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A new Brownian motion simulation technique developed by Torguato and Kim [Appl. Phys.
Lett. 58, 1847 (1989)] is applied and further developed to compute “exactly” the effective
conductivity o, of n-phase heterogeneous media having phase conductivities o, 0, ..., 0, and

volume fractions @, , ¢,, ...

. 6,. The appropriate first passage time equations are derived for the

first time to treat d-dimensional media (d = 1, 2, or 3} having arbitrary microgeometries. For
purposes of illustration, the simulation procedure is employed to compute the transverse
effective conductivity o, of a two-phase composite composed of a random distribution of
infinitely long, oriented, hard cylinders of conductivity o, in a matrix of conductivity o, for
virtually all volume fractions and for several values of the conductivity ratio a = ¢, /¢y,
including perfectly conducting cylinders (@ = o ). The method is shown to yield o, accurately

with a comparatively fast execution time.

. INTRODUCTIOR

The problem of determining the effective transport and
mechanical properties of multiphase media (given the phase
properties and volume fractions) has a long history, attract-
ing the attention of such luminaries of science as Maxwell,'
Rayleigh,” and Einstein.” Except for a few specially pre-
pared artificial media, there are no exact analytical predic-
tions of the effective propertics of random multiphase sys-
tems for arbitrary phase properties and volume fractions,
even for the simplest class of problems, i.e., properties asso-
ciated with transport processes governed by a steady-state
diffusion equation (e.g., conductivily, dielectric constant,
diffusion coefficient, trapping rate, etc.).* For arbitrary
phase properties and volume fractions, theoretical tech-
nigues basically fall into two categories: effective-medium
approximations™® and rigorous bounding techniques.*’™’
Relatively speaking, there is a paucity of work on “‘exact”
simulations of the property of interest, especiaily for contin-
uum models (e.g., distributions of particles in a matrix).
Such “computer experiments” could provide unambiguous
tests on the aforementioned theories for well-defined contin-
uum models.

Most simulation studies of the past have attempted to
solve the local governing differential equations for the fields
{e.g., electric, temperature, concentiration, etc.), subject to
the appropriate boundary conditions at the multiphase in-
terface of the computer-generated heterogeneous system,
employing some numerical precedure such as finite differ-
ences or finite elements. This solution is obtained for each of
a sufficiently large number of configurations and then the
fields are configurationally averaged to get the effective
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properties. (For example, the effective electrical and ther-
mal conductivities are defined by averaged Ohm’s and Four-
ier’s laws, respectively.} Unfortunately, this is a very waste-
ful way of obtaining the average behavior since there is a
significant amount of information lost in going from the lo-
cal to the average fields. It is not surprising, therefore, that
such calculations become computationally exorbitant, even
when performed on a supercomputer.

Accordingly, it is desired to employ a simnulation tech-
nigue which directly yields the desired average behavior, i.e.,
the effective property. Recently, Torquato and Kim'® de-
scribed a Brownian motion simulation technique to exactly
yield effective properties of disordered heterogenecus media
in which the transport process is governed by a steady-state
diffusion equation:

DV*® = — ¥ (in each phase). (1)

Here @ is some potential, D is the diffusion coeflicient, and
is a source term. Of course the appropriate boundary condi-
tions at the multiphase interface must be satisfied. Thus,
their algorithm can be applied to determine the effective
electrical and thermal conductivity, dielectric constants,
niagnetic permeability, diffusion coeflicient associated with
flow past fixed obstacles, and the trapping rate associated
with diffusion-controlled processes among static traps.

In order to illustrate their simulation technigue, Tor-
guato and Kim computed the diffusion-controlled trapping
rate for perfectly absorbing, static spherical traps (¢ = 0 at
the trap surfaces). For this problem, one need only keep
track of the mean square displacement of the Brownian par-
ticles until they get trapped, since this quantity {averaged
over many walkers and realizations) is inversely proportion-
al to the trapping rate. This is proved using a first passage
time analysis. The essence of the method is to construct the
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largest possible concentric sphere of radius R about the
Brownian particle (in the trap-free region) which does not
overlap any trap particles, choose a point on the surface,
record R ?, repeat the above steps until trapping is achieved,
and finally compute the total mean square displacement
(Z; R?) (which is proportional to the trapping rate). The
method yielded the trapping rate highly accurately and was
shown to have a very fast execution time. For example, the
trapping rate at a fixed volume fraction for 490 spherical
traps, 50 configurations, and 1000 random walkers per con-
figuration has been computed on a VAX station 3100 in
about 15 CPU minutes.

In this paper, we shall apply the general ideas of Tor-
quato and Kim to develop a Brownian motion simulation
technique to compute exactly the effective conductivity o, of
an isotropic n-phase composite of arbitrary dimension d and
microgeometry, given the phase conductivities o, , o, , ..., 7,
and volume fractions ¢,, ¢,, ..., ¢,,. This class of problems is
more complicated than the aforementioned trapping prob-
lem since it involves two new features: (1) different walking
speeds in each phase and (2) a nonzero probability of refiec-
tion at the multiphase interface. In the many instances when
the Brownian particle is far from the multiphase interface
(i.e., when the particie walks entirely in one phase), one still
constructs the largest concentric sphere of radius R about
the particie which does not overlap any other phase material
and chooses a point on the imaginary sphere surface ran-
domly. The guantity R ? is proportional toc the mean first
hitting time 7. The process is repeated, each time keeping
track of R %, until the walker comes within some very small
distance of the multiphase interface. At this juncture, one
computes the mean time associated with crossing the bound-
ary 7, and the probability of crossing the boundary, both of
which are obtained here using first passage time theory. At
some future time, the Brownian particle again will walk en-
tirely in one phase and the above procedure is repeated. The
effective conductivity o, is then related to the total mean
square displacement or equivalently, the total mean time, in
the limit of very large times.

