milton bounds [69]. The black circles are computer 
simulation determinations of the "exact" scaled conductivity due to Kim 
and Torquato [222]. The improved bounds were computed using the 
relation (5.5) derived by Torquato and Lado [2031. 

a. 

0.2 0.4 

<t>2 

FIG 28. As in Fig 27, with a = 3C. Upper bounds do not appei 
they diverge to infinity. The four-point lower bound, however, 
relatively sharp estimate of a,ja\. 

ir since 
gives a 

O" 
€ 

0", 

FIG 27. As in Fig 26, with a = 50. 

FIG 29. Bounds on a,-/at versus in for superconducting hard spheres 
(o = oc): ( - - - ) two-point Hashin-Shtrikman lower bound [13]; 
(• • •) three-point Milton lower bound [98]. The three-point bound is 
computed using the simulation data of Miller and Torquato [160] for C:-
Included in the figure is the accurate approximation (3.17) denoted by 
the solid curve. 

bound provides an accurate estimate of a( since the conducting 
phase (sandstone) is above its percolation threshold. 

Figure 31 compares three-point lower bounds on <j( for a 
inonodispersion and polydispersion [corresponding to (5.7)] of hard 
spheres for the case a = oo. Included in the figure is the approx
imation (3.17) for the polydispersion and the two-point Hashin-
Shtrikman lower bound. 

5.1.2. Macroscopically anisotropic media 

Results are given here for the calculation of the two-point 
anisotropic bounds (3.18) on av for three-dimensional distribu
tions of inclusions aligned in the .xydirection which possess trans
verse isotropy and azimuthal symmetry (eg, circular cylinders and 
spheroids). In general, for such media, one has from relations 
(3.21)—(3.28) that the tensor a, arising in the Sen-Torquato [20] 
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FIG 30. Comparison of measured values of <T,/<T| for air-saturated 
sandstones (black circles) [223] to the two-point Hashin-Shtrikman |13| 
bound (—) and to three-point bounds [45,98] (— - - ) for equisized 
overlapping spheres, as a function of porosity 01. Here a = oi/a\ = 80, 
where phase 2 is the solid phase. 
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FIG 31. Bounds on a, Ja\ versus in for superconducting monodispcrscd 
and polydispersed hard spheres (ft = oo): (— — —) two-point Hashin-
Shtrikman bound 113]; (• • •) three-point Milton [98] lower bound for 
monodispcrscd spheres; (— • —•) three-point Milton [98] lower hound 
for polydispersed hard spheres computed using (5.7) as determined by 
Thovert et al [165[. Included in the figure is approximation (3.17) de
noted by a solid curve. 

bounds (3.18) is given by 

a, : 

where 

Q = lim 
-o 2ci 

-(?.<!>-, 

dx 

Q 0 0 

0 Q 0 

0 0 1 - 2 Q 

(5.8) 

d(cos0)P2(cos6/)[S.,(x) - 4>\\. 

(5.9) 
It can be shown [204] that for possibly overlapping spheroidal 

inclusions aligned parallel to the xyaxis with length 2b and maxi
mum diameter 2a, one has 

"'I 
1 + • 

1 

(b/a) 
1 - •In 

1 + X,, 

(5.10) 

Q=2 1 + 
(b/a) 

where 

X„ 

-tan" (x ) 

-X~b = a~/l>~ - 1-

- < 1 

(5.11) 

(5.12) 

Q depends only on the shape of the inclusion. For example, 
Q —> 1/3 for b/a —> 0, Q -» 1/2 for b/a -> oc, and Q -> 0 
for b/a —» 0. Torquato and Lado [204J obtained results (5.10) 
and (5.11) by employing a scaling relation for 5', which enables 
one to map results for possibly overlapping spheres (b/a = 1) into 
equivalent results for possibly overlapping spheroids of aspect ra
tio b/a. Willis [54] actually was the first to obtain results (5.10) 
and (5.11). He did so, elegantly, without explicitly evaluating the 
integral of (5.9) by employing a well-known result due to Eshelby 
for ellipsoids [224]. Thus, he did not note (or need) the afore
mentioned scaling relation for 5 , but, because of the nature of the 

derivation, did not draw an important conclusion, namely, the two-
point bounds for spheroids are insensitive to spatial correlations 
between the spheroids, that is, one gets the same answer whether 
the spheroids are penetrable or not. This is not true for inclusions 
of arbitrary shape; the microgeometry of overlapping cylinders de
scribed below is a case in point. 

