Two-point probability function for distributions of oriented hard ellipsoids
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The macroscopic properties of two-phase random heterogeneous media depend upon an
infinite sequence of n-point functions S {” (x,,x,,...,X,,) giving the joint probability of finding n
points with positions x,,X,,...,x,, all in phase i. This paper reports the first study and
calculation of the two-point probability function S {” for distributions of oriented, hard
spheroids with eccentricity € in a matrix. This is a useful model of statistically anisotropic two-
phase media, enabling one to examine the special limiting cases of oriented disks (€ = 0),

spheres (€ = 1), and oriented needles (€ = ).

I. INTRODUCTION

Two-phase heterogeneous materials abound in nature
and in manmade situations. Examples of such media include
fluid-saturated sandstones, slurries, blood, animal and plant
tissue, fiber-epoxy composites, particulate composites,
freeze-dried foods, microemulsions, cermets, and soils. It is
known that the macroscopic properties of such materials
(e.g., transport, mechanical, optical, and electromagnetic
properties) depend upon the details of the microstruc-
ture.!~” The microstructure can be completely characterized
by specifying any of the various infinite sets of statistical
correlation functions that have been defined in the past.®
One such correlation function is the so-called #-point proba-
bility function S {” (x,,X5,...,X,, ), which gives the joint proba-
bility of finding »n points with positions x,,x,,...,x, all in
phase i. This function has been shown to arise in rigorous
expressions for the effective conductivity of composites,'™
fluid permeability of porous media,>S trapping constant as-
sociated with diffusion-controlled processes among static
traps,” and the elastic moduli of composites.®

In the last decade considerable progress has been made
in representing and computing the S { for isotropic models
consisting of distributions of spheres in a matrix.'®-'? Al-
though the extension of this formalism to represent the S ¢”
for statistically anisotropic distributions of particles is for-
mally straightforward,* calculation of the resulting series
representations of the #-point functions is substantially more
difficult for such media. Indeed, the two-point probability
function S {” has only recently been computed for overlap-
ping, oriented cylinders of finite aspect ratio in order to
bound the effective conductivity tensor of such a model.*
Therefore, evaluation of effective properties of statistically
anisotropic two-phase media (e.g., aligned, short-fiber com-
posites), an important class of materials, has been very limit-
ed and has received little attention. The purpose of this paper
is to study and calculate the two-point probability function
S §? for a distribution of oriented spheroids with eccentricity
€ in a matrix. Interesting limiting cases of such a model are
oriented disks (€ =0), spheres (¢ = 1), and oriented nee-
dles (e = w0).
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Il. TWO-POINT PROBABILITY FUNCTION FOR
ORIENTED ELLIPSOIDS

We consider a statistically homogeneous system of ori-
ented (i.e., aligned) hard ellipsoids embedded in a matrix. In
the parlance of two-phase random media, the matrix consti-
tutes phase 1, whose domain is D, in the total volume ¥ and
occupies volume fraction ¢,, while the included ellipsoids
make up phase 2, having the complementary domain D, and
volume fraction ¢, =1 — &,. The effective properties of
such composites are completely characterized by an infinite
sequence of n-point functions S $”(x,,X,,...,x, ) giving the
joint probability of finding »n points with positions
(x,,X;,...,X,, ) =x"all in phase /. The formal study of these n-
point probability functions was initiated by Torquato and
Stell'® for isotropic media; explicit extensions of the formal-
ism to anisotropic media have been considered by Torquato
and Sen.* Here we need only recall some basic definitions
from these works for completeness while specializing them
to the case of oriented spheroids.

Let 7 ”(x) be a random variable of position x charac-
terizing phase /,

1, xeD,,
0, otherwise.

I‘“(X)=[ (D

The general n-point probability function for phase i is then
defined by

SO = <II 1""(x,-)>, 2)

=1

where the angular brackets denote an equilibrium average
over all configurations of the inclusions. For “hard” inclu-
sions, this is simply an average over all configurations having
no overlaps of the included shapes.

