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Three-point bounds on the effective conductivity o, of isotropic two-phase composites, that
improve upon the well-known two-point Hashin~8hirikman bounds {J. Appl. Phys. 23, 779
(1962} ], depend upon a key microsiructural parameter §,. A highly accurate approximation
for o, developed by Torguato {J. Appl. Phys. 58, 3790 (1985) ] also depends upon £, . This
paper reports a new and accurate algorithm to compute the three-point parameter ¢, for
dispersions of hard spheres by Monte Carlo simulation. Data are reported up to values of the
sphere volume fraction ¢, near random close-packing and are used to assess the accuracy of
previous analytical calculations of £, . A major finding is that the exact expansion of £,
through second order in ¢, provides excellent agreement with the simulation data for the
range 0<¢, <0.5, i.e., this low-volume-fraction expansion is virtually exact, even in the high-
density region. For ¢, > 0.5, this simple guadratic formula is still more accurate than other
more sophisticated calculations of §,. The linear term of the quadratic formula is the dominant
one. Using our simulation data for {,, we compute three-point bounds on the conductivity o,

and Torquato’s approximation for o, .

I. INTRODUCTION

Prediction of effective material properties (e.g., trans-
port, mechanical, and electromagnetic properties) of disor-
dered composite media is a problem of considerable funda-
mental importance and has in recent years been the subject
of numerous studies (sec Refs. 1 and 2 and references there-
in). The ability to predict such properties from a knowledge
of the microstructure is desireable from both the practical
design and theoretical standpoints. However, to exactly pre-
dict such effective properties, an infinite set of correlation
functions which statistically characterize the microstructure
must be known. In practice, these correlation functions are
never known, except in a very few special cases, making ex-
act determination of the macroscopic property generally im-
possible for even the simplest of random models such as ran-
dom arrays of parallel hard cylinders or hard spheres.

A useful aliernative to predicting property values exact-
ly is the determination of rigorous bounds on the properties
which require only limited microsiructural information.
Rigorous upper and lower bounds are atfractive in several

espects: (1) they allow one to test the vaiidity of a theory or
computer-simulation result; (2) as more microstructurai in-
formation is included, the bounds become progressively nar-
rower; and (3) one of the bounds often provides relatively
accurate estimates of the actual property value, even in the
case where the reciprocal bound diverges from it. Thus, the
calculation of bounds is of significant theoretical and practi-
cal value.

For two-phase isotropic composites, Hashin and Shtrik-
man® derived the best bounds on the effective thermal (or
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electrical) conductivity o, given just the phase volume frac-
tions ¢, and ¢,. Beran® and Torquato,” employing classical
variziional principles, have derived different but related
three-point bounds on the conductivity of two-phase isotrop-
ic composites which improve upon the Hashin-Shtrikman
pounds. Beran’s bounds were derived using trial fields based
on the first two terms of the exact “perturbation” expansion
and thus were applicable to two-phase media of arbitrary
topology. Torquato utilized trial fields based on the first two
terms of the exact “cluster” expansion for a dispersion of
spherical particles in a matrix to derive so-called cluster
bounds. The three-point perturbation and cluster bounds in-
corporate different types of statistical correlation functions
up to the three-point level.

Enterestingly, for the special case of totally impenetrable
spheres (i.e., hard spheres) dispersed in a matrix, the pertur-
bation and cluster bounds have been shown to be identical®
and depend upon a key microstructural parameter ¢,. The
quantity £, (defined below) is a multidimensional integral
involving the three-point probability function S, (r,.r,,1;)
which gives the provability of simultaneously finding three
points atr,, r,, and r, all in one phase, say the matrix phase.
S, is a functional of the radial distribution function g, (#)
and the three-particle distribution function g, (75,713,723 }
for hard spheres.” Although g, (#) is known very accurately
for hard spheres, g; for arbitrary sphere volume fraction ¢,
1s known only approximately analytically. Beasiey and Tor-
quato® computed £, exactly through third order in ¢, for an
equitibrium distribution of hard spheres. Torquate and
Lado® were the first to compute £, for such a model to all
orders in ¢, using the well-known Kirkwood superposition
approximation for the three-particle distribution function:

&3 (raiatas g (P2 )82 (P13 )25 (a3 ). {H
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Recently, Blawzdziewicz and Stelf’ employed a more com-
plicated but accurate approximation to g, called the *“lad-
der” approximation, in order to compute the integral £,.
However, there are still no exact data for §, to all orders in
&, for the nseful hard-sphere model and hence an assessment
of the accuracy of the aforementioned approximations has
not heretofore been possible.

As an alternative to analvtical evaluation of the bounds,
simulation technigues may be used to determine “‘exactly”
the value of the multidimensional integral £, . The resulting
data can then be used as a benchmark to which the various
theories and approximations may be compared. The purpose
of this paper is to compute £, exactly for an equilibrium
distribution of equisized hard spheres from Monie Carlo
computer simulations and to use this information to deter-
mine three-point conductivity bounds exactly for the afore-
mentioned microstructure.

In Sec. 1f the parameter &, is defined and related to the
three-point cluster bound of Torquato. In Sec. III we de-
scribe the simulation technique used to compute £, for dis-
tributions of hard spheres. In Sec. IV we present results of
the simulation and compare the data to several analyticai
calculations of £,. Three-point bounds on the effective con-
ductivity of a suspension of hard spheres using our evalua-
tion of §, arve also given. Here we also compute an accurate
approximation of the conductivity for our model which de-
pendson ¢, . Finally, conclusions and comments are present-
ed in Sec. V.

. PERTURBATION AND CLUSTER BOUNDS

Beran* utilized the variational principles of minimum
potential and minimum complementary potential energy to
derive rigorous bounds on the effective conductivity o, of an
isotropic composite medium composed of two phases having
phase conductivities ¢, and ¢, and volume fractions ¢, and
¢, . Beran utilized trial fields based upon the first two terms
of certain perturbation expansions for the fields to obtain
bounds later simplified by Torguato'® and Milton.?' These
bounds on g, are given by

(<1> 4d,6,(1/0, — 1/0, )2 )"
[ 6/0'1+(4¢1+2§2)(1/O’2"‘1/01)
- N2
<%<00%ﬂ 614:(0, = 7)) >, (2)
351 -+ (‘ﬁ‘ +2§2)(02 — 0y )
where (X} = X, ¢, + X, 9, is the ensemble average of any

property X. In the above equation, {, is a three-point micros-
tructural parameter defined by the expression
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The quantities 8, {r,, ) and §; (7, .73,7)3 ) are, respectively,
the probabilities of finding in phase 1 the end points of a line
segment of length 7,, and the vertices of a triangle with sides
of length ry,, 1\, and 7,,; 8 is the angle opposite the side of
length r,; and 2, is the Legendre polynomial of order two.
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Taking a different approach, Torquato® used the first
two terms from the cluster expansion and the same vari-
ational principies to derive three-point bounds on the effec-
tive conductivity of a dispersion of identical partially pene-
trable spherical particles. Specifically, the trial fields are
taken to be a constant vector added to the sum of contribu-
tions from individual isolated spheres. Explicitly, the three-
point cluster bounds are given by

(170 — 202700
(FDFN /g3
e (GEMED)Y ’

where BV is the trial electric field fluctuation defined below,
J is the trial current field fiuctuation, and angular brack-
ets denote an ensemble average. The local conductivity can
be expressed in terms of the conductivities of the characteris-
tic function of the phase, i.e.,

of{r) =, 7V (x) + 0, P(r), (5)
where
) i, rel,, )
9%y = . {6)
0, cotherwise, = 1,2,

and D, and D, are the regions of space occupied by matrix
and particles, respectively. For & spheres of radius e cen-
tered at positions r¥=r,,r,,... ,F, respectively, it has been
shown that’