Torquato and Sen [107] have recently computed (5.9) and thus 
the improved bounds (3.18) on a, for a distribution of oriented, 
overlapping, circular cylinders (of length 2b and diameter 2a) in a 
matrix. The length of each cylinder is directed along the a.yaxis. 
Figure 32 shows the bounds on the three diagonal components of the 
effective conductivity (a.).. (•/ = 1 , 2 , and 3) for conducting, slender 
rods (Q = 10 and b/a = 10). Figure 33 depicts the corresponding 
bounds for the case of insulating, penny-shaped cracks (a = 0.1 
and b/a =0 .1) . 

5.2. Elastic moduli 

In the last 5 years, the following elasticity bounds have been com
puted: (i) three-point bounds (3.51) and (3.54) for distributions 
of identical overlapping spheres [208,213], identical impenetra
ble spheres [25,114], identical interpenetrable spheres [225], and 
polydispersed impenetrable spheres [165]; (ii) three-point bounds 
(3.43) and (3.46) for distributions of aligned identical [144,212] 
and polydispersed [153] overlapping, infinitely long, cylinders and 
of aligned, impenetrable, infinitely long, identical [211] and poly
dispersed [215] cylinders. 

5.2.1. Macroscopically isotropic media 

In all of the aforementioned calculations of bounds on the elastic 
moduli of (/-dimensional isotropic media, the key parameters in
volved are <;,,, given by (3.8) for cl = 2 and (3.9) for d = 3, and ?/2, 
given by (3.35) for d = 2 and (3.36) for d = 3. As has been shown, 
(/, determines improved bounds on the effective bulk modulus K 
(for d = 3), transverse bulk modulus k (for </ = 2) and axial shear 
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FIG 32. The two-point Scn-Torquato [20] bounds on the scaled effec
tive conductivity diagonal components a,/a\ [a, = (<r),/] versus c« 
for a composite containing conducting (n = 10), slender (b/a = 10) 
overlapping cylindrical inclusions [107], The dashed lines are bounds 
for (a, )| i = (<r, )2i and the solid lines are bounds for (a, h i . 
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FIG 33. The two-point Sen-Torquato [20] bounds on the scaled effective 
conductivity diagonal components a,/o\ [a, = (a,),,] versus 02 for 
a composite containing nonconducting (« = 0.1), overlapping penny-
shaped (b/a =0.1) cracks [107]. The clashed lines are bounds for 
(ov)ii = ((T<-)22 and the solid lines are bounds for (ovb.v 
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FIG 34. The three-point microstructural parameter i)2 defined by (3.36) 
versus the particle volume fraction <;V> for various random distributions 
of spheres (<l = 3): symmetric-cell materials (SCM) [53,96); identical 
overlapping spheres (lOS) [213]; identical hard spheres (IHS) [225]; and 
polydispersed hard spheres (PHS) [165]. The IHS and PHS results are 
obtained from (5.15) and (5.18). respectively. 

^ 

modulus ft (for transversely isotropic fiber-reinforced materials). 
On the other hand, ?/, has been shown to determine bounds on the 
effective shear modulus G( for both d = 2 and d = 3. Tables 
4 and 5 and Figs 34 and 35 summarize many of the results for 
7/, for various random distributions of identical and polydispersed 
d-dimensional spheres. 

Until 1985, the only calculation of 77, was made for symmetric-

FIG 35. The three-point microstructural parameter r/2 defined by (3.35) 
versus the particle volume fraction 4>i f°r various random distributions 
of aligned, infinitely long, circular cylinders: symmetric-cell materials 
(SCM) [96,205]; identical overlapping cylinders (IOC) [144,212]; and 
identical hard cylinders (IHC) [211]. The IHC result is obtained from 
(5.16). 
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Table 4. The three-point microstructural parameter ip_ defined by (3.36) 
versus the particle volume fraction <bj for various random distributions of 
spheres (d = 3): symmetric-cell materials with spherical cells [53,96); 
identical overlapping spheres [213], identical hard spheres calculated 
from (5.15) [225], and the polydispersion of hard spheres calculated 
from (5.19) [165]. 

