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Recently a number of techniques have been developed for bounding and approximating the
important quantities in a description of continuum percolation models, such as (»,)/

P» the mean number of clusters per particle. These techniques include Kirkwood-Salsburg
bounds, and approximations from cluster enumeration series of Mayer-Montroll type,

and the scaled-particle theory of percolation. In this paper, we test all of these bounds and
approximations numerically by conducting the first systematic simulations of (n,}/p

for continuum percolation. The rigorous Kirkwood-Salsburg bounds are confirmed
numerically in both two and three dimensions. Although this class of bounds seems not to
converge rapidly for higher densities, averaging an upper bound with the corresponding
lower bound gives an exceptionally good estimate at all densities. The scaled-particle theory
of percolation is shown to give extremely good estimates for the density of clusters in

both two and three dimensions at all densities below the percolation threshold. Also, partial
sums of the virial series for {n,) are shown numerically to give extremely tight upper

and lower bounds for this quantity. We argue that these partial sums may have similar
bounding properties for a general class of percolation models.

I. INTRODUCTION

The basic concept of percolation as a geometrical effect
underlying nucleation and aggregation processes has been
used by researchers for several decades.””!” In general, it
involves the creation of large clusters of atoms or particles
by a process of pairwise aggregation or “connection.” The
fact that a smooth change either in the density of particles
or in the definition of pairwise connectedness can produce
a sudden change in the average size of the resultant clusters
is well known; the resulting, purely geometrical transition
is called the “percolation transition.”

This phenomenon is very general. The particles’ posi-
tions may either be correlated according to an arbitrary
thermal Gibbs distribution function or according to some
nonequilibrium deposition process. In a continuum system,
the condition under which a pair of particles are taken to
be connected can be chosen in many ways, depending on
the application; it need have no relation to the correlation
between the particle positions. For example, in studying
impurity conduction in a crystal,'” it is natural to choose a
separation-dependent bond probability proportional to
exp[ — x;/€); here x;; is the separation and £ is the hop-
ping length.

Recently, the extensive study of the percolation critical
indices with their attendant universality has caused
researchers to focus on uncorrelated, nearest-neighbor per-
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colation on a lattice. This paper is part of a long-term effort
to develop techniques for studying percolation processes in
the generality indicated above.

Hill® first provided a general framework for calculating
percolation quantities by writing the thermal Mayer func-
tion for a system as a sum of “connecting” and “blocking”
Mayer functions, substituting for each bond in the thermal
Mayer graph series, expanding and retaining only sub-
graphs with a path of connecting bonds joining the root
points. This procedure has allowed the development of
both series expansions>>!! and integral equations *>!14
for the basic quantities of interest in a variety of correlated
percolation models.

This method was applied by Coniglio e al.? to give
series expansion methods for continuum percolation quan-
tities. Recently the continuum Potts model (CPM)
method!?>"* has been used'® to derive such expressions, as
well as other relations which are new. This method extends
to the continuum the Potts model mapping of Fortuin and
Kastelyn” which yields percolation models as a limiting
form of thermal model. It allows one to automatically se-
lect the terms given by Hill’s prescription; thus it is a con-
venient way to develop equations for percolation quanti-
ties. The CPM method treats percolation as the one-state
limit of a standard continuum statistical mechanical sys-
tem, thus, it is straightforward to use this method to derive
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analogs for percolation of the series expansions and inte-
gral equations already available from the theory of liquids.

In this paper, we evaluate several approximations and
bounds for the quantity {(».), the mean number of clusters
per unit volume, which have been derived by using the
CPM approach. These include a Kirkwood-Salsburg equa-
tion for {(n.),'* which produces a sequence of increasingly
accurate upper and lower bounds for this quantity, and a
number of approximations for (n.) from the scaled particle
theory of percolation.'®

To evaluate this wealth of analytic expressions, we
conducted the first extensive computer simulations of the
total cluster density per particle in continuum percolation.
Estimates of the density of small clusters of fixed size have
previously been obtained.® However, our purpose was to
appraise the functional dependence of the quantity (n.) on
particle density, and thus we required somewhat more ex-
tensive simulations than those done previously.

Obtaining statistical measures such as mean numbers
of clusters, monomers, dimers, and trimers, etc., from com-
puter simulations is a two-step process. First, one generates
realizations of the random medium. Second, one samples
each realization for the desired quantities and then aver-
ages over a sufficiently large number of realizations. We
generated realizations of random sphere percolation (i.e.,
distributions of points with a Poisson distribution) by ran-
domly placing particles in a D-dimensional cubical cell.
The cell is surrounded by periodic images of itself. The
advantages of “free” boundary conditions over standard
periodic boundary condition in obtaining the connected-
ness functions by simulations have been described previ-
ously.!® It will not make any difference in the determina-
tion of cluster statistics, however. Sampling each
realization to calculate the mean number of clusters,
monomers, dimers, and trimers was done by a modified
Hoshen-Kopelman!” cluster labeling algorithm. We first
computed these quantities for several system sizes (i.e.,
number of particles in the cell for some fixed density) and
then extrapolated the results to the infinite-size limit. We
have studied systems of 60, 120, 250, 500, and 1000 parti-
cles in two dimensions and systems of 64, 125, 216, 512,
and 1000 particles in three dimensions. We generated sets
of 3000 realizations in two dimensions and sets of 4500-
5000 realizations in three dimensions.