We shall develop, for the first time, the appropriate first
passage time eguations for general d-dimensional compo-
sites (d = 1, 2, and 3} having arbitrary values of conductiv-
ity oy, @,, ..., 0,.. In order 1o illustrate the method, compre-
hensive computer simulation data for the effective
conductivity o, are obtained for two-dimensional distribu-
tions of hard circular disks (i.e., infinitely long, oriented cyl-
inders) of conductivity o, in a matrix of conductivity o, .
Conductivity data will be reported for virtually the entire
volume fraction range and for & = o, /o, = 10, 50, and .
Using these results and a phase-interchange theorem, one
can obtain corresponding resulis for the effective conductiv-
ity for a = 0.1, 0.02, and 0, respectively. In a future paper,
corresponding data will be obtained for distributions of hard
spheres (d = 3).

This paper is organized as follows. In Sec. I1, we define
the effective conductivity o, in terms of certain averages of
the Brownian motion trajectories and obtain the appropriate
first passage time refations that apply in the immediate vicin-
ity of the boundary between any two phases, say phase 1 and
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phase 2. The cases where 0,/0, =0 and o,/0, = « are
described separately. In Sec. IIl, we describe the simulation
details to compute the effective conductivity for two-phase
media composed of a distribution of infinitely long, oriented,
hard cylinders of conductivity o, in a matrix of conductivity
o, and report data for o,. In Sec IV, we make concluding
remarks.

it, BROWRNIAN MOTION FORMULATION

The basic relations employed by Torquato and Kim'° to
simulate the trapping rate were derived using a first passage
time analysis. A similar analysis is to be formulated for the
conductivity problem but here (as noted earlier) one must
take into account two new features: {1) different walking
speeds in each phase and (2) a nonzero probability of reflec-
tion at the interface. We first define the effective conductiv-
ity o, for isotropic n-phase composites with arbitrary values
of gy, 0y, ..., o, interims of certain averages of the Brownian
motion trajectories. Next we derive, for the first time, the
appropriate first passage time equations when a Brownian
particle approaches an interface. We then examine the spe-
cial case of one phase being perfectly insulating relative to a
counected phase. Finally, we describe the instance of one
phase that is infinitely conducting relative to a connected
phase.

A, Effective conductivity

Consider a Brownian particle {(conduction tracer) mov-
ing in an Aomogeneous region {} of conductivity . Let the
boundary be denoted by J4} (see Fig. 1). If we define the
mean hitting time #(x) as the mean time taken for the ran-
dom walker initially at x to hit J€} for the first time, it can be
easily shown'"? that

oVi= —1, in O
Hx) =0, on d. (2)

If (} is d-dimensional sphere of radius R and x is taken at the
center of the sphere x,, the solution of (2) is

FIG. 1. Homoegeneous medium of conductivity o.
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{R)=1(x4;R) = R*/2do. (3}

Here 7(R) is defined to be the mean hitting time for a ran-
dom walker initially at x,, the center of the sphere of radius
R. Eguation (3} can be rewritten as

o= R*/2dr(R). (4)
Thus, if 7(R), which represents the first hitting time aver-
aged over an infinitely large number of such Brownian tra-
jectories, is known, then the conductivity o can be obtained
via Eg. (4). If an infinite medium is to be considered, the
conductivity is given by

o =R/2d7(R)|p.... (5)

The effective conductivity ¢, of an infinitely large com-
posite medium can be computed in the same manner. Sup-
pose we have a sphere of radius X which encompasses a gen-
eral multiphase composite having conductivities o,, 05, ...,
o, (see Fig. 2). If we view this sphere as an cffective homo-
geneous sphere of conductivity o,, we can write in the spirit
of Eg. (4) that

o, =X*/2dr.(X). (6)

Here 7,(X) is the total mean time associated with the total
mean square displacement X >, Since every random walk
path in the composite medium which first arrives at d£) can
be considered to be a sum of many smaller random walk path
segments R,’s, each of which is a random walk path segment
that lies entirely in a locally homogeneous medium of con-
ductivity ¢'” (whereo” canbeo;,j = 1,2,...,2), Eq. (6) can
be rewritten as

XZ
a'“ T e
2d(Z; 7(R,)))
XZ

2d (3, R2/2do®)

where angular brackets indicates an ensembie average.

In the actual simulation, in cases where the Brownian
particle is far from the multiphase interface (which turns out
to be a large portion of the time}, we employ the same time-
saving technique used by Torquato and Kim,'® namely, one
constructs the largest concentric d-dimensional sphere of ra-
dius R around the diffusing particle which just touches the
multiphase interface. The Brownian particle then jumps in
one step to a random point on the surface of this concentric
sphere and the process is repeated, each time keeping track
of R 7, until the particle is within some prescribed very small
distance of the multiphase interface. (See Fig. 3 for an illus-
trative case of two-phase media with circular inclusions. ) At
this juncture, one must compute not only the mean time in
the small neighborhood of the interface, denoted by =, but
the probability of crossing the interface. Both of these quan-
tities, described fully below, are functions of o, o,, ..., 0,
and the local geometry. Thus, the expression for the effective
conductivity used in practice is given by

_ <ZiR,%‘+' Zj Rf)
2 (2, 7(R) + Ej Ts(Rj)> ’

since X = (Z, R} + 2, R?). Here the summation cver the

(8)

@
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FIG. 2. General n-phase isotropic composite with conductivities
T 05,50, The effective conductivity is o,. Note that the simulation tech-
nique is not imited to particulate composites as ilfustrated in this figure.