~
I(D(E;TN): H {I*m(!r"_ril)}’ (7)
i-=1
where
{1, ifir —r;l<a g
m(!i“«i‘ii)““ 0, if;r._;ii>a, ®)

where r, is the position of the ith sphere, and |r — r;| is the
position vector originating from the center of the ith sphere.
For an inhomogeneous system of & spheres with one-body
probability density p, (r), the trial fluctuation field EV at
any position r is given by’

N
E“)(R";r‘h’() —_ Z TK‘(X,)’<E)
i~ 1

"‘fdrl ol )?(XJ"(E}: (%

where K is the single-body operator

— (Ba*/r (387 — U, r>a
K(r) = 10
© i ~ B4, r<a, ¢
{E) is the average field, and
&, — O
B=t Tt (11)
o, + 20,

Herex, =r — ¢, r=|rl,# = r/r, and U is the unit dyadic. A
similar expression has been given for J™,°

For the special case of statisticaily isotropic media, suh-
stitution of these relations into (4) has been shown to yieid®
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where 7 = dmpa’/3 is a reduced density, p=p,(r,) is a
constant equal to the number density of the spheres of radius
a, and {E) is a constant vector. It is only for the special case
of totally impenetrable spheres that = ¢, , i.e., the reduced
density 7 is equal to the sphere volume fraction ¢,. The
quantities 4 and B of (12) are integrals over the so-cailed
point/n-particle distribution functions (see Ref. 3§ for
further details). Note that the form of (9) ensures the abso-
lute convergence of the integrals 4 and B (Ref. 5).

As noted earlier, the Beran and Torquato bounds have
been shown to be identical for dispersions of identical hard
spheres. Comparison of Eq. ( 12) with Beran’s upper bound

[Eq. {2)1 yields

4=3¢4,¢, (13)
and
Bz?ﬁ‘»z + 25,6, 4,. {14}
In light of the relation®
(DD
U;A+(¢Z~UE)B=—€%]§———E—1, (15)
BE)(E)
it is easily shown that
IPEVED) 4 (16}

s EE | 2
The above expression refates ¢, to the average of
FOEMED where E" is the sum of particle interactions
as defined by Eq. (9). Use of relation (9) for E‘” reveals
that the right-hand side of (16) isindependent of both o, and
(E) and hence is a purely microstructural guantity depen-
dent on ¢, only, as expected. Equations (3) and (16) then
provide two independent means of determining &, either of
which may be used as the basis for Monte Carlo simulations.

Smith and Torquato'? employed the two-dimensional
form of Eq. (3) to directly simulate £, in two dimensions by
sampling S (#(,,7;,75; ) for a random array of circular disks
and numerically evaluating the two-dimensional integral an-
alagous to Eq. (3). By employing Gaussian quadrature, the
values of r\,, 714, and 7, were fixed according to the value of
the Gaussian points of the integration order used. A triangu-
lar sampling template with sides r,,, 7,;, and r,; was ran-
domly placed over the configuration and rotated at equal
angular intervals about one vertex to sampie S, . These simu-
lated values of §; were then integrated to determine &, .

To employ this method in three dimensions would re-
quire an order of magnitude more computation time to ade-
quately sample §;. In two dimensions, each template is ro-
tated in a circle about one of the vertices which falls in phase
1. In three dimensions, however, each template must be ro-
tated through a sphere, requiring a2 much longer sampling
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time for each integration point.

Equation (16) provides us with a different means to
determine §, which does not require direct sampling of the
three-point probability function S;. Instead (16) enables
one to perform summations over particle interactions. Tak-
ing this approach to the simulation greatly reduces the sam-
pling time required, allowing a much more efficient simula-
tion algorithm for determination of £, .

A highly accurate approximation of ¢, for dispersions
derived by Torquato'® also depends upon the three-point
parameter §,. (This approximation is fully described in Sec.
¥V.) Thus precise determination of ¢, for hard spheres wili
enable us to evaluate this approzimation for o, with hereto-
fore unattained accuracy and will be used to assess the sharp-
ness of the three-point bounds.