07 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.95 
0.99 

Symmetric 
spherical 

cells 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.95 
0.99 

Three-point parameter ; 

Identical 
overlapping 

spheres 

0.0 
0.075 
0.149 
0.224 
0.295 
0.367 
0.439 
0.512 
0.583 
0.658 
0.710 
0.742 

Identical 
hard 

spheres 

0.0 
0.048 
0.097 
0.145 
0.193 
0.241 
0.290 

2 

Polydispersed 
hard 

spheres 

0.0 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 

Table 5. The three-point parameter m, defined by (3.35), versus the 
particle volume fraction <j>i, for various random distributions of aligned, 
infinitely long, circular cylinders: symmetric-cell materials with circular 
cells [96,205], identical overlapping cylinders [ 144,212), and identical 
hard cylinders calculated from (5.16) [211]. 

07 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.95 
0.99 

Thr 

Symmetric 
spherical 

cells 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
0.95 
0.99 

:e-point parameter 

Identical 
overlapping 

cylinders 

0.0 
0.084 
0.167 
0.250 
0.331 
0.411 
0.490 
0.568 
0.644 
0.720 
0.760 
0.801 

'12 

Identical 
hard 

cylinders 

0.0 
0.070 
0.140 
0.211 
0.283 
0.356 
0.430 
0.505 

cell materials [172]: 

i), = fa +(?>, -fa)\(%H - 3 ) - 4 ( 4 G - 1)], d = 2, (5.13) 

IK=4>-, + — - M 4 ( 5 i i - 1 ) - 5 ( 9 G - I)]. r/ = 3, (5.14) 
6 

where E, G, and H are parameters which depend only on the 
shape of the cell. These results [96] actually follow from the work 
of Silnutzer [53J and Silnutzer and Beran [2051. For example, for 
spherical (d = 3) or circular (d = 2) cells, //, = fa. For platelike 
(d = 3) and ribbonlike (d = 2) cells, r/, = cj> 

The first thorough evaluation of r/, for a random model other 
than the symmetric-cell material was obtained independently by 
Torquato, Stell, and Beasley [213] and by Berryman [208] for 
distributions of identical overlapping spheres. Analogous two-
dimensional calculations were obtained independently by Torquato 
and Beasley [212] and by Joslin and Stell [144], Joslin and Stell 

[153] demonstrated that •//,, like C,, was insensitive to polydisper-
sivity effects for the special case of overlapping cylinders. 

Sen, Lado, and Torquato [25] were the first to compute ;/, to 
all orders in fa for distributions of identical impenetrable spheres 
in the superposition approximation. They simplified the multidi
mensional integrals [210] involved using the previously described 
technique employed for Q1 [204,209], Torquato, Lado, and Smith 
[225) evaluated i]1 exactly through first order in ©, for interpen-
etrable spheres and in the totally impenetrable-sphere limit. They 
found 

?/, = 0.482746,. (5.15) 

In light of the discussion in section 5.1, the relation (5.15) should 
serve as an accurate estimate of r/, for 0 < ©, < 0.6. As in the case 
of C,, the superposition result for r/, [25] is approximately linear 
for 0 < fa < 0.4 but for fa > 0.4 increasingly overestimates ?/ 
Again the superposition result [25] is now superseded by (5.15) for 
large fa, which is generally more accurate for this model. 

Recently, Torquato and Lado [211] computed //, for the cor
responding two-dimensional model of distributions of impenetrable 
disks (cylinders). They found for d = 2 that the parameter through 
second order in fa is exactly given by 

,h = ^ ^ + 0 . 0 4 2 8 ^ . (5.16) 
~ 8 1 " 

Thovert et al [165] calculated •/;., exactly through first order in 
fa for impenetrable spheres (rf = 3) with a polydispersivity in size. 
For the instance of a bidispersed suspension with widely separated 
particle sizes, they obtained 

r/2 =0 .491370, . (5.17) 

For the case of a polydispersed suspension containing n different 
(74 —» oo) and widely separated particle sizes, they obtained 

?/, = 0 . 5 0 , . (5.18) 

Again, it is found that the bidispersed result (5.18) lies exactly mid
way between the monodispersed result (5.15) and the polydispersed 
result (5.19), which as before corresponds to the geometry which 
yields the largest polydispersivity effects. Observe that the effect of 
polydispersivity on r/, is considerably smaller than the correspond
ing effect on (, . Miller and Torquato [215] have found that (5.18) 
also applies to the corresponding polydispersed impenetrable-disk 
(cylinder) geometry. Thus, the effect of polydispersivity here (un
like three dimensions) is to decrease r/,. 