FIG. 3. {a) A two-phase medium with circular inclusions. (b) Interface
boundary between the matrix of conductivity ¢, and the cirenlar inclusion
of conductivity o,.
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subscript 7 is for the random walk paths in homogeneous 7 (X), =7,(x); on T
domains and the summation over the subscript j is for the r
random walk paths crossing the interface boundary. -

Since each path segment, having mear square displace- ony 1y on,
ment R }, is wholly contained in a homogeneous part of the ~ Here @ = 0,/0, and I' denotes the interface surface, #, unit

2

mediam, Egs. (3) and (8) yield outward ncrmal from region £}; and |; means the approach
(S, R2+3 R?) to I from the r_egion €1,. Note that the imaginary sphere of
= oA e B radius R described above is centered on interface boundary
2d {2, R}/2d0” + Z; . (R)) rather than on the random walker since the former lends
(3, R* + 3 R 2 itself to a2 more tractable solution.
= YT — , &) For the nontrivial geometry as shown in Fig. 3(b), Egs.
(2, R0 +2d 2, 7,(R)) ) (13)—(15) can be solved by utilizing a numerical technique
or such as the boundary element method. However, the local
o, (3, R¥Yo, + 3 R ,2 /o) geometry seen by the random walker varies as it moves (e.g.,

= ST . (10} the maximum allowable first-flight distance R can be very
7 (Z,Ri/0" +24 3, 7.(R))) small if another particle is very close to the one the random
If an infinite medium is to be considered, then we have walker faces). Therefore, in order to use the numerical tech-

. (3, R0, +3, R¥0o,) nigue such as the boundary element method, (13)-(15)

—= PNE (11)  must be solved for all possibie geometries that the random

% (2, R/ +2d R iy, walker can see. To avoid this difficulty, we suggest an excel-
Each term inside the brackets of Eq. (11) has dimension of  lent approximation to the solutions to (13)~{15) based on
time, and therefore (11} can be rewritten as an analytical result for a geometry we now describe.

o, (Z, 7 (R)+Z 7 (R)) ’Consider a Eimiting geometry (Fig. 4) where the local
= {12} radius of curvature of interface boundary around the ran-
oy (2, 7R+ Z, 7(R)) |xo .. dom walker is so large compared to the maximum allowable
Here 7, (R) denotes the time for a random walker tomakea  firsr-flighrdistance R that the interface boundary can be con-
first flight in an homogeneous sphere of radius R of conduc- sidered as a straight line (4 = 2) or aflat plane (d = 3). (Of
tivity o, . Note that for an infinite medium, the initial posi-  course, for d = 1 the local radius of curvature is always infi-
tion of the Brownian particle is arbitrary. Equations (11)  nite.) Under such conditions, Egs. (13)—(15) are solved in
and (12) will be the basic equations used to compute the terms of the relative displacement x — Xy, 88
effective conductivity of random heterogeneous media.

y=—t 1y W for O<x<R
B. Random walk crossing the interface Boundary py(x) = @+ 1 to R or beas

Here we shall derive the appropriate first passage time i/ x .y
equations (i.e., mean hitting times and probabilities) which = T U + E) for — R<x<9, (16)
apply in a very small neighborhood of the multiphase inter- . -
face. For concreteness, we consider the interface between pr(x) =1—p (x) for —R<x<R, (7
phase 1 and phase 2. Referring to Fig. 3 (b), the basic ques-
tions are the following:

(i) What will be the probability p, () [or p, (x)] that
the random walker initially at x (near x4, in practice), the
center of an imaginary sphere of radius R, hits 3, (311,) symmetry axis symmetry axis

for the first time without hitting 99}, (2§}, )?
{(ii} What will be the mean hitting time 7, (x) for the
random walker initially at x to hit 93({ = 88}, U3, ) for P
the first time?
First passage time analysis’"'? leads to the boundary-value X 4 6
problems given by j
. o} o
Vi, =0 in (=0, UL,) %q 2 2
2{x)=1 on J0,
2:(x}=0 on 94, (13) 0
J 21 (X)l1 = p, {x) Ig_ on [ (c)
g, a
Dy I —a /4 on T,
an, |, |,
—_1 _ FIG. 4. Limiting geometrics in & dimensions where the maximum allowable
72 (%) F=pi (0, (14) first-flight distance is so small compared to the radius of curvature of the
o, VZTS = —1 in {} interface that the interface can be considered to be a straight line in case of
) ' two dimensions or a flat plane in case of three dimensions. {(a) d = 2, (b)
7.{x) =0 on O (15) d=3.
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2
(%) = R 2 [

20, a+1

e e )

e () )
2 \R 2o \R
(18)

for the case of d = 1, where x is a distance from the interface
boundary to the direction of the phase having conductivity
oy,

1 da & 1 IAC
(n8) =—— [1 +22 (£)
P a—+1 T mE;:'o 2m+ 1 \R

for O0<x<R
. R* 2 [
2¢) o+ 1
for — R<x«0,

Xsin{ (2m + 1)8 ]E for O<r<R, O<6<7

4 & 1 (r)z"‘”
+=_ —_—
17’,,,%027?2—&—1 R

\
Xsin{ (2m + 1) ] g for O<r<R, w<8<2m,

_1[
a+ 1

(19)
2, (@) =1—p,(r8) for OKr<R, 0LO<2m, (20}
2
) =R _2 {1—<a+1—““1cos(29)>
4o, a+1 2 2
YV a—1
X{—1i + H(»6 }
(5) + 55 Heo
for O<r<R, 0L«
2 —_— —
:R 2 [1—((2’ 1+a 1(:os(Ztﬁ'))
4o, a+1 2 2a
ry, a-—1
M EANR-l r,e)} 1)
<R) 20 (
for O0<r<R, 7<8 2,
where
Hroy =2 3 (2 ! !

ro A~ \2m+1 2m4+3 2m—1/

2m 41
x(-}%) sin[ (2m + D)6,

\

for the case of d = 2, and

1 o
14+« B,,,
a+1[ MEO e

7 2m ¢ 1
(E) Py, 1 (cos 8}

0 (rn8) =

X

for O<r<R, 08K -;L

21 + 1 m=0
X f_)zm ) ‘Pz,,, 41 (cos 9)]
R
for O<r< R, w/2<8<, (223
where
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(= 1)'”(2m)§_34m +3)

Bm 5 3
2m -1 22m~éri(m!)2 (m"f" 1}
D, ROy =1—p, (rn8) for OKr<R, O<O<m, (23)
2 5
rngy =22 [1_(a+1+(a_1)Pz(cos9))
6o, a+1 \ 2
ryY a-—1
() +2 600
(R) + 5 (r,8)
for O<r<R, 0O<8<m/2
2 e —
:R 2 [lm(a,l_a 1P2(c0s9))
6o, a+1 20 o
ry a-—1
X{—} — G ,9] 24
(R) —160r,0) (24)
for O<r<R, w/2<6<m,
where
ac r 2m 4 1
G0 = 3 Cun (L) P o),
c =D am)! 3(4m+ 3)
et 2P 2m— D (m+2(m+ 1)

for the case of d = 3.

