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The macroscopic properties of two-phase random heterogeneous media depend upon the infinite

set of n-point probability functions S, .
finding n points with positions x;, . .

..,S,. The quantity S,(x,, ...
., X, all in one of the phases. We derive a series representation

, X,) gives the probability of

of S, for a finite-sized D-dimensional lattice model of heterogeneous media. By performing certain
averages over the S,, we then obtain explicit expressions for translationally invariant and rotation-
ally invariant n-point probabilities. Computer simulations are carried out for low-order n-point
probability functions. The theoretical and simulation results are found to be in excellent agreement.

I. INTRODUCTION

The quantitative characterization of the microstruc-
ture of two-phase random media is not only of impor-
tance from a morphological standpoint,"? but also be-
cause the macroscopic properties of such materials
(transport, mechanical, and electromagnetic properties)
depend upon the details of the microstructure.*~1° The
morphology of heterogeneous media can be completely
characterized by specifying any of the various infinite sets
of statistical correlation functions.® One such correlation
function is the so-called n-point probability function S,,,
which has been shown to arise in rigorous expressions for
the conductivity of composites,>>® fluid permeability of
porous media,””® trapping constant associated with
diffusion-controlled processes among static traps,*® and
the elastic moduli of composites.!® The quantity S,(x")
(where x"=x,,...,X,) gives the probability of finding n
points with positions x, all in one of the phases, say
phase 1. The determination of the S, (x") in the study of
the random media carries the same importance as the
determination of the n-particle probability density func-
tions in liquid-state theory.

In the last decade, considerable progress has been
made in representing and computing the S, for off-lattice
or continuum models (e.g., distributions of discrete parti-
cles)."' 717 Such models are not characterized by topologi-
cal equivalence. A two-phase medium possesses topologi-
cal equivalence if the morphology at volume fraction ¢; is
identical to another with volume fraction 1—¢;. Contin-
uum models are useful descriptions of suspensions, beds
of particles, particulate composites, etc.

On the other hand, to our knowledge, virtually no
work has dealt with the determination and calculation of
the S, for lattice models. The purpose of this paper is to
carry out such a program for a simple D-dimensional lat-
tice model that we shall term the “random” lattice mod-
el. The random lattice model is constructed by tesselat-
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ing a D-dimensional cubical subspace into identical D-
dimensional cubical cells, with cells randomly and in-
dependently designed as phase 1 (white) or phase 2
(black) with probabilities ¢; and ¢,, respectively. Thus,
our model is essentially the well-known Ising model in
the high-temperature limit, i.e., the limit in which spin in-
teractions are identically zero. (Note that the random
lattice model possesses topological equivalence.) The ran-
dom lattice model can be profitably used to describe com-
posites with cellular structures, e.g., foams, emulsions,
animal and plant tissues, etc. Finally, it should be men-
tioned that we perform Monte Carlo simulations of cer-
tain lower-order S, in order to confirm our theoretical
findings.

In Sec. II we derive a series representation of the S, for
the random lattice model. In Sec. III, we obtain, by per-
forming certain averages over the S,, translationally in-
variant and rotationally invariant n-point probabilities.
In Sec. IV, the Monte Carlo simulation procedure used to
compute lower-order S, is described. In Sec. V, we
graphically display various theoretical results for lower-
order n-point probability functions and compare some of
these findings to our computer simulation results.