It is noteworthy that, for all of the above reported results for 
distributions of d-dimensional spheres (symmetric cell materials, 
overlapping and nonoverlapping spheres with a size distribution, 
etc), the inequality 

• ' / 2 >C, (5.19) 

is obeyed (see Tables 2-5 and Figs 23, 24, 34, and 35). A general 
rigorous proof of this relation for a class of sphere distributions has 
not yet been given. Indeed, the observation (5.19) has heretofore 
not been made. 

Observe from the same tables and figures that A/, for general 
systems of (/-dimensional spheres appear to be bounded from above 
by the symmetric-cell result r/, = fa. As in the case of C,, a proof 
of this bound for a class of sphere distributions has not yet been 
given. If this and relation (5.19) are rigorously true, then ?/, will 
lie in the generally smaller closed interval [£,. fa\ for this class of 
models. 

As noted earlier, for transversely isotropic fiber-reinforced me
dia the effective transverse bulk modulus k , transverse shear modu
lus G(, and axial shear modulus //. will be considered here. Results 
for the effective transverse conductivity a translate immediately 
into equivalent results for //. [23] by making the following change 
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FIG 36. Bounds on the scaled effective axial shear modulus /(,/G'i 
versus Oi for a glass-epoxy fiber-reinforced composite composed of 
fibers which are identical, impenetrable cylinders: ( - - ) two-point 
Hasllin bounds [23,481; (• • •) three-point Silnutzer bounds [53]; (—) 
four-point Milton bounds [69]. Improved bounds are computed using 
(5.5) derived by Torquato and Lado [203]. 

FIG 37. Bounds on the scaled effective transverse bulk modulus A', ,/A| 
versus 02 for a glass-epoxy liber-reinforced composite composed of 
libers which are identical, impenetrable cylinders: ( - - - ) two-poinl 
Hasllin bounds [48); (—) three-point Silnutzer bounds [53]. Improved 
bounds are computed using (5.5). 

of variables: <r| —> Gt and a —> /< Thus, (3.5) and (3.12) with 
d = 2 give three- and four-point bounds on /<( and consequently 
Figs 26-28 for aj(j[ also show bounds on /' / G , for identical 
impenetrable cylinders which are stiller than the matrix. The four-
point lower bound is seen lo provide very good estimates of /< JG{ 

when compared to the reported simulation dala. 
Figure 36 shows two-, three-, and four-point bounds on the 

scaled effective axial shear modulus /.i /G] a distribution of im
penetrable cylinders corresponding to a glass-epoxy composite for 
which C / G , = 22, GJK^ = 0.21, and G \ / A \ = 0.46. Here 
relation (5.5) is used for C,-,. Based upon the previous observations, 
the four-point lower bound gives a highly accurate estimate of ^ 
for this commonly employed fiber-reinforced material. 

Figure 37 depicts the three-point Silnutzer bounds (3.43) on the 
scaled effective transverse bulk modulus k jk{ for the same model 
corresponding to a glass-epoxy composite for which GJ/G] = 
22, GJKX = 0.21, and GJK, = 0.46. Relation (5.5) is again 
used for Q. Included in the figure are two-point bounds. The 
three-point bounds provide significant improvement over the two-
point bounds and are tight enough to yield good estimates of k( for 
a wide range of cylinder volume fractions. 

Figure 38 shows the two- and three-point bounds on the 
scaled effective transverse shear modulus GJGX for the same 
impenetrable-cylinder model corresponding to a glass-epoxy com
posite with G2/Gi = 22, GJKS = 0.21, and G , / / v , = 0.46. Here 
relation (5.16) is used for ?/,. Again, the three-point lower bound 
should yield a good estimate of G for a wide range of (/>-,. 

In the case of three-dimensional suspensions of impenetra
ble spheres, the relative improvement of the three-point bounds 
on the effective bulk modulus A' and shear modulus Gr over 
two-point bounds is very similar to the analogous two-dimensional 
instances just described. Hence, it suffices here to compare the 
three-point bounds (3.54) on G,, using (5.15), to the two-point 
Hashin-Shtrikman bounds [14] and to experimental data for spher
ical glass beads in an epoxy matrix [226], It is seen in Fig 39 

that the three-point bounds provide significant improvement over 
the two-point bounds. Moreover, for reasons mentioned earlier, the 
data lie closer to the three-point lower bound. 

Thovert et al [165] have shown that for impenetrable spheres 
with a size distribution, the effect of polydispersivity in three-point 
bounds on A"( is quantitatively similar to the one they observed 
on three-point bounds on the effective conductivity a (cf Fig 31). 
However, they found the effect of polydispersivity in the case of 
G( to be considerably smaller than in the instance of A"( or a . 