Here the arguments of 7, and p, are the components of
X — X4, where ¥ = |x — X, | and @is a direction angle in two
dimensions and a spherical polar angle in three dimensions
measured from a reference axis (see Fig. 4). £, denotes the
Eegendre function of degree n. For simulation purposes,
however, it suffices to know the solutions along the symme-
try axis for 4 = 2 and d = 3. Thus, we have

12 (r, 1) = L il + 4—aarctan(-;g—)} for O<r<RR,

2 a+1 T

pl<r, —31) = 1 [1 — iarctan(—i)} for O<r<R,
2 a+1 T R

(23)
T Fra
A —i=1— r,—1 for O<r<R,

p‘( 2) p‘( 2) s
37 3

D r,-z— =1-p r,-—2— for O<r<R, (26}
T R? 2

2 —
2 4o, a+1 R T

o) (5 5) + (=2l

for O0<r<R,

( 317') R* 2 { 1(r)2 a—1
TA P — | = —— =} -
2 4, a+1 a \R T

<o) 52+ ()

for O<r<R, (27}
for the case of d = 2, and
1 ked r2mTl
pl(r,O)zm[l+am2032,,,+l(i) ]
for O<r<R, (28)
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, 1 {1 = B r)Zm—Mj
o (nm by L > 2m+1(}€

m-==0

for O<r<R,

2. (r3) =1—p,(n0) for OKr<R,

p(rmy=1—p (ra) for O<r<R, {(29)
2 _ 2
7}(7‘,‘0)=R 2 [1_351 1(3_‘_)
6oy a4+ 1 2 R
& — 1 ) I 2m + 1
cnr(z) ]
+ > MZU me i\ R
for O<r<R,
_R?*> 2 é o —3 ( i3 )2
A e e ¥
a — l 0 F Zm -+ ]}
—_ c L
2a m§5) am +!<R)
for O<r< R, (30)
where
B :(—1)’”(2m)! (4m + 3)
LT gt (m 1)
c (— )"+ 2m) 3(4m + 3
2m+1 =

2 mh) (2m =D {(m+ 2D (m+ 1)
for the case of d = 3. Of course, for d = 1, we still have Eqs.
{16)-(18).

it is noteworthy that if a random walker starts from the
center of a d-dimensional sphere at x, (i.e, x =0ford =1
and » =0 for d = 2 and 3), then we have the simple rela-
tions:

2= {a+ 1), 31
b, =a/(a+ 1), (32)
T/ =2/({a+ 1), (33}

where 7, = R ?/2do, is the mean bitting time for the homo-
geneous sphere of conductivity o,. The expressions (31)-
{33) provide 2 basis for us o obtain the simple approxima-
tions to the soluticns of (13)-{15) for the general geometry
iflustrated in Fig. 3(b) in which the interface has some finite
curvature. For a random walker initially on the interface at
position X, as in Fig. 4, the probability of reaching a unit
surface area {or unit arc length in two dimensions) of a
boundary segment (2, is proportional to the conductivity of
the region adjacent to that boundary. Applying this reason-
ing for the general geometry depicted in Fig. 4, the probabili-
ty py (%) [P, (%e) ] that a random walker at a point x4 on
the interface, hits df}, (3}, ) for the first time without hit-
ting 9€t, (3%}, ), will be

A 0 _ A4,
Ao +Ayo, A+’
A,a
A, + 4o

where A, and 4, are the surface areas of J{1, and 9,
respectively.

The mean hitting time can also be obtained using similar
argumenis. For each Brownian trajectory which first strikes

{34}

pi(xy) =

D%} =1—p, (%)= (35)
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J0 from a point at X, at the interface (see Fig. 4), the proba-
bility that the diffusing particle visits a volume element will
be proportional 1o the local conductivity of that volume ele-
ment. Furthermore, the time spent for each local random
walk is inversely proportional to the local conductivity.
Therefore, for the position %, on the interface, the mean
hitting time 7, (%, ) will be

V.o Vo T
TS(XQ): 1+ 7’1 + 2%2 __‘_
Ve, + V,o, Vie, + V0, a
vV, + V.
:Ml 2 Ty. (36)
V, +ab,

if |x — x4 |/R €1 along the symmetry axis, we can conjec-
ture that the solution to (13}-(15), with the aid of {25)-
(30} and (34}-(36) can be approximated by

Yy
2 ( z) S [ .l mm(_i)}
2 A, + ad, T R

for O<r<R,

() =g [ - ()]
mirn = 1 — — arctan{ —
Vo2 A, + o4, s R

for 0<r<R, (37
22 (r, > ) =1 —-m(n =~—) for O<r<R,
3 AY
P (r, T)=1 — Py (r, %E) for O<r< R, (38)

R* i+ V1, [1_(1(_{_)2_!_11—1
V, +aV, R/

r RN ry R
X larctani — _—_g_*_) <_.___,_)H
[ (R) (R 7 + R r
for O<r<R,

T(r._?’_Z)._ R> Vi+ V)
N2 4o, V, +aV,

P52 4 )

for the case of d == 2, and

0 .\Zm-%—}
I+ 2( Bz,,,_,_l({{} j;
m—=0

for G<r<R,

A, [
A, +ad,

for O<r<R,

P p—" [1 S By (L)
37T ) == - -
] A; +aA2 nz() 2m+l<R> }

p] (ryo) =

for O<r<R, (40)
P, =1—p,(n0) for O<r<R,
p{nm)y=1-—p(rm) for OKr<R, (41)

2 Ef’ . _
(0} = R L [1_3(1 I(I_)z
6o, V, +aV, 2 R
o — 1 @ » 2m 417
+ C"m— .
2 20 : “(R) j

for O<r< R,
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1 s Y B T T
— Equation (37} 1
- = Boundary Element Dato
p1<r,9)
0.5 1
]
: s |
{a} -~ /R
. —
0.6k — Equation {39) ]
e« Boundary Element Data
0.4
7,(r6)
74(r.6) _
0.2}, N
0 ? . >
0 0.5 1
{b) r/R

FIG. 5. Comparison of the analytical expressions {37) and (39) (solid
lines) and the boundary element data (circles) for « = 10 and 30 and
€ == 0.1. Here ¢ s the dimensionless ratio of the first flight distance R 10 the
radius of the curvature of the interface. (a) Probability of jumping in phase
1, p,; upper curves corresponds to § = /2 and lower curves correspends to
@ == 37/2. (b) Mean hitting time, 7, (where 7, is the mean hitting time for
the homogeneous material of conductivity o, }; upper curves corresponds
to 6 = 7/2 and lower curves corresponds to & = 3#/2.