This paper is organized as follows: in Sec. II, the der-
ivation of the Kirkwood—Salsburg hierarchy for percola-
tion is sketched. The first equation in this hierarchy is then
used to give various upper and lower bounds for (z.). In
Sec. III, a class of approximations from the scaled particle
theory of percolation are developed and compared with
simulation data. In Sec. IV, we develop a Mayer—Montroll
hierarchy for the percolation cluster numbers n.(k). These
give the mean number per unit volume of clusters contain-
ing k particles. Truncations of this hierarchy are shown to
give good approximations for the quantities n.(k), whose
sum is the mean density of clusters (n.). In Sec. V, we
develop lower bounds on (n.) by enumerating the number
of monomers, dimers, and trimers per unit volume. These
enumeration bounds are compared to simulation data. Sec-

tion VI gives our conclusions. Also included are three tech-
nical appendices: Appendix A gives geometric formulas
basic to the enumeration of dimers and trimers, Appendix
B gives the fourth-order bounds of Kirkwood-Salsburg
type on mean cluster number, and Appendix C uses the
scaled particle theory of percolation to derive a differential
equation for the mean cluster number.

Il. KIRKWOOD-SALSBURG BOUNDS FOR
PERCOLATION

In this section, we sketch the derivation of a
Kirkwood—Salsburg hierarchy for the n-point connected-
ness functions which was given in detail in Ref. 14. Trun-
cations of the equations in this hierarchy give alternately
upper and lower bounds on the connectedness functions.
Since the first equation in this hierarchy is satisfied by the
density derivative of (n_.), bounds on this quantity are also
obtained.

A word about our choice of units is necessary. Al-
though we find it aids intuition to develop our equations in
terms of the number density of particles p, all our graphs
use the reduced density 7. This is defined as the number
density times the particle volume. Thus one has 7 = (%/
4)a2;_) and n = (1r/6)a3;_) in two and three dimensions, re-
spectively. The length a is both the particle diameter and
the characteristic range of the bond probability, to be de-
fined below.

The Kirkwood-Salsburg (KS) hierarchy for random
percolation'* shares certain basic features with the corre-
sponding hierarchy for repulsive thermal interactions,? al-
though its structure is substantially more complex.
Because of this, the hierarchy has been used to develop
rigorous upper and lower bounds for the basic quantities of
percolation theory, as well as to provide a lower bound for
the radius of convergence of the virial series. The KS hi-
erarchy is most readily developed by exploiting the relation
between the continuum Potts model (CPM) and contin-
uum percolation. The pairwise interaction for the contin-
uum Potts model

Vi=v(xp[1 =801 + ¢(xy)

describes a many-body system of particles, each of which is
in one of s different species or spin states, with a positive
interaction v(x) acting only between particles of different
species. The spin-independent interaction ¢(x) will induce
correlations in particle positions in the corresponding per-
colation model. Although the methods reviewed here apply
to models with general positive ¢(x), it suffices for our
purposes here to set ¢(x) = 0, as we will discuss only ran-
dom percolation in this paper. The CPM can also be de-
scribed as an s-species generalization of the Widom-
Rowlinson model, a useful model for phase separation.'®
The one-state limits of the physical quantities describing
this model are the corresponding quantities describing a
continuum percolation model in which particles are ran-
domly centered and connected with a separation-
dependent bond probability p,(x). Here

(2.1)

Polxy)=1—exp[ — Buv(x;) 1. (2.2)
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If v(x) is chosen to be a hard-sphere interaction with di-
ameter a, this gives the model called sphere percolation, in
which two particles are connected only if their centers are
closer together than a. In this paper we will compare com-
puter simulation data from this model to a variety of ana-
lytic bounds and approximations that have been obtained
previously. However, most of the methods discussed here
apply with suitable extension to any percolation model that
can be described as the one-state limit of the CPM defined
by Eq. (2.1). As noted above, this is a large class of mod-
els.

The density p and fugacity z of the CPM are related to
the mean number of clusters in random percolation by

d p d
=== (n) — 1.
S=I(Z) dp tne)

ds

Here p and (n,) are, respectively, the number of particles
and number of clusters, per unit volume, in the corre-
sponding percolation model. In the zero-field case to be
discussed here, the thermal correlation functions of the
CPM do not depend on which spin states particles occupy,
but only on whether each pair of particles is in the same, or
different, spin states. Thus we can write

(2.3)

(2.4)

for the CPM thermal correlation function; it is propor-
tional to the probability density for finding particles at
positions x;, x,, ... ,X, in spin states a,, a,, ..., Q,, respec-
tively. We use a normalization such that g,— 1 when all the
differences of pairs of spatial arguments of this function
simultaneously become large. Here P is a partition of the
integers 1,...,n in which two integers are grouped together
if and only if the corresponding particles are in the same
spin state. Note that we write 1 for x,, 2 for x,, etc. The
corresponding objects in percolation theory, the connect-
edness functions, are similarly proportional to the proba-
bility densities associated with finding particles at x, ..., x,
connected together in various subclusters. Here, a pair of
particles is said to be connected, or contained in the same

g:(1,...,m;P) =g,(x1,a1,.. ., X1, 2,)

m+1

pva)_ v Py v
X

m
z m=1 m! 41
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cluster, if there is a chain of pairwise-connected particles
liking them. This quantity is written g.(1,...,n;P), where P
is a partition of integers 1,...,n in which two integers are
grouped together only if the corresponding particles are to
be in the same connected cluster. Since a group of n par-
ticles can be linked into clusters by the other particles in
the system n! possible ways, there are n! connectedness
functions on the n-point level. The complexity of the per-
colation problem is largely due to the fact that hierarchies
of integral equations for these functions tend to involve the
entire set. On the two-point level, there are just two func-
tions, usually called the connectedness function g.(1,2),
and the blocking function g.(1/2). These give the proba-
bility density for finding the two particles centered at x,
and x,, respectively, in the same cluster, and in different
clusters. The connectedness functions are related to the
one-state limit of the CPM correlation functions by

limg(1,...i;P)= 2 &(1,.,;P). (2.5)

s—1 PiP
Here the sum is over partitions P of the integers 1,...,n
which are refinements of P.