II. SERIES REPRESENTATIONS
OF THE S, FOR THE RANDOM LATTICE MODEL

We shall derive the series representations of the S, for
the random lattice model by employing the correspond-
ing results of Torquato and Stell!! for the continuum
model of distribution of particles. Torquato and Stell ex-
pressed the S, in terms of the n-particle probability den-
sity function. Thus our strategy is to exploit the
Torquato-Stell results by deriving the n-particle probabil-
ity density function for the random lattice model. Given
the latter, the appropriate expressions of the S, for the
random lattice model easily follow.
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A. n-particle probability density functions

For any statistically inhomogeneous two-phase random
medium consisting of identical particles (inclusions)
whose positions are completely specified by center-of-
mass coordinates r¥=r,,...,ry, Torquato and Stell'!
J

—1)

S, (x")=1+ 2
j=1 1=1
where
1, XGDP
m(x)= 0, otherwise (2.2)

is the particle indicator function, x is a position vector
whose origin is the centroid of the particle, and Dp
denotes a particle region. The quantity p,(r") in (2.1) is
the n-particle probability density function defined by

f Py(tNydr, . (2.3)

par")= L.dry .

(N —
The n-particle probability density function p, (r") charac-
terizes the probability of simultaneously finding the
center of a particle in the volume element dr, about r;,
the center of another particle in the volume element dr,
about r,, etc. The quantity Py (r") in (2.3) is the specific
N-particle probability density which characterizes the
probability of finding the particles labeled 1,2, . . . N with
a particular configuration r", respectively.

The task that lies before us is to obtain the appropriate
expressions for the p,(r") for the random lattice model,
i.e., the lattice problem shall be described in continuum
language. Recall that the random lattice model is con-
structed by tesselating a D-dimensional cubical subspace
into MP identical D-dimensional cubical cells of unit
length with cells randomly and independently designated
as phase 1 (white) or phase 2 (black) with probabilities ¢,
and ¢,, respectively (where ¢,+¢,=1). Thus the total
system volume V =MP. Figure 1 depicts a two-

FIG. 1. A two-dimensional realization of the random lattice
model at a volume fraction of the black phase ¢,=0.4.

f fpk r)H I—H[l— (x;—r;)] |dr; ,
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derived series representations of the S,. In the special
case of hard particles inclusions, they found that the
probability of simultaneously finding n points at positions
x" all in matrix phase (phase 1, i.e., space exterior to the
particles) is given by

(2.1

[
dimensional realization. As noted earlier, the model is

closely related to the high-temperature limit of the Ising
model. Every cell has two possible states: occupied
(black) or unoccupied (white), corresponding to upward
or downward spins in the Ising model in high-
temperature limit. We let the occupied or black cells cor-
respond to “particles” in the continuum description.
Since such cells do not overlap and because multiple oc-
cupancy is prohibited then they are regarded as ‘“hard”
particles. Let N (where N <MP) denote the total number
of such hard particles (black cells). Then the volume
fraction of the black phase ¢,=N /MP. Finally, we note
that the random lattice model is a special instance of a
“symmetric cell material”.!®

For the system described above, the location of a cell is
solely determined by the position vector of the cell center
which has D components. Specifically, we write the posi-
tion vector of the jth cell a$

D
R, =3 jing,
k=1

(2.4)

where n; (k=1,...,D) are the limit vectors in a D-
dimensional Cartesian coordinate system. Now the prob-
ability of finding a special particle (say particle 1, for ex-
ample) in a special cell j is just

1 N
P(r,=R,))=——+TT 6(1,i) (2.5)
' MP ,I,Iz
with
0, ifr,=r,
6(1,0)= 1, otherwise . (2.6)

The factor on the right-hand side of (2.5) involving 6(1,1)
prevents multiple occupancy of the cell. Thus the N-
particle probability density Py(r") for the random lattice
model for r" contained within the finite system can be
written as

MD

S 8(r;,—R;) [T 6G,)) ,
j=1 ij

where 8(x) is the Dirac delta function and Z is the nor-
malization constant

z=[. . [1I

i=1
. MDP
(MP—N) -

The n-particle probability density function for the ran-

dom lattice model can be obtained using (2.3) and (2.7),
with the reenlt that

. v
Py(rh= 2]

i=1

2.7

MD
> 8(r;—R;)

=1

I1 66, j)dc”
Lj

(2.8)
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=N Ze 1 s o e )
pn T (N—n)! Z iLI] ng (l‘,- J) Il} (ly_] ’
(2.9)
where
D_pyn
=M —nl 2.10)
(M”—N)!