TS(P',’T/') =

2V, 4V, — 2
R , + Va2 [1 +a 3 (L)
6o, V|, +al, 200 \R

— o0 2m + 1
— g 1 E CQm + 1 (l_) ]
20( m -0 ' R

for O<r<R, (42)
where
(—1702m) (dm <+ 3)
B2m+—1 =
22m+1(m!)2 (m+1)
C _ (= D7 2m) 34m+3)
2 1 T

27 i m? Qm—Dm+2(m+ 1)
for the case of d = 3.
In order to test the validity and accuracy of relations

(37)-(42), we solved Egs. (13)~(15) using the boundary
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element method for various radii of curvatures of the inter-
face boundary for two-dimensional media. We specifically
studied the cases € = 0.01, 0.02,...,0.1 where € is the ratio of
the first flight distance R to the radius of curvature of the
interface boundary. In Fig. 5, we compare the boundary ele-
ment results along the symmeiry axis with the analytical
relations (37}—(39) for the worst case of € = 0.1 (in which
the maximum deviations from the analytical relations (37)—
(39} occur) when @ = 10 and 50. The agreement is seen to
be excellent, i.e., on the scale of our figure, the numerical and
analytical results are indistinguishable even at the worst case
of € =0.1. Therefore, application of relations (37)—(42)
near the multiphase interface should yield highly accurate
resulis for 7, and p,.

C. Interface equations for perfectly insuiating phase
refative to a connected phase

Consider the general case where phase 2 is perfectly in-
sulating relative to a connected phase 1 (o = 0). Phase 2
may be disconnected or connected for & = 3, but is always
disconnected for d < 3. ff o = @, then Egs. (37) to (42) can
be successfully used withoui any difficulty. Consider a ran-
dom walker initially at the arbitrary location in the system,
It is clear that if the random walker is in the insulating phase
2 (i.e., ¢ = 0), it will stay there forever and once the random
walker is in the noninsulating phase (phase 1), it can never
enter into phase 2. This can be easily seen from Eqs. (37),
(38), (40), and (41), where it is found that p, = 1, and
p, =0 for d =2 and 3. Furthermore, Egs. (39) and (42)
yield, for o = 0.

( rr)__Rz V1+V2{ 1[ . (r\
TAr — = —— {1 — — {arctan | —
N2/ 4e, W, T R/

3

2
X(L+£) *<L~£)}], for 0<r<R,
R 7/ R r

{43)
for the case of d = 2, and

R Vi + ¥V, | 1 /7
0 =g |! +5 (%)
—é'rni;() sz 4_1(%)2"1 F l}g for Oerek,
(44)
where
Copsy = (—-vl)””"“(Zm)i }(4m+3)
22N mty? (2m— 1yn+ 2)(m+ 1)

for the case of d = 3. Note that since the random walker is
forbidden from entering the insulating phase, 7, (r,37/2)
(for d = 2) and 7. (#,m) (for d = 3) are not considered.

It 1s worthwhile to note that one needs to be careful in
computing the mean square displacement of the random
walkers [as in Eq. (8)] for a = 0. In order to compute the
mean square displacement of the random walkers, the sum
of the square displacements should be averaged over all ran-
dom walkers (including the ones initially trapped in phase
2}, not only the random walkers that can freely move in
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phase 1. If we have M such freely moving random walkers
and since the probability of finding a random walker initially
located in phase 7 will be simply ¢,, then the number of ran-
dom walkers over which we should average to compute the
mean square displacement will be 3 /¢, . Thus, if the right-
hand side of Eq. (8) [and hence Egs. (9)-(12) ] is comput-
ed over only the freely moving random walkers, then we
have to multiply this result by a factor of ¢, .

Note that this relation can be applied for any microgeo-
metry including the cases in which both phases are connect-
ed {e.g., as can be seen in a sandstone). Equation (44) can
also be employed in instances where one has an infinitely
conducting but connected phase relative to another connect-
ed phase since the case of a perfectly insulating phase 2 rela-
tive i¢ phase 1 (o,/0, = 0) is equivaient to an infinitely
conducting phase 1 relative to phase 2 (o, /0, = ).

B. Interface eguations for infinitely conducting phase
refative to a connected phase

Consider the general case where phase 2 is infinitely
conducting relative to a connected phase 1 (o = o« ). Phase 2
may be disconnected or connected in three dimensions, but
must be disconnected in lower dimensions. When phase 2 is
also connected, we can use the algorithm described in Sec.
11 C. Therefore, we consider only the case where phase 2 is
disconnected. If = o, Eqs. (40)-(42) yield trivial
answers: p, (#) =0, p, (r} = 1, and 7, (#) = 0. This implies
that the random walker initially at the interface boundary
between phase | and phase 2 will always be trapped in the
infinitely conducting phase and thus can never escape from
there. Moreover, Eq. (42) implies this process requires no
time. This is undesirable from 2 simulation standpoint and
hence one needs to modify the random walk algorithm under
such conditions. We first describe the appropriate equations
for phase 2 composed of d-dimensional spherical inclusions
and subsequently generalize our arguments for arbitrary mi-
crogeomelries.