Integral equations for various subsets of the connect-
edness functions have been developed and studied numer-
ically. In general, however, percolation theory is most
cleanly formulated using not the connectedness functions,
but the specific linear combination of them which occurs
on the right-hand side of Eq. (2.5). These functions, which
we call the generalized blocking functions, are written
g5(1,...,n;P). They yield the probability density for finding
particles x,,...,x,, such that no connections exist between
any pair of particles whose indices are separated by the
partition P, particles whose indices are grouped together
may be either connected or not. This insight, i.e., that the
s—1 limit of the CPM correlation function is a useful lin-
ear combination of connectedness functions, then allows a
direct relation between the CPM and continuum percola-
tion. The Kirkwood-Salsburg hierarchy for the CPM cor-
relation functions

H f(xbxk’alrak)
k=2

e g [2ay,...,(m+ Da,,  ]dx,...dx, (2.6a)
z n
gt( lalr--snan) == (;) kHZ [l +f(xlk’a1:ak) ] [gt(2a2’---,nan)
%0 m n+m
+ z ol Z o z H f(xbxksabak)
m=1 Mt [ P Tpim k=n+1
(2.6b)

&g [2ay,..(n + m)a, , ,]dx, . ..dx, ,,,J
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can be written down directly, pairing each integral over
particle position with a sum over that particle’s spin. If one
takes the one-state limit of these equations, using Eq.
(2.5), and groups together identical terms, the result is

gb( 19'":”;P)

=11 {Pb(l,k)aa,,ak+ [1 “pb(l,k)]}[gb(zv--’n;}))

k=2

= n4+m

Z P Saer [ 1 pih

k=n+1

®84(2,stt + MP VX, 4 1.dXy ,,,]. (2.7)
Here P is a partition of 1,..,n, P is a partition of
2,...,n + m, and the second sum on the right-hand side is
over partitions P that are consistent with P, i.e., that agree
with P when restricted to the integers 2,...,n. The weight
factor d(P,P’) depends on the structure of these two par-
titions and can be calculated in closed form.!* In order to
use this hierarchy to derive various bounds pertaining to
(n.), an equation for this quantity must be added to the
hierarchy. To do this, we take an s derivative of both sides
of Eq. (2.6a) and use the relation (2.3). This gives an
equation for the density derivative of (n,) of the form
(2.7), but with a different form for the weight factors:

d
a7 (nc)

m+1

H Pp(x1x)

(2.8)

Note that Eq. (2.8) is said to have the same form as Eq.
(2.7), and to belong to the same hierarchy, because the
{g.} and the {g,} form equivalent bases, i.e., either set of
functions contains a full description of the cluster structure
of a percolation model. Equation (2.8) is needed in order
to include (n.) in a closed set of equations that have the
properties needed to develop analytic bounds.

This hierarchy now allows the derivation of powerful,
exact results. Because the bond probability is positive, i.e.,
because we chose v(x) in Eq. (2.1) to be greater than zero,
the hierarchy inherits the alternating bound property from
the corresponding thermal CPM hierarchy?; i.e., succes-
sive truncations of any of Egs. (2.7) will give alternating
upper and lower bounds for the blocking functions. Since
these form a complete set, one can substitute these bounds
into each other, eliminating the blocking functions on the
right-hand side and finally yielding bounds on these func-
tions that depend only on p,(x) and the density p. Again,
because the connectedness functions are linear combina-
tions of the blocking functions, [see Eq. (2.5)], one gets the
desired bounds on these quantities. Since (n.) was
included in the hierarchy, we obtain bounds for it as well.
Some low-order bounds obtained in this manner are

(n)>p — 3P4y

—1+2 "’de

><gc(2,...,m + l)dxz...dxer 1-

(2.9)
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FIG. 1. Three upper and three lower bounds on the 3D cluster density
(n.)/ 7, shown as solid curves. These result from the Kirkwood-Salsburg
bounds described in Sec. II, after successive substitution to eliminate
blocking functions [see Egs. (2.8)-(2.11) and also Appendix B]. For low
densities, successive bounds improve; for higher densities this is not the
case. The average of fourth-order lower and upper bounds, shown as a
dotted curve, gives a very good approximation to the simulation data
points, shown as solid circles.

(n)<P —3 P Az +3 P45, (2.10)
(ny>P —3 P+ P43 — % P43, (2.11)
(n)<T =3 P Ay +337° +1 7 '4y* [ 4] — 43),
(2.12)
where
A= J. d*x120p(x12) (2.13)
Ay= f x12 X33 P (X12)P5(%23)P5(X31) (2.14)

We also calculated the fourth-order bounds in this
sequence; these are given in detail in Appendix B. All of
these bounds are graphed and compared with computer
simulation data in Fig. 1. For low densities, the upper and
lower bounds closely bracket the simulation results. How-
ever, for intermediate densities, where this is not true, none
of the bounds give a close approximation to the data. In
this regard, these bounds for random percolation differ
from the variational bounds®® on the transport properties
of random systems. It is frequently the case with the latter
that either the upper or the lower bound will closely ap-
proximate the data. It is entirely possible that bounds for
strongly correlated percolation models may behave differ-
ently in this regard, but this matter is still unexplored. We
note, however, that for the case of random percolation
explored here, the averages of successive pairs of upper and
lower bounds give remarkably good approximations to the
simulation data. As an example, the average of the upper
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and lower bound of fourth order given by the procedure
described above is shown as a dashed line in Fig. 1. Also,
we note that the higher-order bounds do increasingly well
at low densities but actually deviate from the data more
rapidly at higher density. This seems to represent the cu-
mulative effect on the remainder term of successive substi-
tutions. Support for this view is given in the discussion of
the bound (2.19). Bounds of the type discussed in this
section exist for percolation models with positive (repul-
sive) correlating potentials ¢(x), although their functional
form is somewhat more complicated.*
The two-point connectedness function is bounded by