5.2.2. Macroscopically anisotropic media 

Willis [8,53] has also found two-point bounds on the effective stiff
ness tensor C , for the special case of oriented ellipsoidal inclusions. 
Using Eshelby's [224] construction, one can express these two-point 
bounds in terms of volume fractions and quantities which, as in the 
anisotropic conductivity problem described in seclion 5.1.2, depend 
only on the inclusion shape. 

5.3, Trapping constant 

In the last 4 years, the following trapping constant bounds have been 
evaluated: (i) two-point interfacial-surface lower bound (3.63) for 
distributions of identical impenetrable spherical sinks [227j, over
lapping spherical sinks with two different sizes [154], and identical 
spherical sinks in the penetrable-concentric-shell model for small ©, 
[26]; (ii) three-point multiple-scattering lower bound (3.64) for dis
tributions of identical overlapping spherical sinks [26] and spheres 
in the penetrable-concentric-shell model for small cj>, [26]; (iii) two-
poinl void lower bound (3.68) for statistically anisotropic distri
butions of oriented, impenetrable spheroidal sinks [204]; and (iv) 
security-spheres upper bound (3.69) for distributions of identical 
impenetrable spherical sinks [88J. Many of these results are now 
described more fully using the definition of the trapping constant ~, 
given by (2.18). (Note that other definitions exist which differ by 
factors involving either the porosity <p or diffusion coefficient D 
or both—see Refs 228 and 229 for further explanation.) 
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FIG 38. Bounds on the scaled effective transverse shear modulus 
G, /C'i versus 02 for a glass-epoxy eoniposile composed of libers which 
are identical, impenetrable cylinders: (- ) two-point Ilashin bounds 
[48J; (—) three-point Silnut/.er bounds [53]. Improved bounds are com
puted using (5.16) derived by Torquato and Lado [2111. 

The two-point intcrfacial-surface lower bound (3.63) has been 
evaluated by Torquato [2271 for identical impenetrable spherical 
traps. This bound on the scaled trapping constant ~/'!n is depicted 
in Fig 40, where it is compared to Brownian-motion simulation 
data due to Lee et al [229| and to the survival probability theory of 
Richards [230). Here 

= 4TT/;/? = 3o,/7?~ (5.20) 

is the infinitely-dilute-lim.it Smoluchowski result. Two observations 
are worth noting: (i) even though the bound contains only two-
point information it is relatively close to the simulation data, and 
(ii) Richards' theory violates the bound for o , > 0.5. 

The same bound has been computed for identical overlapping 
spheres [851 and for dilute concentrations of identical spheres in 
the penetrable-concentric-shell or cherry-pit model |26 | . The latter 
bound is given by 

1 + 
15 _ ~> 5 

y , \ ) o, + 0(o;). (5.21) 

The bound gives the exact Smoluchowski result 7 . The next term 
accounts for interactions between pairs of sinks; as the impenetra
bility parameter A increases, the second-order coefficient increases, 
as expected, since the surface area available for reaction increases. 

The two-point interfacial surface bound has also been com
puted for fully penetrable spherical sinks having two different sizes 
by Miller and Torquato |154J. It was found that the trapping con
stant 7 for the polydisperse case increased or decreased (relative 
to the monodisperse case), depending upon whether the relative 
interfacial surface area increased or decreased. 

For identical fully penetrable sinks, the three-point multiple-
scatter lower bound has been evaluated analytically by Rubinstein 
and Torquato [26]: 

7 - I n * . 
— > — — L - (5.22) 

$2 

FIG 39. Bounds on the scaled effective shear modulus G,/Gi versus 
O; lor glass spheres in an epoxy matrix: (— — —) two-point Hashin-
Shtrikman bounds 114]; (—) the three-point Milton-Phan-Thien bounds 
|56|. Included is experimental data due to Smith [226]. The improved 
bounds are computed using (5.15) derived by Torquato el al [225]. 
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FIG 40. The scaled trapping constant 7/70 for identical, impenetrable 
spherical traps versus o^. Included is Richards' theory [230], the two-
point interfacial surface bound computed by Torquato (227), and the 
Brownian-motion simulation data of Lee et al [229], 
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They also evaluated this bound for dilute spheres in the cherry-pit 
model and found 

r 3 ,, 4 9 3 , i 
— > \+\~- - A ( + 3A4 + - A + - ( I - 4 A - ) l n ( l + 2A) o,+0(6;). 
7(j L 2 5 5 J - -

(5.23) 
Comparing (5.23) to the corresponding result (5.21) for the two-
point interfacial-surface bound reveals that for 0.6 < A < 1, the 
former is sharper than the latter, but the converse is true for 0 < 
A < 0.6. The reason for this behavior is described in full detail in 
Ref 26. 