Consider the random walker initially at %, the center of
the spherical inclusion of radius ¢ as shown in Fig. 6. Con-
struct a concentric sphere of radius R around the inclusion
such that the concentric shell of thickness (R — a) contains
only phase 1. The mean hitting time for striking the surface
84} of the sphere of radius R is obtained by solving Eq. (15)

and is given by
R 2 az
1 — .
2do, ( R 2>

Since it will not take any time for the random walker initially
at the interface boundary y to hit x,, the mean hitting time to
strike {1 from the position y is

2 2
R (1_f__) on T.
2da, R’

For a random walker iritially at some normal position vec-
tor z measured with respect to I', then we have
R? ( ay?
2do, R’

T (xﬂ ) =

(45)

7.(¥) = (46)

() = ) . 0<r<S(R — ),

(47)
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FIG. 6. A sample geometry for the case of @ = 0, /o, = oo for the illustra-
tive case of a spherical inclusion centered at x,,. Here ¥ is the volume of the
sphere of radius a (of conductivity o, ) plus the volume of the imaginary
concentric inner shell of thickness r == |2], 2 == x — y, (of conductivity o, },
and ¥, is the volume of the imaginary concentric outer shell of thickness
[R - (r+ @)} (of conductivity o, ). Furthermore, ¥, is the sam of ¥, and
¥, J) denotes the outer surface defined by x, and [' denotes the interface
boundary defined by y.

where r = |z| and § is a prescribed small number. Note that
we only have to consider the random walk in the (connect-
ed) phase 1 since once it touches the interface boundary F, it
will jump to I spending an amount of time given by (47).

For arbitrary-shaped inclusions (phase 2), Eq. (47)
needs further modification. Construct concentric shells
around this inclusion as in the instance of the spherical inclu-
sion above. Noting that (r + @)*/R >« (V,/V,)*“ where ¥,
and ¥, are the volume of the inelusion plus its surrounding
inner concentric shel! {corresponding to the concentric shell
of thickness 7 in the case of the spherical inclusion), and
volume of the inclusion plus its surrounding outer concen-
tric shell (corresponding to the concentric shell of thickness
(R — @) in the case of the spherical inclusion }, respectively
(see Fig. 6), Eq. (47) generalizes as

(%) =7, (1 = V¥YyYy, (48)

Here 7, is the mean hitting time for the random walker ini-
tially at the center of mass of the homogeneous region of
volume ¥ and conductivity o, to first strike the surface of
this volume. 7, for an arbitrary-shaped region can be easily
determined by solving the governing equation (2) by use of
any common numerical technique (e.g., boundary element
method). With Egs. (47) and (48), the relation (12) can be
used.

We provide an example to show that the above algo-
rithm yields the exact effective conductivity. Consider a one-
dimensional two-phase regular array (e.g., regular arrange-
ment of paraliel slabs which alternate between phase 1 and
phase 2 materials with volume fractions ¢, and ¢,, respec-
tively) (see Fig. 7). Let @ = & and the distance between
two nearest phase 2 slabs be unity. For such a geometry we
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FIG. 7. One-dimensional two-phase regular array.

know that o,/0, = 1/(1 — &, ). Since it takes no time for a
Brownian particle at the interface to walk to the center of the
infinitely conducting slab, then once it hits the interface the
ensuing random walk can be considered to be a simple ran-
dom walk with a constant step size of unity spending {on
average) an amount of time at each step given by

,_u—@nfb_ MMDZ)
20, (1 —¢,/2)?
.. (1 —¢,). (49)
Ty
Therefore, using (12), we find the exact result
N
(tx + 2 (1/20, ))
= limy_ —
a0
: (. +Y (1—$,/20,)
=1/(1—¢,). (50)

Here ¢, and 7, are the times for a random walker at an arbi-
trary initial location to reach any interface for the first time
in an homogeneous medium of conductivity o; and in the
composite medium, respectively, and N is the number of
steps.

{H. SIMULATION DETAILS AND RESULTS

Here we apply the Brownian motion formulation to
compute the effective transverse conductivity o, of two-
phase composites composed of an equilibrium distribution of
infinitely long, oriented, hard cylinders of conductivity o, in
a matrix of conductivity ¢,. We consider the cases
a=0,/c, =10, 50, and «. Since these results combined
with the phase-interchange thecrem' yield corresponding
results for the effective conductivity when ¢ = 0.1, 0.02, and
0, respectively, we do not need to use the simulation tech-
nigue to cbtain resuits for insulating cylinders (a < 1). To
assess the accuracy of the method, we also compute o, for
the idealized microgeometry of a square array of infinitely
long, oriented cylinders of conductivity ¢, in a matrix of
conductivity o, since its solution is known exactly numeri-
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cally.!* Before presenting these simulation resulis, we first
describe the simulation procedure in some detail.

A. Simulation detalis

Obtaining the effective conductivity ¢, from computer
simulations is a two-step process: (i) First, one must gener-
ate realizations of the random heterogeneous medium; (ii)
Second, employing the Brownian motion algorithm, one de-
termines the effective conductivity for each realization (us-
ing many random walkers) and then average over a suffi-
ciently large number of realizations to obtain o,.

In order to generate equilibrium configurations of hard
circular disks (parallel circular cylinders) at area {volume)
fraction ¢,, we employ a conventional Metropolis algo-
rithm.'® & disks of radius @ are initially placed on the lattice
sites of a square array in a sguare unit cell. The unit cell is
surrounded by pericdic images of itself. Each disk is then
moved by a small distance to a new position which is accept-
ed or rejected according to whether or not disks overlap.
This process is repeated until equilibrium is achieved. In our
simulations V = 100 and each disk is moved 200 times be-
fore sampling for equilibrium realizations. In order to ensure
that equilibrium is achieved, we determine the pressure
(proportional to the radial distribution function at contact)
as a function ¢, = Nma’. The pressures so obtained were
found to be in excellent agreement with previous theoretical
and numerical calculations (see Ref. 16 and references
therein). Our simulaticns are carried out for a wide range of
¢, 1.e., 0<4, <0.7; §, = 0.7 corresponds to a value slightly
higher than the hard-disk phase transition.'”