8c(x1,%2) >pp(x12), (2.15)

8o(x1,%2) <pp(%12) + [1 — pp(x12) ] p 4. (2.16)

These bounds yield corresponding bounds for the cluster
density {(n.) if they are inserted into the right-hand side of
the virial theorem for sphere percolation. This relation is'!

d ((n) 114 —
d*ﬁ ( ﬁ )_’ '—2(3 7a gb(a’P )
Thus, if the quantity on the right-hand side is known, it
can be immediately integrated to give (n.). For sphere
percolation, one can exploit the fact that quantities depend

only on the dimensionless combination pa’ to rewrite Eq.
(2.17),

d ({n)
da ( i)
This equation has a simple probabilistic interpretation: if
the radius of every particle in a realization of sphere per-
colation is increased by an amount da, the decrease in the
number of clusters per particle is given by the density, at
the surface of one particle, of particles belonging to dif-
ferent clusters. Each of these corresponds to an incipient
fusion of two clusters. The factor of 1/2 on the right-hand
side of Eq. (2.18) prevents double counting. A relation of
this kind can be developed for any continuum percolation
model with a positive (repulsive) correlating potential
¢ (x).

No simple relation pertains between the low-order
bounds on {n,) developed directly from the Kirkwood-
Salsburg equation and those developed by using Eq.
(2.17). Neither set of bounds is consistently tighter, at the
same level of approximation. Thus it is an advantage to
work with both sets.

We also investigated the Kirkwood—Salsburg upper
bound on (n.),

2.17)

1
): — 5 (4ma)84(a, ). (2.18)

d _ p?
75 (I<1— P+ 5y f 2.(1,2)p5(1,2)dx1,
(2.19)

which is the first nontrivial truncation of Eq. (2.8), by
directly substituting, for the two-point connectedness func-
tion g.(1,2), the solution of the Percus—Yevick equation
for this model.>® Evaluation of Eq. (2.19) is greatly sim-
plified by rewriting the last term on the right-hand side

Given et a/.: Cluster density in continuum percolation
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FIG. 2. The second-order Kirkwood—Salsburg upper bound (2.19) for
the quantity (n.)/ P, evaluated by using the Percus—Yevick solution [Ref.
5(a)] for the connectedness function g.(x). This bound is a much better
estimate than the corresponding truncation of the virial series, both of
which are shown as solid curves. We also show as a dotted curve the
resummation of the series (2.8) which follows readily if the connected-
ness functions in that formula are all approximated by unity (see discus-
sion at the end of Sec. II).

2
151,2+6772-f1 (z+4)(z—2)"g.(2)dz.  (2.20)

Here we use the reduced density for 3D which is 7 = (#/
6),‘0’a3. The result is shown in Fig. 2, where it is compared
to the polynomial given by the first three terms of the virial
series for this quantity. Although both are exact to order
P 3 Eq. (2.19) gives a far better approximation to the ac
tual value of (n.) for intermediate density. This is actually
the best rigorous bound we have evaluated for this quan-
tity. Thus, it seems valuable to calculate higher-order
bounds of this type by using the best approximations to
two and three-point connectedness functions, as provided,
for example, by integral equation studies.>'?

Equation (2.8) suggests one other natural approxima-
tion. For the case of sphere percolation (or any other
short-range percolation model), the connectedness func-
tions in that formula are evaluated only for small separa-
tions of their arguments. In this domain, the connectedness
functions will be close to unity. Approximating them by
unity allows one to sum the series on the right-hand side of
Eq. (2.8) to give exp[ —p4,] — 1. This gives a very rea-
sonable approximation for {n.) which is shown by a dotted
line in Fig. 2.

lil. SCALED PARTICLE THEORY APPROXIMATIONS

In this section, we sketch the development of a scaled
particle theory for continuum percolation models.’> The
theory is quite general, although the development here will
be specified to the case of random-sphere percolation, both
for brevity, and to avail ourselves of the direct probabilistic
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interpretation that this model allows. We develop a general
scheme for producing scaled-particle approximations to
the cluster density for this model. The relative importance
of the various constraint conditions will then be assessed
by comparing the approximations to simulation data.

For random-sphere percolation, we define the notion
of a scaled particle, or A-cule, as follows: in a realization of
this system with density p, locate at random a point par-
ticle, considered as a sphere with zero radius. The sphere
then increases steadily in radius, and as it does, it includes
the centers of other particles and thus becomes connected
to them. Some of these are already connected indirectly to
the scaled particle, i.e., are contained in the same cluster,
whereas some are not. The probability density associated
with overlapping a particle from a different cluster, as the
scaled particle radius increases from A to (A + dA) can be
written

G(A,p )4mAt dA. (3.1)

This defines the scaled particle function G(A,p). If the
variable A is set equal to a, the diameter of the other par-
ticles in the system, the function G becomes the contact
value of the two-point blocking function. Knowledge of
this quantity as a function of density is equivalent to
knowledge of (n.). This is the content of the virial theorem
(2.17).

It will be valuable, in deriving relations for G(4,p), to
relate this quantity to the functions already developed in
Sec. IL. To do this, define a generalized blocking function
8s(x12,4) as follows: g (x;,,A4) is the probability density
associated with finding a normal particle and a A-cule sep-
arated by a distance x;,, with the two belonging to different
clusters. By the definition of G(A,p) in Eq. (3.1), we have
immediately

G(4,p)=8(A,A).