Equation (2) can be made more explicit by introducing
a spheroid indicator function m(r). Let the axially symmet-
ric spheroids be aligned with their symmetry axis in the z-
direction. Then with r measured from the center of mass of a
spheroid, the function
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mr)=1 a* b2 3)
0, otherwise

characterizes the interior of the spheroid with semiaxes a
and b. The matrix characteristic function for N such inclu-
sions in the volume V is then expressible as

N
[I1=-mx—r)], 4)
i=1

_J

I(l)(x) —

n N
HI(I)(xj) H

j=1 i=1 i=1

[,

"Mz n==

=1-

i<j

If the conclusions cannot overlap each other, this series ter-
minates when there are more inclusions r; than points x;."!
That is, for products of more than 7 of the M(r;;x") at least
one of the ellipsoids will necessarily be devoid of any x; and
by Eq. (5) the product vanishes for all allowed configura-
tions. Putting the truncated expansion (6) into Eq. (2) and
making use of the interchangeability of particle labels r; in
the averaging integral then yields

Wy =14 3 (= 1)* ( M >
S5 (x") +k§=:|( )k'(N k)',l_-ll (r;x")

fpk(r") [1 [M(;x"dr;],
11
' (7

where we have introduced the k-particle density function'?

for the inclusions,
S 8
(N — k)'(,l;ll (i = > ®)

For a statistically homogeneous system, even if not isotropic,
the origin of coordinates is arbitrary and these distributions
become functions of relative coordinates,

Pk (l'l,l'z,...,l‘k )= Pk 1§ SPTIS SP%)

= p*g; (F1gpeenslii ) &)
The second equality of (9) defines the dimensionless k-parti-
cle distribution function g,, where we have used
p=pi(r))=N/V.

In this work we are primarily interested in SV (x,,),
which depends on g, (r,,) for aligned ellipsoids. The calcula-
tion of the anisotropic g,(r,,) is described below. Here we
note in passing that, from (7) and (9),

k {’ 29"";c
Pr(F1,r,00r) =

i

M(r.,X")+ZM(r,,X")M(r X — > M(rx")M(r;x
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where r, locates the center of mass of spheroid i. Now put

M(r;x")=1-— 1'"[ [1—m(x;—r)]

i=1

N
[1—m(x;—r)] = H [1—M(r;x")]

0, if none of the x; lic in spheroid i
= . (5)
1, otherwise.
It follows then with (4) and (5) that
IM(rx) + o (6)
ic<jc<k
{
SH(x) =1 —pr(r,;x,)drl
=1 —pJ-m(r)dr
=l—-pV=1-¢,=¢, (10)

as éxpected, where ¥V, = { ma®b is the volume of an ellipsoid.
The two-point matrix probability function can be some-
what simplified as follows. We have

SV(xp)=1—p f M(r;x,,x,)dr,

1
+ 7p2 fgz(rlz)M (r;XyX,)
X M(ryx,,x,)dr, dr,

=1 —pVy(xy3) + p*Us(xy2). (11

Here, V,(x,,) is the union volume of two aligned spheroids
whose centers of mass are separated by x,,,

Vztxlz) = J‘M(rl;xlsx2)drl

=J [m(x, —r)) + m(x,—r1,)

— m(x; —r;)m(x, —r,)]dr,
=2V, — V¥(x;2), (12)

where V¥(x,,) is then the corresponding intersection vol-
ume. Similarly, for U,(x,,) we write first

Uy (x1) =§fgz(ru>[m(xl — 1))+ m(xy — 1) — m(x — F)m(x, —1y)]

X [m(x; —r;) + m(x, —r,) — m(x, — r,)m(x, —r;) ldr, dr,

= ng(rlz)m(xl —r)m(x, —r,)dr, dr,,

(13)
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where other terms in (13) vanish since, without overlap of
the two spheroids, any given x, cannot be in both. Next, we
introduce the total correlation function
h(ry,) =g,(r;;) — 1to write

Uy(x,,) = U-m(r)dr]2 -{-J-h(r,z)m(x1 —r)