It is important to note that the above development for
the P, and p, was limited to positions r" located within
the finite system. Exterior to the generally finite system,
P, and p, are identically zero.

B. Series expressions for the S, (x")

Substitution of (2.9) into the general series expansion of
(2.1) enables one to obtain the n-point probability func-
tion S, for this model. For the random lattice model the
indicator function m (x) is given as

1, |x1<L (k=1,...,D)

2

m(x)= (2.11)

0, otherwise ,

where x is measured with respect to the centroid of a cell
and x, is the kth component of x. For n =1 and n =2
we have the following expressions which apply within the
finite system:

—1~fpl(r1)m(x r)dr, , (2.12)
S,(xy,x,)= fp, r)m(x—r;)dr,
—fp,(r,)m(xz—r])drl
—J—fpl(rl)m(xl—rl)m(xz-—rl)dr1
+fp2(r1,r2)m(x1 r)m(x,—ry)drdr, .
(2.13)

The integral of (2.12) is trivial and leads to the simple re-
sult that

Si(x)=1—¢,=¢,, (2.14)
where
N _N
b= _}\_4—5—7 (2.15)

is the volume fraction of phase 2. Thus, S, (x) is equal to

the constant ¢, within the system and zero otherwise.
J
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For pairs of points within the system, the two-points
probability function varies not only with the relative dis-
tance between the two points, but also varies with the lo-
cations of the two points. This can be seen from the ex-
pression (2.13). When x, and x, lie anywhere in the same
white cell, we have

m(x,—r)m(x,—r;)=1

and

m (XI—rl )m(X2—r2)=O .

The integration then yields the two-point probability
function as

Sy (x1,x)=1—6¢,=¢, .

The superscript 1 here indicates that the special case of
pairs of points lying in the same white cell is being con-
sidered. When these two points are both in one white
cell, then the two-point probability gives the same result
as if these two points coincided. When x,; and x, lie any-
where in different white cells, we have

1)=0

(2.16)

m(x,—r )m(x,—r

and

m(x]'—'r])m(X2—r2)=1 .

The integration then leads to a different result:

S )=1-2¢,+¢ S /M
k2 2T M
The superscript 2 here indicates that the special case of
pairs of points lying in different white cells is being con-
sidered. When the two points are in different cells, the
probability of finding both points in phase 1 is equal to
the probability of finding the two cells unoccupied. Note
that in the limit of an infinite system (M — « ), Eq. (2.17)
yields ¢3. Thus, Eqgs. (2.16) and (2.17) imply that the ran-
dom lattice model is statistically inhomogeneous even in
the infinite-system limit. Other examples of infinite but
inhomogeneous systems include regular (periodic) lat-
tices.
The general result for the S, of the random lattice
model for any n can be obtained by substituting (2.9) into
(2.1). Therefore, we have the general expression

(2.17)

0 b= 1/M). . [dy—(k —1)/M]

S\(x,)=

1_k§1k!(l—k)! (1—1/M). .

q1—(k

S'" in (2.18) is the n-point probability function for any
partition of n points among !/ different white cells such
that the points lie anywhere in the white cells.

III. TRANSLATIONALLY INVARIANT
AND ROTATIONALLY INVARIANT
n-POINT PROBABILITY FUNCTIONS
A. Translationally invariant functions

We shall obtain translationally invariant n-point prob-
ability functions by fixing the relative displacement be-

—1)/M]

(2.18)

, [=1,...,n.