The behavior of G’(/{,;) for small values of A is easily
determined. In fact, if a normal particle and a A-cule are
separated by a distance A1<a/2, any particle connected to
the A-cule will also be connected to the normal particle.
Thus the two will fail to be connected only if the A-cule is
empty of particle centers. The probability for this is

(3.2)

G(A,p)=exp(— p $7A%). (3.3)
The above comments then provide a strategy for calculat-
ing {(n.). The function G(A,p) is known for small A, and, if
additional relations can be used to interpolate it to A = a,
the virial theorem (2.17) will then give (n.).

Other relations satisfied by G(A4,p) are easily obtained.
For example, one has the relation

a

—d: (ny=1—7p f 4mAlg,(A,A)dA (3.4)
d P 0

which has been termed!® the charging relation. This name
reflects the fact that increasing the radius of a particle in a
percolation model is analogous to increasing the charge, or
interaction strength, of a particle in a thermal system.
Equation (3.4) has a direct probabilistic interpretation,

5133

which is rather similar to that already given for the virial
theorem of percolation. To see this, we examine the change
in the number of clusters per unit volume produced by
adding one particle to the system. The particle will be
added in a specific manner: we insert at a random location
a A-cule with range A =0 and allow it to grow until it
becomes a normal particle. As the range of the A-cule in-
creases from A to (4 + dA), the probability that it overlaps
a particle from a different cluster is given by

4mA* P gy(A,A)dA. (3.5)

The total change in the number of clusters produced by
such an addition is then equal to 1 (for the A-cule itself)
minus the number of events in which the A-cule fuses with
other clusters, i.e., minus the integral of Eq. (3.5). This is
the content of the charging relation (3.4). This argument
also makes it clear that the charging relation (3.4), like the
virial theorem (2.17), can be generalized to an arbitrary
percolation model, although the derivation given above ex-
ploited the geometric nature of sphere percolation.
The relation

(n)=pG(,p)

known as the osmotic pressure relation for percolation,'®
has also been established by the use of the inclusion—
exclusion argument.

More information on the function G(A,p) is available.
By using a Kirkwood-Salsburg equation for G(4,5), to-
gether with geometrical information, one can calculate the
value of G(4,p) and its first two derivatives at the point
A = a/2. This calculation is described in detail in Ref. 15.

As already noted, the relations given in this section can
be readily derived by using the known relationships be-
tween the quantities describing the CPM and those de-
scribing continuum percolation. A scaled particle theory
can be readily derived for the CPM by defining a A-cule for
that model to be a particle of a particular species (say
species i) with interaction range A. The CPM mapping is
not needed for the model of random-sphere percolation, for
which probability theory is sufficient to derive the neces-
sary constraint relations. The CPM method is valuable,
however, in deriving scaled particle theory for the general
case of correlated percolation.

We now have a general basis for constructing scaled-
particle approximations for the basic percolation quantities
discussed in this work, the mean number of clusters
(n.), and the value of the blocking function at contact
2 (a,p ). It will be convenient to use the notation y = A/a
and r=7 in what follows. We retain a finite number of
terms of the expansion

(3.6)

o a n
atn= 2 6055 (3.7)
and solve for the coefficients G, using the constraint equa-
tions mentioned above. We summarize the constraint equa-
tions to be used:
(1) The value of G(A,p) at y= 3} given by Eq. (3.3)
(F);
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(2) The value of the first derivative of G(A4,5) with
respect to A at y= 1 (1D);

(3) The value of the second derivative of G(4,p) at y
= 3, taking into account the discontinuity in that
quantity (2D);

(4) The charging relation for percolation Eq. (3.4)
(CH);

(5) The osmotic pressure equation for percolation
(3.6) (OS);

(6) The virial theorem for percolation Eq. (2.17)
(VT).

Note that in an exact treatment, constraints (4), (5),
and (6) would not all be independent; one of them would
serve to transfer the discussion from G(4,p) to (n.). How-
ever, in an approximate treatment, use of all three con-
straints does yield a better estimate, as we will see. More
constraints can be included. For example, one can use the
short-distance techniques already discussed, including geo-
metrical probability theory and the Kirkwood-Salsburg
equations, to calculate higher derivatives of G(1) at y= 1.
We do not pursue this here.

We consider in detail five approximation schemes, each
resulting from the use of a subset of the above six con-
straint equations. These approximations and their corre-
sponding set of constraints are

(Al) (F, 1D, 2D, CH, VT)

(A2) (F, 1D, 2D, CH, 08)

(A3) (F, 1D, 2D, VT, 08)

(A4) (F, 1D, CH, VT, O8)

(AS5) (F, 1D, 2D, CH, VT, 08).

We have abbreviated each constraint as above. The
second derivative fixed by constraint number (A3) can be
shown to be infinite in two dimensions; thus this constraint
cannot be enforced with a polynomial fit and is absent in
two dimensions. We still use the same notation, however,
simply identifying (A4) and (A5). We graph the resulting
set of approximations for two-dimensional percolation in
Fig. 3. The approximations {AS5), given by the full set of
constraints, and shown in the figure with a solid curve, is
the best at ail densities below the percolation threshold.
The others, in decreasing order of accuracy, are (Al),
(A2), and (A3).

The situation in three dimensions is more subtle. (See
Fig. 4.) The full approximation {AS), again shown with a
solid curve, is the best at all densities below 7 = 0.27. At
higher densities, other approximations, first (Al), and
then (A2}, come to fit the data more closely. It is not clear
without further application of this method how general
this sequence is, however, it may simply reflect the limits of
accuracy of the present scheme. The detailed behavior of
these approximation schemes for high density is shown in
Fig. 5. Note from both Figs. 4 and 5 that the three-
dimensional scaled-particle estimates are more tightly clus-
tered than the two-dimensional estimates.