Xm(x, —r,)dr, dr,
=V 4 U¥(x,,).
Thus, S{"(x,,) in (11) becomes

Sél)(xlz) =1-2pV, +P2V% +pV¥(x2) +p2U§‘(x12),

(14)

= ¢ +ST(xp2), (15)
with
S3(x,) = Sél)(XIZ) - ¢%
=pVH(xy,) +p*U%(x,5). (16)

For widely separated points x; and x,, S {"(x,,) becomes
simply ¢?, so that its subtraction in (16) yields a function
S ¥(x,,) that vanishes for large argument; further, it is the
same function for both phases, so that no superscript need be
written. Thus the task at hand is to evaluate

Vi(x,,) =J-m(x1 —r)m(x, —r,)dr, (17a)

and

Ux(xy,) = f h(r,)m(x, —r;)m(x, — r,)dr, dr,
(17b)

for aligned spheroids.

What makes this task reasonably straightforward is the
observation by Lebowitz and Perram'* that a scale transfor-
mation to coordinates

R=(X.X.2) = (xrL2) (18)
converts the spheroids of shape
xX4+y2 7
=ty (19)

into spheres of radius a, thus reducing the thermodynamics
and particle correlations of aligned hard spheroids to an
equivalent problem involving hard spheres, a much-studied
model in the theory of liquids.!* From (18) we extract the
radial coordinate R as

R?=x2+ 2+a_2
Y b2
a2
—r+ (& _1)22, (20)
or
R =r[1—(1—ad%b%cos?0]"?
= 2ar/o(6), 21)

where @ is the polar angle between the zaxis and r = (x,p,2).
In (21) we have defined an angle-dependent “hard sphere
diameter”
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2a
[1—(1—a*b%)cos?6]'?"
With this insight, we can proceed immediately to the
calculation of the intersection volume V#¥. For two hard
spheres of radius a separated by a center-to-center distance
R,,, this quantity is

o(0) = (22)

V3aus) (Ryp) = f Mys (Ry3)Mmys (R3;)d Ry

- imﬁ[l _ i(&) + L (52)3]
3 2\ o, 2 \o,

XH(U'g —Rn), (23)
where o, =2a is the sphere diameter,
1, Rxa,
R) = 24
My (R) 0, R>a, (24)
and H(x) is the Heaviside unit function,
1, x>0,
= 25
H(x) { 0, x<0. (25)

For oriented hard ellipsoids, the coordinate transformation
(18) yields

V¥(r,)= J m(r;)m(r;,)dr,

b
— ; J‘ mHS (R13)mHS (R32)dR3

=i,mzb[1 _i(L) +L(L)3]
3 2 \o(60) 2 \o(6)
XH(a(8) —ryy), (26)

where we have used (23) and (21). More briefly, Eq. (26)
can be written

b ( 7 )
VE(ry,) =—V¥uslo, —=—]).
3(r2) p 2¢Hs)1 7. o(0)

This completes the evaluation of (17a).

For (17b), a closed form expression such as Eq. (26)
cannot be given since none exists for hard spheres. However,
a simple scaled relationship like Eq. (27) is immediate;

(27)

U¥(r,) = f h(r;,)m(r3)m(r,,)dr; dr,

= (b /a)zf hys (Ryq) mys (R 3)mys (Ry;)

XdR3 dR4
= (b /a)zU’z"(HS) (Ry2)

= (b/a)’Ulys, (0,r,/0(8)). (28)

Thus, we need but compute U %455, (R) to obtain U#(r) by
interpolation.