Bounds (5.21) and (5.23) do not capture the nonanalytic de
pendence on <!>-, due to screening effects for c6, < < 1. Under dilute 
conditions for impenetrable sinks (A = 1), one exactly has [33,35] 

7/7^ = 1 + \ / 3 o , + higher order terms (5.24) 

It is difficult to construct trial fields in variational principles which 
incorporate screening and simultaneously satisfy the conditions of 
(3.62). The fact that current bounds do not yield the correct behav
ior at small ©, is not of practical concern since for real materials </», 
is large (or the porosity <i>l is small) and screening effects become 
important in this regime. 

For the statistically anisotropic model of oriented, possibly 
overlapping, spheroidal traps of length 26 and maximum diameter 
2d at number density /;, the two-point void lower bound has been 
determined by Torquato and Lado |2()4|. They have found that 

(!>2f(b/a) 

4a2 h\. ' 

where 
471 h 

(5.25) 

(5.26) 

the density-dependent parameter 

Ks(<;>2)= / x\S2(x)-<;>]](!., 

refers to isotropic distributions of spheres of radius a = R (with 
.;: = r/la a dimensionless distance), and 

f (!>/<>) = < 

2 A,,/ In 

A„ 

1 + A,., 

• - x,, 
b > a 

(5.28) 

I t a r r ' C v , ) ' 
b < a 

and xl = ~x\ >s defined by relation (5.12). Thus, given the eval
uation of the void bound for spheres with an arbitrary degree of 
impenetrability, 

-f>(^)/(4a2Ks). (5.29) 

one can obtain corresponding results for oriented, prolate and oblate 
spheroids by normalizing the former with the shape-dependent fac
tors of (5.28). Note that the same shape factors also arise in the 
aforementioned two-point conductivity bounds (3.18) for such a 
model via the dependence on the parameter Q given by (5.10) 
and (5.11) for prolate and oblate spheroids, respectively. Unlike 
the bounds (3.18), however, the bound (5.25) also depends on the 
volume fraction <f>2 in a complex fashion through the parameter 
Kv(<j),). Now since /(/>/«) > 1 for b/n < 1, the void bound for 
oblate spheroids is always larger than for spheres (b/n = 1). Sim
ilarly, since f(b/a) < 1 for bja > 1, the void bound for prolate 
spheroids is always smaller than for spheres. Thus, the void bound 
captures the essential physics of the true behavior of the trapping 
constant for spheroids relative to spheres. 

Torquato and Rubinstein [88] have shown that for dilute con
centrations of spheres of radius a 

h's ~ ci>,/10 ( e , < < 1) 

and thus (5.25) yields 

7 > 5C)-,/2a2 (fi>, < < 1). 

(5.30) 

(5.31) 

which implies thai, unlike other two-point bounds, it does not give 
the Smoluchowski result (5.20) in the infinitely dilute limit. Sub
stitution of (5.30) into (5.25) yields the corresponding result for 
spheroids at the same number density of spheres: 

7 > 5&,/2(Cf(l>/(i) (©, < < 1). (5.32) 

This is to be compared to the exact dilute-limit for spheroids given 
by 

7„ = (3©,/<r)/(<y«). (5.33) 

Thus, the void bound does give the correct shape dependence on 
the spheroid and in fact is exact lo within a factor of 5/6. 

Security-spheres upper hounds on 7 have been computed for 
a simple cubic lattice of identical, impenetrable spherical sinks 
[26,88J to all orders in 0,. For example, bound (3.69) for such 
a system is given by 

7/7 < 1 + i.82«v +O(0:"). (5.34) 

This upper bound is of the same form as the exact result of Felderhof 
[231 j whose coefficient of ©,'''' is 1.76 and therefore (5.34) does 
indeed give an upper bound. These authors also computed security-
spheres upper bounds for random spheres at low concentrations 
approximately. They are in the process of evaluating such bounds 
to all orders in (t>1 using sophisticated expressions for H;,(r) such 
as the types described in section 4. 