-
tween the n points x, ..., x,;, (where x;;,=x; —x,) and
averaging over the positions x;. This avcraged functlon
denoted by S,,, depends upon the aforementioned relative
displacements and has the following interpretation: the
probability of tossing a polyhedron with fixed orientation
having »n vertices with relative displacements
Xy, ...,X;,, anywhere in the two-phase medium and
finding the n vertices in the white phase. The general ex-
pression for S can be written in terms of the S, ) [Eq.
(2.18)] as follows



4456

where W' is the weight factor associated with the
averaging described above. The W ‘) have simple proba-
bilistic interpretations: W (x5, ...,x;,) gives the
probability of finding the n vertices of the aforementioned
polyhedron of fixed orientation in any I different cells
(black or white). We now give explicit expressions for
WP and §, for the cases of n =2 and n =3 and for vari-
ous values of the dimensionality D.

1. Two-point probability function S,

We first give §2 for D=1, 2, and 3. From (3.1), one
has
S,=wsiV+w2sP . (3.3)
The weight factors are easily derived using geometrical
probability arguments. We merely state these results
rather than give any details. In the case of D =1, we
have

PP 1—r, r=1

Wy 0, r>1 3.4)
and

PN L r<il

W2 (r)— 1’ r>1 , (35)

where r is the relative distance between the two points.
Combination of (2.16), (2.17), and (3.3)-(3.5) then yields
for D =1 that

Qer1—dtr | 1—20, 46,2 M <
R r)( ¢2 r ¢2 ¢2 l—l/M ,r=1,
S,(r)=
=2, 44,27 M
$tb i T
(3.6)
For the two-dimensional random lattice model, the
_
~ ¢,—1/M
S3(r,r))=(1=¢)(1—r;—r)+ |1-2¢,+ ¢, 1—1/M
Sy(ry,ry)= l"—2¢2+¢2m (2—r,—ry)

+ [1—-3¢,+
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weight factors are given by
W (r,0)=(1—r cos)(1—r sin@)H (1—r cosh)

XH(1—rsinf) . (3.7)

and

W &r0)=1—Ww.r0), (3.8)

where H (x) is the Heaviside step function and 6 is the
angle that the vector r makes with the horizontal. Thus,
by (3.1), we have

S,(nO) =W V(r,0)S\V+ W 2 (r,0)S? . (3.9)

Note that §2(r,0) possesses reflection symmetry about
0=m/4.

In the instance of D =3, the weight factors are given
by the following formulas:

W U(r,0,¢)=(1—r cos@)(1—r sinf sing)(1—r sinf cosed)
XH(1—rcosO)H (1—rsinfsing)
X H(1—rsinfcosd) ,

0=6=w/2, 0=¢=mw/2 (3.10)

and

WP=1-Wlr6,6), 050<7/2,05¢<7/2. (3.11)

Here 0 and ¢ are the spherical polar and azimuthal an-
gles associated with the vector r. Finally, use of (3.1)
yields

$5,(r,0,6)=W . (r,0,6)S\V+ W P(r,6,6)S . (3.12)

Because of symmetry, we need only consider the angles 6
and ¢ in the range indicated.

2. Three-point probability function S,

Calculation of the §n for n >3 becomes progressively
more complex. Here we shall give the relation for §3 in
the one-dimensional case only since it can be expressed
analytically.

For the case of D=1, §3(r1,r2) can be evaluated
analytically. Here r, is the distance between one extreme
point and the intermediate point and r, is the distance
between the other extreme point and the intermediate
point. We find that

(ri+ry), ri+ry<l (3.13)

1-1/M

1—-1/M)(1—-2/M)

(ry+r,—1),

ritr,>land r, <1,r,<1, (3.14)
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S}(rl,rz)z 2¢2+¢2‘1_“W (2_r1_r2)
3¢y(y—1/M)  ¢(dy—1/M)(by—2/M)
—_ + p— p—
1=3¢, 1—1/M (—1/M1—2/m |Ntre—Dh
ri+r,>1 and ry<l,ry<1, (3.15)
b,—1/M
§3(r1,r2)= 2¢2+¢2—1—1/—M“ (2—r,—ry)
3d(d—1/M)  &y(y—1/M)($,—2/M)
1—3¢,+ - -
ot Tim =1/m0—2/0  |NTre=b
ri+ry>1 and ry<1l,r,<1, (3.16)
3¢,(d,— 1 /M) (6,—1/M)($,—2/M)
Sy(ry,ry)=1—3¢,+ il AL e ri>1 and r,>1 . (3.17)