Since Eq. (28) involves a double convolution, the calcu-
lation of U ¥4, (R) is most easily carried out using Fourier
transforms. For the hard-sphere version of (28) we then
have in transform space
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U3y (k) = hys (k) ks (k). (29)

For radially symmetric functions f (r) the three-dimension-
al Fourier transform reduces to

}”(k) =fk£f drrf(r)sin kr, (30a)
(1]
with the inverse
£ = '2'17117 J; dk KF (k)sin kr. (30b)
Evaluating (30a) for myg (7) gives
Figs (k) =%(sin ka — ka cos ka). 31)

The final quantity needed is /s (k). No exact expres-
sion for the hard sphere pair correlation function Ay () is
known. However, an excellent approximation is available
from the solution of the Percus-Yevick (PY) integral equa-
tion for a hard sphere fluid. In PY approximation, the relat-
ed direct correlation function Cyg (7) is given by'?

r r\?
CHs(r)=A1+A2( )+A3( ), r<o,

o

o

=0, r>o,. (32)
Here, the coefficients are
A= —(14+29)/(0 —n)4,
4, =6n(1+1/2)/(1 —7)*,
Ay =n4,/2, (33)
where
4 3
=3 MPusd (34)

is the volume fraction of the hard spheres, which is set equal

to @, for the ellipsoids; i.e., pys = (b /a)p. The connection

between Ayg (7) and Cyg () is through the Ornstein—Zer-

nike equation,'* which in Fourier transform space reads
Cus (k)

1 — prys Cus (k)
The transform of Cyg (7) can be readily obtained analytical-
ly from Eq. (32), but we omit the result because of length.

This completes the steps needed to determine

U % us) (R}2): combine Egs. (31) and (35) in Eq. (29) and
invert with Eq. (30b). The Fourier inversion must be done
numerically. With U %, (R,,) in hand, the desired aniso-
tropic U%(r,,) is obtained by interpolation using Eq. (28).

The PY approximation for Ayg (k) is the sole approxi-
mation used in computing S ¥(r,,).

hys (k) = (35)

Ill. RESULTS FOR S%(r12) OF ORIENTED HARD
ELLIPSOIDS

We have computed S¥(r) = S#(r,0) for a variety of
ellipsoid volume fractions ¢, and eccentricities € = b /a. As
noted below, the oblate (€ < 1) results are related to the pro-
late (¢> 1) by a simple symmetry, so that we have selected
for display a sampling of S #(r,6) for prolate spheroids.

5915

Figures 1 and 2 show cross sections of S ¥ (7,8) for a low
density system with ¢, = 0.2. In Fig. 2, we see the effects of
anisotropy for € = b /a =2 in the form of cross sections
through S %(r,8) for & = 0, 45°, and 90", reading from right
to left on the main peak of the curves. Note that the distance
is in units of the major semiaxis b, so that the curve for § = 0
(the outermost of the three) is identical to the hard sphere
limit.!' This remains true for the results shown in Fig. 2,
corresponding to € = 10. With b as the unit of distance in
both these cases, the 8 = 0 cross section remains unchanged
while the others move progressively toward smaller » as €
increases, reflecting the increasing disparity of the inclusion
asymmetry.

The same set of cross sections is shown in Figs. 3 and 4
for a high density situation, ¢, = 0.6. The basic shape of S ¥
shows more pronounced structure over the low density cases
in Figs. 1 and 2. As the eccentricity €is increased from 2 to 10
in Figs. 3 and 4, respectively, the increased structure carries
over to the cross-sections, taken again at 8 = 0, 45°, and 90°.
Because the choice of distance scale is still the major se-
miaxis b, the & = 0 cross sections in these figures are again
unchanged with respect to the spherical limit."'' The contrast
between the 8 = 0 cross section and that for & = 90° for the
needlelike case of € = 10 in Fig. 4 is particularly notable.

We remark that the value of S ¥ at the origin is ¢,¢, in all
cases.'?