(5.27) 5.4. Fluid permeability 

In the last four years, the following fluid permeability bounds have 
been calculated: (i) two-point interfacial-surface upper bound (3.81) 
for distributions of identical impenetrable spheres [122], overlap
ping spheres with a polydispersivity in size [155], and identical 
spheres in the penetrable-concentric-shell model for small 0^ (87); 
(ii) three-point multiple scattering upper bound (3.82) for identical 
overlapping as well as impenetrable spheres [89] and spheres in 
the penetrable-concentric-shell model for small </>, [28,87]; (iii) an 
optimized three-point multiple-scattering upper bound for identical 
impenetrable spheres [89] and; (iv) security-spheres lower bound 
(3.87) for arrays of identical impenetrable spheres |28,111]. Many 
of these results are discussed in detail below. 

The two-point upper bound (3.81) on k has been calculated by 
Torquato [122] for flow around random arrays of identical impen
etrable spheres of radius It for a wide range of (/>,. The equivalent 
two-poinl lower hound on the inverse permeability or resistance 
k"' is plotted in Fig 41 along with other results described below. 
The same bound has been computed for dilute concentrations of 
identical spheres of radius Ft in the cherry-pit model by Torquato 
and Beasley [87]. This lower bound is given by 

A-
> 1 + 

15 25 
— + y A ) +£>((•>;). 

where 

A-
2 It1 

9(i>, 

(5.35) 

(5.36) 

is the infinitely-dilute-limit Stokes result. Note that this result for 
the scaled resistance is identical to (5.21) for the scaled trapping 
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FIG 41. Comparison of improved bounds on die scaled fluid resistance 
k„/k for random arrays of identical, hard spheres versus ©i- Included 
is the two-point interfacial-surface lower hound computed by Torquato 
[122], optimized three-point multiple-scattering bound derived and com
puted by Beasley and Torquato [89 J, the empirical Kozcny-Girman re
lation (5.40), and a new bound computed from the permeability-trapping 
constant relation (2.26) and data for 7 for this model (229], 

$7 

FIG 42. Two-point interfacial surface lower bound on the scaled fluid 
resistance k„/k for polydispersed. overlapping spherical grains versus 
02 as computed by Torquato and Lu [155]. The radii are distributed ac
cording to the Schulz distribution (4.77). The degree of polydispersivity 
increases as z increases (~ = oc corresponding to the monodisperse 
case). 

constant. Again, its before, the effect of increasing the impenetra
bility index A is to increase the scaled resistance. 

Recently, the interfacial-surface bound has been computed for 
overlapping spherical grains with a continuous size distribution. 
These results are summarized in Fig 42 where the scaled resistance 
k jk is plotted versus the sphere volume fraction (i>, for the Schulz 
distribution (4.77). The generalized dilute Stokes result for poly
dispersed spheres is given by 

A( = (2/?3)/(9/?«\). (5.37) 

Increasing the degree of polydispersivity (ie, decreasing z), de
creases the specific surface (relative to the monodisperse limit) and 
thus decreases the fluid resistance. Interestingly, scaling the bound 
on the resistance A,_l by the square of the specific surface (relative 
to the monodisperse case) gives effectively universal behavior at 
fixed volume fraction, that is, given the monodisperse result, one 
can compute the bound on A'-' for any degree of polydispersivity. 
Note that for any degree of polydispersivity, the two-point bound 
on A: /A- is not exact in the limit (/>, —> 0. 

For identical overlapping spheres, the three-point multiple-
scattering bound (3.82) yields [28] 

A ; 

T 
In d), 

(5.38) 

This bound was first derived by Weissberg and Prager (841 using 
a different procedure. The same bound for dilute random arrays 
of identical spheres in the cherry-pit model was given by Torquato 
and Beasley [87], They found 

A 

4 6 
A 

-A + - ( l +3A2)ln(2A+ 1) 
8 4 

A(l +7A) 

Tb(2A + 1 )2 + *16(2l+ I)4 <!>-, + 0(c'>;). (5.39) 

Note that (5.23) and (5.29) are not the same for A > 0. Comparing 
the two-point interfacial bound (5.35) on k Jk to (5.39) reveals 
that the latter is sharper than the former for 0.52 < A < 1 with the 
converse holding for 0 < A < 0.52. 