The essence of the Brownian motion algorithm has been
described in Sec. IL. Here we need to be more specific about
the conditions under which the Brownian particle is consid-
ered to be in the small neighborhood of the interface and
hence when the mean time 7, and probabilities p, and p,
need to be computed. An imaginary thin concentric shell of
radius a(1 + &, ) is drawn around each disk of radius ¢. Ifa
Brownian particle enters this thin shell, then we employ the
first passage time equations (37)-(39), or (47). The radius
of this first flight R is virtually always taken to be the dis-
tance to the next nearest neighboring disk or some pre-
scribed smaller distance &, a. However, in the rare instances
in which two or more interface boundaries are very close
together, R would be less than 8§, ¢, and hence it would take a
large amount of computation time for such a random walker
to move even a small distance. Therefore in these rare in-
stances, we take R = 8,4 and instead of using Egs. (37)-
(39}, 0r (47), weuse Egs. (51) and (52) which when gener-
alized to #-phase media are given by

pi(x) = 4,0,/ % A0, (50)

J=1

for the probability of a random walker jumping into phase
(i=12,.,n), and

TS(X) =T (2 E/‘U}/Z V:U,) R

for the mean hitting time. Here 4, and ¥, are the total sur-
face area and the total volume of ith phase, respectively.

(52)
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Note that since the separations between these interface
boundaries are very small and the distance from the random
walker to the nearest interphase boundary is also very small,
then it will not make any significant difference to center the
first flight sphere at x (the position of the random walker)
instead of the nearest interface boundary (as in the prepon-
derance of situations—see Sec. 1I) and hence using Egs.
(51) and (52) should still give accurate vesults. Further-
more, note that such infrequent events will make a very
small contribution to the total mean time for the entire ran-
dom walk.

After a sufficiently large fofal mean square displace-
ment, Eq. (12} is then employed to yield the effective con-
ductivity for each Brownian trajectory and each realization.
Many different Brownian trajectories are considered per re-
alization. The effective conductivity ¢, is finally determined
by averaging the conductivity over all realizations. Finally,
note that so-called Grid method®® is used to reduce the com-
putation time needed to check if the walker is near a disk. It
enables one to check for disks in the immediate neighbor-
hood of the walker instead of checking each disk.

B. Sguare array results

In order to assess the accuracy of our Brownian motion
algorithm, we have computed o, for a square array of hard,
oriented cylinders with a = 10, 50, and < since exact nu-
merical data are already available for this model.™* Here we
have taken &, = 0.0001 and §, = 0.01. We employed 2000
to 6000 random walks, and have let the dimensionless total
mean square displacement X ?/a” vary from 10 to 100, de-
pending on the value of $, and o. A wide range of cylinder
volume fraction values were considered. Figure 8 compares
our simulation results with the exact data of Ref. 14. It is
quite apparent that our simulation results are in excellent
agreement with the previous exact numerical results, for
both finite and infinite values of &. The maximum error for
the reported values was less than 1%.

We also determined the conductivity for @ = » and &
volume fraction ¢, = 0.78 (see Fig. 8}, which is slightly be-
low the percoiation threshold of ¢, = #/4 (i.e., at the close-
packing value). The prediction was again within 19% of the
exact resuit'® of o, /o, = 35.9 for this case, indicating that
our procedure can be employed to study percolation behav-
ior.

Our caiculations were carried out on a VAX station
3100 and on a CRAY Y-MP.

C. Eguitibrium hard-cylinder resuits

Here we report computer simulation data for the effec-
tive transverse conductivity o, of equilibrium distributions
of infinitely long, oriented hard cylinders for « = 1, 50, and
o and for 0 < ¢, <0.7. Tables I and II and Figs. 9 and 10
summarize our findings for the scaled conductivity o, /o, .
Included in the tables and figures is the rigorous four-point
lower bound on o, /o, due to Milton'® which depends upon
a microstructural parameter £, . Torguato and Lado™ eval-
uated &, exactly through second crder in ¢, :

£, = (4,/3) — 0057072 + O(d3). (53)
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FIG. 8. Scaled transverse effective conductivity o, /o, of a square array of
cylinders in a matrix for a = 0, /0, = 14, 50, and «. Solid lines are the
exact numerical results obtained from Ref. 14 and the circles are our simula-
tion data. Note that we also computed o,/¢, for the case @ = » and a
volume fraction of ¢, == (.78, which is slightly below the percolation
threshold of ¢, = 7/4=0.7854 (not shown here}). The prediction is again
in excellent agreement with the exact result."

The simulation results of Sangani and Yao?* and of Miller
and Torguato® demonstrate that this expression is a very
good approximation to ¢, for 0<¢, <0.7. Thus, Eq. (53} is
used to compute Milton’s lower bound which incorporates
higher-order microstructural information via a four-point
correlation function. MNote that we do not give the corre-
sponding four-point upper bound since the lower bound will
provide the better estimate of o, for @ > 1.%°

Employing our results for a = 10, 50, and « and the
phase-interchange thecrem?

0.(0,:0,)0.(¢,,0,} = 0,0, (54}

we can get corresponding results for o = 0.1, 0.02, and G,
respectively. In Fig. 11 we give 0, /0, forthecaseof @ =0
using our data for @ = w. Included in Fig. 11 1s Milton’s
four-point xpper bound on o, /0, which also dependson ¢, .
The corresponding lower bound for a = 0 vanishes.