An alternative way to display the effects of anisotropy is
to expand the two-point function S ¥ (#,0) in Legendre poly-
nomials P, (cos 9),

0.2 — v
0.15 ¢, = 0.2 ]
b/a = 2.0 |
]
S,(r.6) 1
0.1 -
‘ 1
0.05 ]

0

]
[ 1

005w o 1, FERED T N S S U SN S S S T
0 1 2 3 4

t/b

FIG. 1. Cross sections through the two-point probability function 5#(7,8)
for hard, oriented prolate spheroids at volume fraction #, = 0.2 and eccen-
tricity € = b /a = 2. Thecurvesare for 8 = 0, 45°, and'90", read from right to
left on the main peak.
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1 U ——
]
0.15 ¢, = 0.2 g
€ = b/a = 10.0 ]
S5(r.6) )
0.1 4
|
0.05 .
- 1
0
s SN——" 4
[ 1
| ]
-0.05 PUN U U SO [ S U U S [ S S S SR SN
0 1 2 3 4

r/b

FIG. 2. Same as Fig. 1 with e = 10.

S3(n6)= 3 R/(r)P(cos 6), (36)
I=0
where
1
R, (r)=(+ 1/2)‘[ S%(r,0)P,(cos 8)d(cos 8).
-1
37

Because of symmetry, only even values of / contribute to the
expansion in (36).
Equation (37) was evaluated numerically using Gaus-

0.2 ¢, = 0.6 1
L € =b/a =20
1
syr8) |
0.1 F p
1
]
I
l
4<>“_‘
TR T S
|
I
PR | I S 1 PP SUVT S NN SR S
0 1 2 3 4

r/b

FIG. 3. Cross sections through the two-point probability function S (,0)
for hard, oriented prolate spheroids at volume fraction ¢, = 0.6 and eccen-
tricity € = b /a = 2. The curves for 8 = 0,45°, and 90°, read from right to left
on the main peak.
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0.2 ¢, = 0.6 _

€ =b/a = 10.0 ]

Sy(r.6)
0.1

P i Y L e,
0 1 2 3 4
r/b

FIG. 4. Same as Fig. 3 for e = 10.

sian quadrature. Figure 5 displays the radial coefficients
Ry(r), Ry(r), R,(r), and R4(r) for €e=2 and ¢, =0.6,
which corresponds to the cross sections in Fig. 3. The coeffi-
cients are seen to progressively decrease in maximum ampli-
tude and to pass through the first zero, to begin oscillations
about zero at progressively larger ranges as / increases.

The effect of increasing anisotropy is seen in Fig. 6,
which shows the same set of coefficients for € = 10 and un-
changed volume fraction ¢, = 0.6 (cf. Fig. 4). Here the fea-
tures of Fig. 5 are simply accentuated; it is apparent that the

_— 1 . 1 —
2 4

FIG. 5. Harmonic coefficients R, (7), / = 0, 2, 4, and 6, of S ¥ (r,6) for hard,
oriented prolate spheroids at volume fraction ¢, = 0.6 and eccentricity
e=b/a=2.
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FIG. 6. Same as Fig. 5 for e = 10.

rate of convergence of the expansion (36) is much slower
now than for the € = 2 case. Note that the scale of distance in
Figs. 5 and 6 is the minor semiaxis ¢, which avoids a com-
pression of the curves with increasing €.

Cross sections of S¥(7,0) for oblate spheroids, € <1,
can be computed in the same way. However, if the results are
then plotted against 7/a rather than /b as in Figs. 1-4, they
will be identical to the cross sections already displayed in
these figures when the parameters are properly reinterpret-
ed. This follows from the effective “hard sphere diameter”
o(8) defined in Eq. (22), which is the key to the rescaled
results of Egs. (27) and (28). Writing o(8;¢) to display the

eccentricity parameter € = b /a that is part of Eq. (22), we
find easily from this equation that

0(6€)/b=o(n/2 — 61/€)/a. (38)

This says in effect that the cross-sections for € > 1 in Figs. 1-
4, plotted vs r/b, will be identical to cross sections for e’ = 1/
€ < 1 when these are plotted vs r/a and read in reverse order
for the angle 6. Thus, Figs. 1 and 3 and Figs. 2 and 4 translate
immediately into equivalent results for € = 0.5 and e = 0.1,
respectively, when interpreted in this fashion. This symme-
try does not carry over to the radial coefficients shown in
Figs. 5 and 6, which are qualitatively different for € < 1.
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