. SIMULATION TECHNIGUE

Simulation of §,, as defined throngh Eq. (16), is 2
straightforward process given the relatively simple expres-
sion for E'V in Eq. (9). The simulation process itself is com-
posed of two primary steps: the first being to generate an
equilibrium distribution of spheres, and the second to sample
for the quantity of interest over a sufficient number of config-
urations.

A. Generation of equilibrium configurations

To generate an equilibrium configuration, a standard
Metropolis algorithm is used.'* Spheres are initially placed
in a periodic array with no overlap in a cubic cell of side L
with number density p. This cell is surrounded by periodic
tmages of itself. Each particle is then moved a smali distance
to a new posttion, and the move is accepted or rejected ac-
cording to whether it overlaps with an adjacent sphere. This
process is repeated until equilibrium is achieved. Typically,
each particle is moved up to 400 times before the initial equi-
librium configuration is reached. After sampling a configu-
ration for £, , each particle is moved up to 80 times to gener-
ate a different equilibrivm configuration.

In order to ensure that equilibrium is achieved, the sim-
ulation program measures the contact value of the pair or
radial distribution function g, (4}, d = 24, which is trivially
related to the pressure of the system. [The quantity
47r’pg, (r)dr gives the conditional probability of finding a
sphere at a radial distance rin the volume 477 2 dr, given that
thereis a sphere at the origin. ] The contact value of g, is then
compared to previously obtained accurate estimates of it
For values of the sphere volume fraction ¢, <0.5, we com-
pare g, (&) to the well-known Carnahan-Starling approxi-
mation."® For values of 0.5 < ¢, <0.6, (i.e., sphere volume
fractions between 64% and 95% of random close packing
for hard spheres, ¢, =~0.63) the series expression of Song,
Stratt, and Mason'® is used as a comparison. For ¢, = 0.5,
0.55, and 0.6, we found g,(d) = 6.01, 11.01, and 22.90, re-
spectively, all of which are in very good agreement with the
aforementioned results™'® [g.(d) = 6.00, 10.45, and
23.24] in this difficult region (see discussion below). Not
only were the contact values for each run determined, but
vaiues of g, {#} for other values of r were also sampled for
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r<L /2, (i.e., half thelength of the central cell). The sampled
radial distribution fonction g, for all » agreed well with pre-
vious results.!” In particular, the behavior of the distribution
function at ¢, = 0.5 was in excellent agreement with that
reported in Ref. 17 for a system near freezing density
(¢, =~.497). For sphere volume fractions above this value,
generation of equilibrium configurations becomes quite dif-
ficult due to the metastable behavior of the hard-sphere fluid
in this region. For ¢, > Q.5, equilibrium configurations were
achieved by first generating a random array at ¢, = 0.5,
then allowing the particles to “swell” (i.e., increase the di-
ameter) slightly o reach the higher volume fraction desired.
If a “swelled” particle overlaps another particle, then if is
moved a very small distance to find adequate space to swell.
f no free space can be found after ten attempts, the entire
configuration is “‘jiggled” by randomly moving each particle
(at its larger diameter) a small distance. The process is re-
peated until each particle is swelled. The radial distribution
function for all » at ¢, = 0.55 agreed well with the data for
2, {7) reported by Woodcock.!” It was noticed that the cur-
rent simulation results for g, produced the interesting sub-
peaks observed by Woedcock for a rapidly quenched glass at
a distance of /2a=2. The good agreement with previous
resulis for g, () for both the contact values and the other
values of » confirm that the configurations generated are
indeed equilibriom in nature, which allows a valid compari-
son between the simulated data for {, and those determined
analytically.