The variational principle (3.77) was recently employed by 
Beasley and Torquato [89] to derive an optimized three-point 
multiple-scattering upper bound on k for possibly overlapping 
spheres that is sharper than (3.82) for 0 < A < 1, This was 
evaluated for identical impenetrable spheres in the superposition 
approximation and is shown in Fig 41. The superposition approx
imation is accurate for 0 < &J < 0.45 but increasingly overesti
mates k Jk for 0 , > 0.45. Included in the figure is the well-known 
Kozeny-Carman empirical relation 

A lOoX 

(1 
(5.40) 

Also included in Fig 41 is a "new" bound on kJk for this 
model which was obtained by utilizing "exact" data for the scaled 
trapping constant 7/7,, due to Lee et al [229] and the permeability-
trapping constant relation (2.26). Thus, the new bound is sharper 
than the best available variational bound on k/k. It also is the 
closest that any rigorous estimate of kjk has come to the Kozeny-
Carman empirical relation. 

The simulation data of Lee et al [229] for 7 / 7 in the cherry-
pit model (at selected values of the impenetrability index A) and 
of Miller and Torquato {154j of 7/7^ for polydispersed spherical 
traps, in conjunction with (2.26), lead immediately to new lower 
bounds on kjk for these models. 

The security-spheres bound (3.87) has been computed exactly 
(to all orders in </>.,) for a simple cubic lattice of identical impene
trable spheres [28,11 1] and approximately for a dilute random array 
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of such spheres. In the former case, one finds the upper bound 

kjk < 1 +2 .79^ / 3 + 0(<a;/3). (5.41) 

This bound is of the same form as the exact result of Hasimoto 1232 ] 
whose coefficient of 4h is 1.76 and therefore (5.41) is indeed an 
upper bound. Torquato and Rubinstein are in the process of com
puting (3.87) to all orders in </>,, for random spheres using accurate 
expressions for Hr(r) such as the types discussed in section 4.7. 

5.5. Remarks 

It has been demonstrated that improved bounds, such as three- and 
four-point bounds, can provide relatively sharp estimates of the ef
fective properties for a wide range of conditions, even when the 
bounds are not tight. From a practical point of view this con
clusion is encouraging since the measurement of five-point and 
higher-order correlation functions of real heterogeneous materials 
is beyond presently available technology. 

6. CONCLUDING REMARKS 

In light of the fact that it is generally impossible to determine ex
actly the effective properties of random heterogeneous media, any 
rigorous statements about effective properties must take the form 
of inequalities, that is, bounds. Although some improved bounds 
have been in existence for nearly three decades, they have until 
recently lied dormant and untested because of the difficulty asso
ciated with ascertaining the various types of correlation functions 
involved, even for simple models such as random arrays of nonover-
lapping spherical particles. It is largely in the last 5 years that this 
impasse in microstructure characterization has been broken. In this 
regard much is now known about simple model microstructures, 
such as isotropic distributions of identical, possibly overlapping 
d-dimensional spheres, as well as more complex models, such as 
isotropic arrays of (/-dimensional spheres with a polydispersivity 
in size and anisotropic particulate media. More recently, meth
ods have been developed to describe the microstructure of general 
nonparticulate media. An important theoretical advance has been 
the introduction and representation of the general «-point distribu
tion H from which one can derive and compute any of the vari
ous types of correlation functions that have arisen in the literature 
and their generalizations. These recent theoretical and experimental 
advances in the quantitative characterization of the microstructure 
have enabled investigators to compute improved bounds for non-
trivial models and real materials for the first time. 

This review has demonstrated that improved bounds are useful 
because: 

1. They rigorously incorporate nontrivial information about the 
microstructure via statistical correlation functions and conse
quently serve as a guide in identifying appropriate statistical 
descriptors. 

2. As successively more microstructural information is in
cluded, the bounds become progressively narrower. 

3. One of the bounds can provide a relatively sharp estimate of 
the property for a wide range of conditions, even when the 
reciprocal bound diverges from it. 

4. They are usually exact under certain conditions. 

5. They can be utilized to test the merits of a theory or computer 
experiment. 

6. They provide a unified framework to study a variety of dif
ferent effective properties. 

Improved bounds have not only been shown to yield accurate 
estimates of effective properties of simple isotropic morphologies 
(eg, arrays of spheres), cases in which one may prefer to use a sim
pler approximation scheme, but also of more complex microstruc
tures such as suspensions of polydispersed particles and anisotropic 
arrays of inclusions. For these and other complex morphologies (eg, 
bicontinuous media and inhomogeneous media), the few available 
approximate formulas are of dubious value since they typically only 
account for the barest of microstructural information. It is for com
plex microstructures that bounds make the most significant practical 
impact. 
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