TABLE 1. Brownian motion simulation data for the scaled conductivity
a, /o, of equilibrium distributions of infinitely long, hard, oriented circular
cylinders of conductivity o, in a matrix of conductivity o, for
a=qa,/0, = 10 and 50 at ¢, = 0.2, (.4, and 0.6. Included in the table is
Milton’s four-point lower bound® using the microstructural parameter
Z, = $,/3 —~0.057074; as obtained by Torguato and Lado.’

a =50 a =10
o,/0, o,/ o, /oy v,/
Simufation  Four-point  Simulation  Four-point
&, results lower bound resulls lower bound
0.2 1.41 141 1.54 1.5t
0.4 207 2.05 2.48 2.41
Q.6 3.14 313 4.53 4.23

*Reference 19.
® Reference 20.
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TABLE II. Brownian motion simulation data for the scaled conductivity
o,/o, of equilibrium distributions of infinitely long, oriented, hard cylin-
ders which are perfectly conducting relative to the matrix (&= ) at
¢, ==0.1,0.3,0.5, and 0.7. Included in the table in Milton’s four-point iower
bound® using the microstructural parameter £, = 4, /3 — 0.05707¢3 as ob-
tained by Torguato and Lado.”

a=
g, /o, o, /o,

Simulation Four-point

&, results lower bound
0.1 1.23 1.23
0.3 1.97 1.95
0.5 3.5% 3.36
0.7 8.29 6.87

*Reference 19.
b Reference 20.

In our simulations, we have taken §, = 0.0001 and
&, = 0.01. We considered 200 to 600 equilibrium realiza-
tions and 100 random walks per realization, and have let the
dimensionless total mean square displacement X */a* vary
from 10 to 1000, depending on the values of ¢, and . Com-
pared to previous simulation techniques, the Brownian mo-
tion simulation algorithm vields accurate values of o, {with-
in 2% ), especially for such large random systems, with a
reasonably fast execution time (e.g., on average the calcula-
tions for o = 50 and oo, respectively, required 2.5 and 1.2
CPU hours on a CRAY Y-MP). It is important to empha-
size, however, that reduction of the number of realizations
by an order of magnitude reduces the computing time pro-
portionally but with little loss in accuracy (i.e., approxi-
mately 5% accuracy level). It is noteworthy that even at

G T T — Rl
| —— 4~—point Lower Bound a=50
s Simulation Cata
4t 4
e ]
7y
2 4
"//ﬁ’
|
0 3 i e £ n i L
0 0.2 0.4 0.6 0.8

FIG. 3. Scaled transverse effective conductivity o,/ of an equilibrium
distribution of hard cylinders in a matrix for & = &, /0, = 10 and 50. Solid
lines arc four-point lower bounds (see Ref. 12) and the circles are our simu-
lation data.
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FIG. 10. Asin Fig. 9, except for ¢ = oo.

high values of the volume fraction &, , ¢, /¢, can be estimat-
ed accurately with relatively small computation cost. Most
of the computational time is spent generating Brownian tra-
jectories and, hence, increasing the system size (i.e., increas-
ing N} adds negligibly smali computational cost.

It should be mentioned that for the case o = 50, Durand
and Ungar® computed o,/0, for the same model using a
boundary eiement method for a unit cell containing only 16
particles. Our data are very close to theirs except at the high-
est area {volume) fractions where our resulis are slightly
higher than theirs. Sangani and Yao?' using a different tech-
nigue calculated ¢, /0, for the same model for the special
case of infinitely conducting cylinders (@ = « ). We find

1 T T L T T T
—— 4—point Upper Bound |
o, e Simulation Datc ]
o 1
0.5k a=0 .
L)
b
L]
O i 1 L 1} P
0 0.2 0.4 0.6 a.8

FIG. 11. Scaled transverse effective conductivity ¢,/¢; of an equilibrium
distribution of hard cylinders in a matrix for @ = ¢, /¢, = 0. Solid line is
the four-point upper bound (see Ref. 19) and the circles are obtained from
the data for the case of @ = «w and the phase-interchange theorem, Eq.
(54).
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that our data are essentially the same as theirs at low densi-
ties {#, = 0.1 and 0.3) but somewhat higher than theirs at
high densities (#, = 0.5 and 0.7). The differences are prob-
ably due to the smaller systern size used in Ref. 21. Unlike
the Brownian motion simulation technique, the computa-
tion time for the methods of Refs. 21 and 23 increase signifi-
cantly as the system size increases.

Et is useful o comment on the sources of errors. Besides
statistical errors, the major sources of errors are: (i) the fi-
nite number of random walks employed and (ii) the finite
length of the random walks. The number of walkers and the
walker lengths employed (described above) are sufficiently
large to ensure that our estimations of the effective condue-
tivity of random arrays of cylinders are on average accurate
to within 2%.

iV. CONCLUSIONS

The general Brownian motion simulation technique of
Torquato and Kim'® has been applied and extended to com-
pute the effective conductivity o, of general isotropic, d-
dimensional, n-phase heterogeneous media having arbitrary
phase conductivities. The appropriate first passage time
equations have been derived to treat such a composite media
with arbitrary microgeometry. Thus the procedure can be
employed to determine the conductivity of particulate com-
posites, such as dispersions of inclusions (e.g., nonoverlap-
ping particles) as well as physically connected particles
{e.g., overlapping particles), and general heterogeneous me-
dia that are not composed of particles. To illustrate the
method, we have computed the transverse effective conduc-
tivity of a heterogeneocus medivm consisting of an equilibri-
um distribution of infinitely long, oriented, hard cylinders of
conductivity o, in a matrix of conductivity g, for a wide
racge of ¢, {cylinder volume fraction} and for several values
of the conduciivity ratio a = ¢, /0, . To cur knowledge, this
represents the most comprehensive computational study of
o, for this useful model of a fiber-reinforced composite. The
Brownian motion simulation technique is shown to yield o,
accurately with a comparatively fast execution time.

Although random-walk techniques have recently been
used to predict effective properties associated with diffu-
sional transport in continuum (off-lattice) medels,>*?° to
our knowledge, this is the first time that the effective conduc-
tivity has been determined using first passage time analysis.
Previous studies® ?® have simulated the detailed zig-zag
motion of the random waltker with sufficiently small step
size. The computational advantages of first passage time al-
gorithms over simulating the zig-zag motion in detail have
been described by Torguato and Kim.'°

3803 J. Appl. Phys., Vol. 68, No. 8, 15 Qctober 1880

Finally we note that the present algorithm has been ap-
plied to determine the effective conductivity of a three-di-
mensional suspension of impenetrable spheres,?” a useful
model for which there are still very few simulation data.
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