IV. MAYER-MONTROLL EQUATIONS FOR CLUSTER
DENSITY

In this section, we develop a Mayer—~Montroll hierar-
chy for the density of clusters containing a specified num-

Given of a/.: Cluster density in continuum percolation

1.0

CLUSTERS PER PARTICLE

REDUCED DENSITY

FIG. 3. Four scaled-particle approximations in 2D, vs computer simula-

- tion data for the cluster density {n,)/P. These are discussed in detail

below Eq. (3.7). The full approximation (AS5), shown as a solid curve, is
consistently the best for all densities below the percolation transition,
which occurs at a reduced density 7 == 1.15. The others, in decreasing
order of accuracy, are those termed (A1), (A2), (A3), all of which are
shown as dotted curves.

ber of particles. We explore this series numerically in the
case of random-sphere percolation, both for its intrinsic
interest as a source of information about the cluster size
distribution, and as a way to explore the analytic structure
of the virial series that occur in percolation theory.

CLUSTERS PER PARTICLE
]

O il Ml B L ] ]

0 .05 .10 .15 .20 .25 .30 .35
REDUCED DENSITY

FIG. 4. Same as Fig. 3, but for 3D percolation. The full approximation
(AS5) is still the best below the reduced density # = 0.27. At higher
densities, the approximations (Al) and (A2) best describe the data.
Again, scaled-particle approximations are quite accurate up to the tran-
sition, which occurs at a density % = 0.35,
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FIG. 5. Detail from Fig. 4. The approximations, shown, from bottom to
top, respectively, are those termed (A4), (A5) (shown as a solid curve),
(A1), (A2), and (A3). See discussion at the end of Sec. IIL

Define the quantity n.(k,p) to be the density, per unit
volume, of clusters containing exactly & particles. We first
write down the Mayer-Montroll equation for the quantity
n.(k,p), then give a probabilistic interpretation of this
equation. The equation is

n(kp)= f ALY (L. LK) (. k)

Xdxy...dxy. (4.1

The interpretation of this equation is as follows: in order
for particles at x,,...,x; to constitute a k cluster, three
events must occur: there must be particles at these posi-
tions, they must be connected into a cluster without the
need for intermediaries, and they must not be connected to
any other particle. These correspond to the three factors in
the integrand of Eq. (4.1). The first is the probability den-
sity for finding particles at positions x,...,x;. The second is
given by the sum of all connected Mayer graphs, with each
pair of particles / and j weighted, either by a factor pixy) or
[1 — ps(x;)], depending on whether the points / and j are
or are not connected by a line. For example, for k = 3, one
has

1(1,2,3)=p,(1,2)p,(1,3)[1 — p(3,1)]
-+ cyclic permutations
+ Ps(1,2)p5(2,3)py(3,1). (4.2)

The third factor gives the probability density associated
with the event that no other particles be connected to those
located at x,...,.x;. This is given by a standard Mayer—
Montroll inclusion—exclusion argument.!® The result is

1
L(1,..k)= 2, E;J‘dxkﬂ... f dXi i m
~ ml
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k+m
®pl™(1,...k +m) g D(1,...k;i).
fome 1
= (4.3)

Here the function D(1,...,k;i) gives the probability that the
particle at x, is connected to at least one of the particles at
Xyy0Xg It is given by

k
D(1,...k;i)=1— l}1 [1—ps(xm)]. (4.4)

Also, the function p!™ is the conditional distribution func-

tion

pl L k+ m)
pl1,..k)

We will perform further calculations only in the case of

random sphere percolation. In this case, we have
p1,..,n)=p" for all n and Eq. (4.1) becomes

oI (L,.k + m) = (4.5)

nc(k:'ﬁ- ) = f Il( ia"-sk)

Xexp — E j dxiD(l,.u,k;i) . (4-6)

Expanding the exponential in Eq. (4.6) in powers of 5
gives a compact expression for the virial coefficients™!! of
nc(k,p ). We can use this as a laboratory for examining the
analytic behavior of this series and its approximants. As we
will see, there are certain similarities between truncations
of Egs. (2.7) and (4.1), even though the former is a
Kirkwood-Salsburg, and the latter a Mayer-Montroll ex-
pansion. '’

In Fig. 6, we show the first five partial sums of the
virial series for the number of dimers, as developed from
Eq. (4.6), compared with the results of computer simula-
tion. Explicitly, these are the partial sums of the series®

(n
5‘) =47 — 497% + 302.229° — 1250.517* + O(7°).

4.7)

Several questions suggest themselves:

(1) Are truncations of this virial series alternately up-
per and lower bounds for the actual cluster densities
n.(k,p)? The answer for k=2 is empirically yes; how-
ever, for general &, the answer is not known. Actually, one
cannot yet answer even the weaker question of whether
truncations of the virial series for n,(7 ), the complete
cluster density, form bounds on this quantity. Although
this question is analogous, for random sphere percolation,
to one answered in the affirmative by Penrose? for thermal
hard spheres, its answer remains elusive. We discuss this
matter further in Sec. VL

(2) Do the bounds, shown in Fig. 6, improve mono-
tonically? The answer, given empirically, is no; however,
one must carefully examine the data at high densities to
determine this fact. It is not clear why the nonmonotone
behavior of the bounds is much less manifest in this case
than, for example, in Fig. 1. The structure of Eq. (4.6)
does, however, suggest a simple explanation for the lack of
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FIG. 6. Successive truncations of the virial series (4.7) for the dimer
density, as given by the Mayer-Montroll series (4.6). At low densities,
successive truncations alternately form upper and lower bounds of in-
creasing quality, as shown here. This behavior does not persist at very
high density; however, compare this figure to Fig. 1.

monotone behavior. Performing a virial expansion of Eq.
(4.6) requires expanding an exponential of a negative
quantity. The absolute magnitude of the terms in the Tay-
lor expansion of exp[ —pV] in powers of p will decrease
only after the nth term, where n~pV.