B. Sampling for ¢,

After an equilibricm configuration has been generated,
images of the configuration are placed around the central
cell to approximate an infinite system. The total number of
particles &V is given by

N=N.N, (17)

where ¥, is the number of spheres in the central celland NV, is
the number of image cells. The number of image cells that we
employ varies depending upon the size of the central cell.
The size of the central cell varies roughiy from L = 44 to 54,
depending on the particular value of the sphere volume frac-
tion ¢, desired. Since E'P is a relatively short-ranged func-
tion of 7, as seen by the r ~ > dependence of K in Eq. (10), the
number of image cells ,, for fixed ¢,, may be decreased as
the size of the central cell increases (or equivalently as ¥,
increases ). Thus for ¢, <0.4, the total system is composed of
125 identical cells (including the central cell), while for
#, > 0.4, the total system requires only 27 identical cells. For
¢, < 0.4, N = 12000, at ¢, = 0.4, N = 6250, and for ¢, > 0.4,
N = 3024,

Once the system has been generated, one can then sam-
ple for the value of the trial fluctuation field EV as given by
Eq.(9). First, a point is chosen at random within the central
cell. The value of K is then calculated for each of the &
spheres in the system, according to Eq. (10). In addition, the
iocai conductivity o(r) is determined by Eq.(5), according
to whether the sample point has fallen inside or outside a
sphere. Each sphere in the central cell as well as those in the
periodic image cells contributes to E'V. After all & spheres
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have been sampled, the quantity 7 @ EV-E' is calculated,
and the next sample point is chosen. [Recall 7 %’ is the parti-
cle-phase characteristic function-see Eq. (7).] This is re-
peated for a sufficiently large number of sample points. A
new configuration is then generated, and the sampling de-
scribed above is repeated for the new configuration. The
guantity (J PEV-E) represents an average over 1500~
3000 configurations and 5000 sample points per configura-
tion for each value of ¢, reported. £, is then determined by
use of Eq.(16). Simulations were carried out on both the
DEC station 3100 and CRAY Y-MP.

Y. RESULTS AND DISCUSSION
A Microstructural parameter &

Asacheck on the accuracy of the simulation procedure,
the method was first used to simulate £, for a simple cubic
array of identical spheres; for this model £, is known exact-
Iy."* The system was composed of a simple cubic array of
particles, each in the center of a cube of unit length
(N, = 1). The diameter of each particle was determined by
the desired sphere volume fraction. As a test, five separate
system sizes ranging from N =3° to N = 11 were used,
where N denotes the total number of particles in the simple
cubic array. These runs were then compared to determine
the effect of system size on the simulation of £,. The resulis
of this study are shown in Table 1. Even the smallest system
size produced an error of less than 7% over three runs, while
an error of less than 19% was obtained with a system size of
N =T For N = 113, the simulation showed excellent agree-
ment with exact numerical values of §, previously report-
ed,'® confirming the validity and accuracy of the simulation
method. For a sphere volume fraction of ¢, = 0.4, the simu-
lation results were within 0.02% of the tabulated values. In
every instance, the simulated value of {, was less than the
exact value: the difference decreasing with increasing M.
This is consistent with the fact that the simulation procedure
necessarily samples a large but finite system rather than a
true infinite system. Each simulation point represents three
separate runs of 50 000 sample points. The runs were made
on a DEC station 3100, and CPU times for each run varied
from just over 100 min for the largest system size to just over
2 min for the smallest.

Before presenting results of the simulations for random
arrays, it is useful to examine some previous results for £, of
equilibrium distributions of impenetrabie spheres. Felder-
hof'? first calculated £, for this model through third order in

TABLE 1. Effect of system size & on the simulation results for §, for a
simple cubic array of spheres at ¢, == 0.4, The simulation values are com-
pared to §, = 0.068 (see Ref. 18).

N & % error
11 0.06799 —0.02
9 0.06781 —0.28
7 0.06746 -~ 0.7
5 0.06618 -~ 2.03
3 0.06347 — 6.66

C. A, Miller and 8. Torquato 5489

Bitptemalp-ergiapleopyrghhtyse -




TABLE II. Results for the three-point microstructural parameter £, of equilibrinm distributions of identical impenetrable spheres.