1-1/M

B. Rotationally invariant functions

Here we shall obtain rotationally invariant n-point
probability function by averaging the S obtained above
over the [(D —2)n +1] angular coordmates associated
with the fixed (n —1) relative distances x,,...,x,,,
where x;=|x,;|. We denote such an n-point probability
function which will depend upon the distances
X1, --->%1, by S,. This can be reinterpreted as the
probability of finding the n vertices of a polyhedron
separated by the relative distances x5,...,x;, in the
white phase when tossed, without regard to orientation,
into the two-phase medium. The general expression for
S, is obtained by averaging (3.1) with the result that

(1—=1/M)(1=2/M) ~’

-

averaging described above. W ! has a simple probabilis-
tic interpretation: W ’(x,,,...,x,,) gives the probabil-
ity of finding the n vertices of a polyhedron separated by
the relative distances x,, ..., x,, in any [ different cells
(black and white) when tossed, without regard to orienta-
tion, into the two-phase medium. Note that in the case
D=1, S =S, i.e., the translationally invariant functions
equal the rotatlonally invariant functions. Thus, the
aforementioned results given for the § , and S ; for D=1
are also corresponding results for S, and S;.

We now give explicit expressions for W4 and S, for
D =2 and D =3. The quantity S,(7) for D =2 is easily
obtained by averaging §2(r,9) [Eq. (3.9)] over the angle 6,
ie.,

S, (X125 0sXy, =2 D(x1y vy xS (3.18) S,(n=w{P sy +w P(rs? (3.20)
. B where
with
" won =2 [ Wirede, (i=1,2). (321
zW (3.19) ™0
: The elementary integrals of (3.19) combined with (3.18)
where W is the weight factor associated with the finally yields
J
— —1/M
=T (1— T o] _ (11— 172 Vo — m $—1/
S,(r) 4(1 ?,) 4 C0s g(r)—rigr)—[1—g4nr] }+ [2g ]IH( 2—r)+ 4 2¢2+¢2—1 Wi
— 2 _
X |H(r—Vv2)+ cos'lg(r)+r[g(r)—[1—gz(r)]m}——r4—[2g2(r)—1]}H(\/Z——r) , (3.22)
where A :lfﬂ/z fﬂ/z—“) (r,6,4)sinf d0 db
: 2 - sin ,
glr)= (3.23)

(r—1DH((r—1D+1 "~

In the case D =3, the weights W 5(r) are obtained by
performing the following averages over the W (r,0,¢)
[Egs. (3.10) and (3.11)]:

(i=1,2). (3.24)

The integrals of (3.24) cannot be performed analytically
and are thus computed numerically using Simpson’s rule.
Substitution of (3.24) into (3.20) yields S,(r) for D =3.
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0.8 s

FIG. 2. The translationally invariant two-point probability
function §2(r) for D=1 at ¢,=0.2, 0.4, and 0.6, respectively.
The solid line is the analytical result calculated from (3.6). The
circles are the simulation data. Note §,=35, for D =1.

IV. SIMULATION PROCEDURE

In order to verify our theoretical results, we have per-
formed Monte Carlo simulations to compute the rota-
tionally invariant functions S ,(r) for D=1, 2, and 3 and
S, for D =1. Obtaining such measures is a two step pro-
cess: first, one generates realizations of the medium and

Y —
D=2 ]
L ¢, = 0.6 4
0.3} . g
A
S,(r.6) .. )}
02} \ -
R 0 = 0 1
0.1 -1
L — §=n/4
o- s 1 . 1
0 0.5 1 1.5