V. ENUMERATION BOUNDS FOR THE CLUSTER
DENSITY

In this section, we enumerate, for random sphere per-
colation, the density of monomers, dimers, and trimers,
both in two and three dimensions. The calculations, which
are carried out either analytically, or using direct numeri-
cal integration, serve two purposes. First, they give the first
examples of a new class of bounds, which we call enumer-
ation bounds. Second, they serve as input to a study of
surface tension in percolation models, which is now under
way. 2

The density, for random sphere percolation, of kX mers,
is given by Eq. (4.6). The expressions, in two and three
dimensions, for dimers and trimers can be reduced, respec-
tively, to single and triple integrations, respectively, over
bounded domains. The resulting cluster densities are com-
pared to the results of simulation, for two and three di-
mensions, in Figs. 7 and 8, respectively. The excellent
agreement gives another validation of the method of image
boundary conditions described in Ref. 17. The successive
sums of these cluster densities give lower bounds on the
total cluster density n.(p ), which we call enumeration
bounds. The first three such bounds are shown in Fig. 9.
However, considering that the sum including trimers, gives
the first three virial coeflicients exactly, the results for in-
termediate densities are somewhat disappointing.

Given et al.: Cluster density in continuum percolation

CLUSTERS PER PARTICLE

REDUCED DENSITY

FIG. 7. From top to bottom, density per particle of monomers, dimers,
and trimers, in 3D. Curves are analytic formulas; data points are from
computer simulation, which can be seen to be in excellent agreement with
the exact results. These quantities are needed for the bounds shown in
Fig. 9; the agreement between theory and simulation serves to show the
high accuracy of the latter.

We evaluated the quality of this last bound mindful of
the fact that many techniques for approximating the trans-
port coefficients of composite materials, e.g., the multiple
scattering expansion, are available only for materials of one
phase containing nonoverlapping inclusions of another
phase. Percolation clusters are nonoverlapping (by defini-
tion). Also, one has fairly extensive information about
cluster distributions. Thus it is very tempting to describe
the well-studied overlapping sphere models? of composite
media in terms of nonoverlapping inclusions having the

1.0 T T T T T T T T T T T T

CLUSTERS PER PARTICLE
(3]

0 1 i 1 1 1 | 1 H 1
g .10 20 .30 .40 .50 .60

REDUCED DENSITY

FIG. 8. Same as Fig. 7, but for 2D percolation.
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FIG. 9. First three enumerative bounds for full cluster density {(n.)/7.
Top curve includes monomers, dimers, and trimers. We see that these
lower bounds are tight only at low densities.

statistical geometry of the percolation clusters studied in
this paper. Experience gained here suggests that naive ef-
forts of this kind might require very extensive enumera-
tion.

VI. CONCLUSIONS

The Kirkwood—Salsburg equations for percolation give
formally exact relations that hold for large classes of con-
tinnum percolation models. These bounding procedures
provide valuable constraints on any approximation
scheme. These bounds do not converge rapidly for high

1.0 T 1 1 1 T T 71 T T ¥ T T

CLUSTERS PER PARTICLE
o

j I ] 1 1 1 L

o § I NS N I RN |

0 .04 .10 .16 .22 .28
REDUCED DENSITY

FIG. 10. Partial sums for the virial series for (n.,)/p. These give, de
facto, extremely tight bounds. Such truncations may, in general, give
upper and lower bounds, but this is unproven.

densities. However, averaging successive pairs of upper and
lower bounds is shown to give remarkably good approxi-
mations to our simulation results.

The analytic formulas for the density of small clusters
are confirmed in detail by our simulations, thus demon-
strating the accuracy of the simulation method used. How-
ever, the enumerative bounds formed by summing these
are not close approximations even at intermediate densi-
ties.

The scaled-particle theory approximations to {n.)/p
match our simulation results very closely except for those
of lowest order, both in two and three dimensions. It is
obviously worth exploiting this approximation method fur-
ther, to obtain, for example, the two-point connectedness
function and the mean cluster size. The former can be
obtained directly by extending the methods of Ref. 25; the
latter is then given by a volume integration.'!

Finally, we investigated two approximation schemes
whose analytic status is unclear, the Mayer—~Montroll
equations and the truncated virial series. Both give
sequences of bounds on the cluster density which appear to
converge quite well at low and intermediate density. Trun-
cations of the virial series, in particular, converge very well
at all densities. These are shown in Fig. 10. They also seem
to give the tightest known bounds on {(n,)/p. It is of
substantial value to further research in percolation theory
to substantiate these bounding properties analytically (or
to find the class of models for which they break down).
Understanding which approximations hold for these mod-
els is essential to any attempt to incorporate percolation
into realistic theories of disordered materials.
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APPENDIX A: CALCULATION OF EXACT CLUSTER
NUMBERS FOR RANDOM PERCOLATION

In this Appendix, we briefly describe the calculation of
the average numbers of percolation clusters of fixed size.

For a general correlated percolation model, the mean
number of clusters of fixed size is given by a virial series of
Mayer type which has been described.® In the specific case
of random sphere percolation, one can make use of closed
form expressions for the cluster numbers. We describe
these in general, but give explicit expressions only for the
case of trimers.