Superposition fLadder
Simuiation Quadratic Linear approximation approximation

&, results formula (20) formuia (19} resulis* resujts’
0.10 0.0199 0.02060 0.02107 0.02060 0.0204
0.20 0.0409 (.04026 004214 0.03983 0.0390
0.30 0.0557 0.05898 0.06320 0.05875 0.0550
0.40 0.0765 0.07676 0.08427 0.08356 Q.0681
(0.50 0.0938 0.09361 0.1053 0.1407 0.0790
0.55 0.109 Q.10168 (L1159 0.2051 0.0847
0.60 0.134 0.10951 0.1264 0.3277 4.0937

2 Reference 8.
® Reference 9.

¢, in the superposition approximation [Eq.(1)]. Beasiey
and Torquato® computed ¢, exactly through third order in
¢, for this model and found

£, = 0.21068¢, — 0.0469347 + 0.0024742. (18)

They found that §, as derived using the superposition ap-
proximation (here denoted by £ 3*) underestimated the exact
value of £, through order ¢2. Torquato and Lado® calculat-
ed £, to all orders in the sphere volume fraction (i.e., up to
about 94% of the random-close-packing value) in the super-
position approximation. However, recent work by Blawzd-
ziewicz and Stell” which uses the more accurate ladder ap-
proximation for g, indicates, that at #igh values of ¢,, £, is
actually less than {3

In Table II and Fig. 1, we summarize our simulation
results for §, and compare them to the previous results of
Refs. 8 and 9 and to the linear and quadratic formulas,

1 t 1
N
0.3 N -
L ]
02 N ]
{z
@
3 - -
, ~ 8
0.ip Py i B
-~ —
r ‘(‘ - - - 1
et
e
O A 1] L ] " i
g 0.2 0.4 0.6

2

FIG. 1. Three-point parameter ¢, for equilibrium dispersions of impenetra-
ble spheres. The large black circles (8) denote values of £, as calculated
from the simulation using Eq. (16), the dotted line (-} indicates 4, as
calculated using the superposition approximation (sec Ref. 8), the dashed
fine (- - -) is the linear formula {19}, the solid line {—) is the quadratic
formula, Eq. (20), and the dashed and dotted line (-----) indicates £, as
calevsated nsing the ladder approximation {see Ref. §).
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& = 0210684,

and

(193

, = 0.210684, — 0.04693¢2, (20)

respectively, which are simply Eq. (18) truncated after one
and two terms. Remarkably, the quadratic formula (20),
exact to second order in ¢, , follows the simulation data very
closely up to and including ¢, = 0.5, which, as noted earlier,
is very slightly above the value of the fluid-solid phase transi-
tion. This indicates that third- and higher-order terms are
negligibly small. Note that the linear term of (20) is actually
the dominant one as evidenced by the fact that the linear
formula {19), although not as accurate as the quadratic for-
mula (20}, is a good approximation to the data for ¢, <0.5.

FIG. 2. Upper and lower bounds on the reduced effective conductivity
o, /o, vs ¢, for equilibrium dispersions of impenetrable spheres at
a == g, /o, = 10. The large black circles (&) indicate values of the three-
point Beran upper bound {Eq. {2) ] and the Milton lower bound {Eq. (21)}
calculated from our simulation results of £, . The solid lines (—) are spline
fits of the simulation data. The dashed lines (- - -) are the two-point Hashin—
Shirikman bounds (see Ref. 3). The dotted lines (- - - ) are the Beran upper
bound and the Milton lower bound as calculated using £, in the superposi-
tion approximation {see Ref. §).
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The important significance of these results shall be discussed
below. For 0.5<¢, <0.54, values in the metastable region,
the quadratic formula (20) still provides the closest agree-
ment with the data. For 0.54<¢, <0.6, the linear formula
(19) is the most accurate, with the quadratic formula (20)
being the next most accurate calculation. For the range
0<é, <0.4, the superposition-approximation results® are
more accurate than the ladder approximation.” On the other
hand, for ¢, »0.5, the ladder approximation is superior to
the corresponding superposition-approximation results
which significantly overestimate £, .