FIG. 3. The translationally invariant two-point probability
function 8,(r,0) for D =2 at ¢,=0.4 as computed from (3.9) for
two different angles: 6=0 and 6=7/4.
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FIG. 4. The rotationally invariant two-point probability
function S,(r) for D =3 at ¢,=0.2, 0,4, and 0.6, respectively.
The solid line is the analytical result calculated from (3.22). The
circles are the simulation data.

second, one samples for the statistical quantities of in-
terest. In all our simulations, M2, the total number of
lattice cells, equaled 10°. Periodic boundary conditions
were employed. The state of a cell (black or white) was
determined according to the prescribed probability ¢,. In
the case D =1, S§,(r) was then determined by randomly

o i 1 " L
(] 0.5 1 1.5 2
r
FIG. 5. The rotationally invariant two-point probability

function S,(r) for D =3, at ¢,=0.2, 0.4, and 0.6, respectively.
The solid line is the analytical result calculated from (3.20) and
(3.24). The circles are the simulation data.
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0.6 —————71—+—+——r—7 —

f2

FIG. 6. The translationally invariant three-point probability
function S;(r,r,) for D=1 at ¢,=0.4 as a function of r, for
two fixed values of r;: r,=0.2 and r;=0.7. The solid line is
the analytical result calculated from (3.13)-(3.17). The circles
are the simulation data. Note §,=5, for D =1.

choosing 10° initial and end points, each pair of points
separated by a distance r. In the instance of D =2, we
chose 800 initial points and for every initial point, 400
different end points (each at a distance r from the initial
point) were randomly chosen. In the case of D =3, 100
initial points were randomly chosen, and for every initial
point, 5000 end points were randomly chosen. The num-
ber of successes (i.e., the number of times both points fall
in the white phase) divided by the total number of line
segments was recorded to obtain S,(r). For the three-
point probability function, we have performed the com-
puter experiment for the simplest case D =1 only. Here
S,=S5, is a function of the relative distances r, and r,
(described above) and the simulation procedure used to
obtain it is similar to the one carried out to compute
S,(r)=8, for D =1.
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V. RESULTS

Our theoretical results for lower-order n-point proba-
bility functions (given in Sec. III) are graphically
displayed in Figs. 2—6. In almost all of these cases, com-
puter simulation data are included. Theoretical results
are seen to be in excellent agreement with the data.

In Figs. 2 and 3 we plot §2 for D=1 and D =2, re-
spectively, at selected values of ¢,. As noted earlier, for
D =1, translationally invariant and rotationally invariant
n-point probability functions are precisely the same, i.e.,
§,, =S,. Figures 4 and 5 depict S,(r) for D=2 and
D =3, respectively, at ¢,=0.2, 0.4, and 0.6. The two-
point probability function, in all cases, is a monotonically
decreasing function of r until it achieves its long-range
value of ¢%. In contrast to the two-point probability
function for D >2, the first derivative of S,(r)=S,(r) for
D =1 is discontinuous at r =1 (cell length). The origin of
this discontinuity is the term W \1’S%" in Eq. (3.6). More-
over, unlike S,(r) for D >2, §,(r) for D =1 is linear in r
for r<1. Note §,(r,6=0) for D =2 equals S,(r) for
D=1 for obvious reasons. Not surprisingly,
.§2(r,9=7r/4) is a smoother and longer-ranged function.
Observe that S,(r) attains its long-range value of ¢? for
larger values of r as D increases (r =1 for D =1, r =V'2
for D =2, and r =V'3 for D =3) even though for all D it
is numerically close to ¢? at »=1. Finally we remark
that the shape of S,(7) is reminscent of the shape of the
two-point probability function for fully penetrable (D-
dimensional) spheres.'?

Figure 6 displays the three-point probability function
S, for D=1 at ¢,=0.4 as a function or r, for the fixed
values of r,:7;=0.2 and r, =0.7. For fixed r,, the proba-
bility of finding three points in the white phase decreases
as r, increases, as expected. Of course if both r; and r,
are larger than unity, then §;=¢3.
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