If the centers of particles are distributed at random in
a volume ¥ with density p, the probability that the volume
will be empty of them is given by exp[ — p¥]. Using this
fact, we can write an expression for the average number of
clusters containing exactly s particles

n= f dxi;... f dxsexpl — pVyl. (A1)
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Here the integrations are over all sets of pairwise separa-
tions such that the s particles form a cluster. The union
volume F; of exclusion spheres surrounding each of the s
particles in a cluster must be empty of other particle cen-
ters in order that the cluster not contain more than s par-
ticles; this accounts for the exponential factor. For trimers
in three dimensions, one has the explicit expression

a a (r/2s)
ny=_8m%p* f dr f szdsf d(cos 0)
0 r —1

Xexp[ —pVyl. (A2)

Here 6 is the angle between the vector joining particles 1
and 2, and the vector joining particles 2 and 3. The above
choice of integration variables is quite efficient in three
dimensions, but cannot be used in two dimensions because
the corresponding volume element is singular in that case.
In two dimensions we have instead

ns=4‘n'p3 fa dr fa ds f’+s dt Rexp[ —pVyl.
R (A3)
Here R is defined by
sin(0) =(t/2R) (A4)

and r, s, f are the pairwise distances between the atoms of
the trimer. The analytic expression for the volume V' as a
function of #, s, ¢ is given in Ref. 28. Analytic expressions
are now available? for the union volume ¥y, of any num-
ber of equisized exclusion spheres as a function of their
pairwise separations. Thus, one’s ability to calculate cluster
numbers is limited only by the dimensions of the required
phase space integrations. Modern vector computers allow a
highly efficient use of the Monte Carlo algorithm to eval-
vate such integrals.

The mean cluster numbers provide a source of data for
continuum percolation in many ways complementary to
the calculation of virial coefficients. Small changes to the
algorithm for these quantities just described allow one to
calculate the mean volume and surface area per cluster.
The mean volume is obtained by inserting in the integral
(A1) a factor of the cluster volume ¥V, which is obtained
from the same formula as that used for the union volume
V. but with the exclusion sphere radius @ replaced by the
particle radius (a/2). The mean surface per cluster is ob-
tained by taking a numerical derivative of the mean volume
with respect to the particle radius. This is done by calcu-
lating Eq. (A1) with two slightly different values of parti-
cle radius, @ and a + ¢, subtracting and dividing by €. The
last quantity is presently being used®* to evaluate the qual-
ity of approximate expressions for the surface tension!® in
continuum percolation.

APPENDIX B: FOURTH-ORDER
KIRKWOOD-SALSBURG BOUNDS ON THE MEAN
CLUSTER NUMBER

In order to better understand the trends in the series
(2.9)-(2.12) of bounds of Kirkwood-Salsburg type for
(n.)/p, we calculate the fourth-order upper and lower

Given et al.: Cluster density in continuum percolation

bounds of this type. This is done by eliminating the con-
nectedness functions from Eq. (2.8), using Eq. (2.7),
treating exactly terms of order O(ﬁ4 ) and approximating
higher-order terms so as to preserve bounding properties.
The resulting fourth-order bounds are
(n)>P —1 P4y +4 P43+ 5% p*Cy+ 1 p°Ds
(B1)
and
(n)<P =3 P4, +5P 43+ % p*Ci+ 1P °Es,
(B2)

where C, is the exact virial coefficient for sphere
percolation®!!

Co=31Y — 61V + 21V (B3)
and the remainder terms are given by
Ds= — A3+ 4 434, + 1 4,10 — T4, 1P
P 3D 1D 11D 41,
(B4)

Es=3 A5 — 2434, — S A, 1P + 24,19 — 1 I{®. (BS)

In the above, the I'™ represent the absolute values of the
standard Mayer integrals for hard spheres. We follow the
terminology of Ref. 30 for them: I\, for example, repre-
sents the first cluster integral (in their tabulation) with five
vertices and six bonds. It should be noted that bonds in our
graphs represent the function p,(x) given by Eq. (2.2);
since this quantity is positive definite, our expressions
I™ are actually the absolute values of the standard Mayer
integrals.

APPENDIX C: DERIVATION OF A DIFFERENTIAL
EQUATION FOR THE MEAN CLUSTER NUMBER

In this Appendix, we will derive and solve the differ-
ential equation for (n.) associated with the scaled-particle
approximation scheme (A4).

We assume the form (3.7) for G(4,p) = g,(4,4), re-
taining four nonzero terms. Thus,

A, 4, A,

Gyt)=Ag+—+—= . Cl
1) i (C1)

The coeflicient 4; can be shown to be identically zero in
L2

general.” The osmotic pressure equation for percolation
(3.6) then gives
(n)/p =4 (€2)

The constraint equations given by fixing the values of the
function G and its derivative at y= 1 can be shown to be!

G’y=1/2=e—t, (C3)

dGc

- = —6te . (C4)
y y=1/2

The charging relation (3.4) can be rewritten, using Eq.
(C2) on the left-hand side, as
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515+ G=e"'—24t fll/z G(y,1)y* dy. (C5)
Finally, the virial theorem (2.17) becomes

dit(<'%‘))= _4G(y=1,). (C6)
Substituting Eq. (C1) into Eqgs. (C3)-(C6) gives

Ay + 24, + 44, + 164,=e ", (7))

44, + 164, + 1284,=6te ', (C8)

tA6 + A0=e_t — 24t[C0A0 + C]Al —+ C2A2 + C4A4],
(C9)

Ay= —4[Ag+ A, + A, + Ay]. (C10)

Here the prime indicates a ¢ derivative. The constants C,
are given by

1
C,= Yy~ "dy. (C11)

172

Combining Eqs. (C7)-(C10) and eliminating the variables
A, — A, gives for A

—ttA)+ Ag=[p P — 21+ 1]e” " +itdy  (CI2)
By inspection, we find the solution
(n
Ap= ﬁc)=[%tl——3t+1]e“’ (C13)

which approaches unity as the density ¢ approaches zero.
This approximation is shown as the lowermost dotted
curve in Fig. 4. It is found'’ that Eq. (C13) also results if
the set of constraints is simplified so as to eliminate either
the charging equation or the osmotic pressure equation and
set the trial parameter 4, to zero.
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