1t is useful to discuss the significance of the fact that
exact low-density expansions of {, provide very good agree-
ment with the simulation data for a wide range of ¢, . First,
this should not come as any great surprise since Torguato
and Lado® have already observed that ¢, is either exactly or
approximately linear in ¢, for a variety of different sphere
distributions, including symmetric-cell materials,”® fully
penetrable or overlapping spheres,®?* and totally impen-
etrable spheres. (Symmetric-cell materials are constructed
by tessellating space into “cells” of various shapes and sizes,
with cells randomly and independently designated as phase 1
or phase 2 with probabilities ¢, and ¢,, respectively.) Tho-
verteral® and Torquato®® have already exploited the linear
approximation for §, in order to compute the three-point
bounds on the effective conductivity and thermoelastic
properties, respectively, for impenetrable spheres with a po-
lydispersivity in size for a wide range of ¢,. Torquato®' has
shown that the first-order coefficient of (20) depends on the
zero-density limit of the pair distribution function g, for dis-
tributions of particles. Similarly, the quadratic term of (20)
depends on g, to first order in $, and the zero-density limit
of the triplet distribution function g,.»'>** Thus, the high
accuracy that the guadratic formula (20) provides, even at
high volume fractions, indicates that £, , for this wide range
of ¢,, only incorporates essentially up to three-body effects
to lowest order: a result consistent with the fact that £, con-
tains little information about the many-body phenomenon of
percolation. Based upon the discussion above, this is expect-
ed to be true for general statistically isotropic two-and three-
dimensional distributions of disks and spheres, respectively,
with a polydispersivity in size and an arbitrary degree of
penetrability. This is a very practically useful conclusion
since the exact caleulation of £, through second order in ¢,
for distributions of impenetrable particles is much easier to
arrive at than the corresponding full-density dependent cal-
culation which necessarily involves the use of some approxi-
mation for g, whose validity is usually questionable at high
densities.

Let us remark on the behavior of closely related three-
point microstructural parameters. First, itis known® that £,
for three-dimensional distributions of particles is functional-
ty very similar to the corresponding two-dimensional analog
of &, for isotropic distributions of particles. Second, it is also
clear from the work of Sen, Lado, and Torquato® that a
different microstructural parameter #,, which arises in
three-point bounds on the effective shear modulus of two-
phase composites,’'’ aiso shows the same general features
as &, for two- and three-dimensional distributions of parti-
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cles. Accordingly, the exact expansions of all the aforemen-
tioned three-point parameters through second order in ¢,
for such microgeometries should yield accurate estimates of
them for a wide range of ¢,.

Finally, the maximum error in the simulation data for
£, given in Table II should occur at the smallest volume
fraction reported, i.e., at ¢, = 0.1. Thus, the maximum per-
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FIG. 4. Lower bounds on the reduced effective conductivity o,/0, vs 9, for
equilibrium  dispersions  of superconducting impenetrable spheres
(& = o). The large black circles (@) indicate values of the three-point
Mittoun lower bound | Eq. (21) ] calculated from our stmulation results for
£,. The solid lines (-—) are spline fits of the simulation data. The dotted line
(---) is Milton’s bound calculated {rom £, in the superposition approxima-
tion {see Ref. 8. The dashed line (- - -} is the two-point Hashin-Shtrikiman
lower bound (see Ref. 3).
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centage error can easily be estimated since £, is essentially
exact for such ¢, from either the quadratic formula (20),
superposition approximation® or the ladder approxima-
tion.” Accordingly, the error in £, at ¢, = 0.1 is approxi-
mately 3%.

B. Conduciivity bounds

Given the values of £, from our simulations, it is now
possible to calculate three-point upper and lower bounds on
the conductivity from Eq. (2) for arbitrary values of
a = g, /o, and volume fraction ¢, . For the case {, = 1, the
bounds (2} coincide with the two-point Hashin—Shtrik-
man® upper bound for o, >0, (i.e, a>1). In the opposite
case of £, = 0, the Beran bounds on ¢, coincide with the
Hashin-Shtrikman lower bound for o, »¢,. The fact that {,
lies in the interval {0,1] implies that the three-point Beran
bounds (2) always improve on the two-point Hashin-Shirik-
man bounds.

For a»1, Milton?® derived the following three-point
lower bound on ¢,

o, (142a)a+2¢, +2ad,} + 24,5, (a—1)?

o (1+20)(2+ ¢, +ad,) + 24,6, (x— 1)?
(21}

Since bound (21) is the best possible lower bound on o,
given 0y, G, &,, and £,,** we shali utilize it in our calcula-
tions instead of the three-point lower bound of {2). Note,
however, that the improvement of (21) over the Beran
bound of (2) is very small.®

Milton’s lower bound (21) and the Beran upper bound
{(2) are calculated and plotted in Figs. 2-4 for random hard-
sphere dispersions using our simulation data for £, . Includ-
ed in the figures are the corresponding three-point bounds
computed by Torquato and Lado® in the superposition ap-
proximation and the two-point Hashin~Shtrikman bounds.”
Consistent with the previous conclusions of Torguato and
Lado for this model, it is observed that the three-point
bounds generally provide significant improvement over the
two-point bounds for @ = 10 and o = 50, 1.e., provided « is
not very large (o> 1). As expected, at large ¢,, the superpo-
sition approximation results generally overestimate, to vary-
ing degrees, the three-point bounds on «,. In the case of
superconducting spheres relative to the matrix, o = o (see
Fig. 4), the upper bounds, not surprisingly, diverge to infin-
ity and hence only the lower bounds remain finite. Nonethe-
tess in such instances, the lower bounds will provide a rea-
sonable estimate of the true effective conductivity o, since
the particles never form clusters for the range of volume
fractions studied here."’

To further illustrate this last point, we compare the
highly accurate approximation

e 1424, —-2¢,4,8°
Ty 1 —4.8~-26,5.8°
developed for dispersions by Torquato’ to the two- and

three-point lower bounds for the case of superconducting
spheres (o = «o } in Fig. 5. Here

(22)

=TT o (23)
o, + 20,
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FIG. 5. Comparison of the accurate approximation {22) for the reduced
effective conductivity o,/c, for equilibrium dispersions of superconduct-
ing impenetrable spheres (@ = o}, shown as a solid line {—}, to the two-
point Hashin-Shtrikman lower bound {- - -} and the three-point Milion
lower bound [ solid lines are spline fits of our simulation data shown as black
circles (8)]. The curve generated from relation (22) is a spline fit of the
points which result by use of our simulation data for £,.

Relation (22), inthecasea > 1, hasbeen shown'? tovield an
excellent estimate of &, for dispersions for all 2{l<a< ),
provided that the conducting particles do not form large
clusters. This has recently been confirmed for the impenetra-
ble-sphere model studied here by Kim and Torguato® who
determined o, exactly from Brownian motion computer
simulations. Thus, expression (22} {in conjunction with our
simulation data for £, } may be regarded as essentially exact
“data” for an equilibrivm distribution of equisized impen-
etrabie spheres. Figure 5 indeed demonstrates that the three-
point lower bound is a relatively good estimate of the effec-
tive conductivity.

¥. CONCLUSIONS

Using an efficient simulation technigue, we have com-
puted the key microstructural parameter £, which arises in
three-point conductivity bounds and in the accurate approx-
imation {22) for the effective conductivity of an equilibrium
distribution of hard spheres in a matrix for virtually the en-
tire range of allowable volume fractions. An important and
interesting finding is the fact that the simple guadratic for-
mula, Eq. (20), has been shown to provide the best agree-
ment with the simulation data for almost the entire volume-
fraction range studied bere, with the linear term being the
dominant one. The caiculation of £, in the superposition
approximation has been shown to overestimate it at high
sphere volume fraction ¢,, confirming the general conclu-
sions of Blawzdziewicz and Stell.”

C. A. Miller ang S. Torquato
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