Local volume fraction fluctuations in heterogeneous media
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The volume fractions of multiphase heterogeneous media fluctuate on a spatially local level
even for statistically homogeneous materials. A general formulation is given to represent

the standard deviation associated with the Jocal volume fraction of statistically homogeneous
but anisotropic D-dimensional two-phase media for arbitrary-shaped observation regions.

The standard deviation divided by the macroscopic volume fraction, termed the coarseness, is
computed for D-dimensional distributions of penetrable as well as impenetrable spheres,

for a wide range of densities and observation-region sizes. The effect of impenetrability of the
particles, for fixed observation-region size, is to reduce the coarseness relative to that of

the penetrable-sphere model, especially at high densities. For either sphere model, increasing

the dimensionality D decreases the coarseness.

I. INTRODUCTION

Characterizing the microstructure of heterogeneous
media, such as composite materials, porous media and
cracked solids, is crucial in determining the macroscopic
physical properties of such materials.'> One of the most
important morphological descriptors is the volume fraction
of the phases; in the case of porous media, the porosity
(i.e., the volume fraction of the fluid phase). Although the
volume fraction is constant for statistically homogeneous
media, on a spatially local level it fluctuates. An interesting
and relatively unexplored question in the study of multi-
phase random media is the following: How does the “lo-
cal” volume fraction fluctuate about its average value? The
answer to this query has relevance to a number of prob-
lems, including scattering by heterogeneous media,* trans-
port through composites and porous media,'™ and the
study of noise and granularity of photographic images.>”’
It is actually in the context of the latter problem, image
science, that this question of local volume fraction fluctu-
ations has been examined to any degree, and here primarily
for simple two-dimensional models of photographic emul-
sions which do not account for impenetrability of the
grains.>®

The purpose of this paper is to provide a general means
of representing and computing the standard deviation as-
sociated with the local volume fraction r(x) at position x
for arbitrary D-dimensional two-phase random media
which are statistically homogeneous. The local volume
fraction 7(x) is defined to be the volume fraction of the one
of the phases, say phase 1, contained in some generally
finite-sized “observation region”. Clearly, 7(x) is a ran-
dom variable and becomes a constant, equal to the volume
fraction of phase 1, ¢;, in the limit of an infinitely large
observation region. The quantity that we specifically study
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is the coarseness defined to be the standard deviation di-
vided by ¢;. For concreteness, we apply our formalism to
compute the standard deviation as a function of ¢, and the
size of the observation region for distributions of D-
dimensional fully penetrable spheres (with D=1, 2, and 3)
as well as D-dimensional impenetrable spheres with D=1
(hard rods), D=2 (hard disks) and D=3 (hard spheres).

In Sec. II, we define the quantities of concern and
describe the basic relations. In Sec. III, we derive the gen-
eral coarseness formula (for an arbitrary-shaped observa-
tion region) of any D-dimensional two-phase medium that
is statistically homogeneous but anisotropic. This expres-
sion is given in terms of the two-point probability function
of the medium. Using the expression for this probability
function of anisotropic media composed of distributions of
identical, oriented inclusions of arbitrary shape, we obtain
an explicit relation for the coarseness of this wide class of
media. In Sec. IV, we apply our results by computing the
coarseness of D-dimensional distributions of penetrable
and impenetrable spheres (with D=1, 2, and 3) with a
D-dimensional spherical observation region. In Sec. V, we
make concluding remarks.

Il. DEFINITIONS AND BASIC RELATIONS

The random medium is a domain of space
7 (WEAP) (where the realization w is taken from some
probability space Q) of D-dimensional volume ¥ which is
composed of two regions: the phase 1 region 77| of volume
fraction @, and phase 2 region region 77, of volume frac-
tion ¢,. Depending on the physical context, phase i(i=1 or
2) can be either void, fluid or solid.
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A. Characteristic function and n-point probability
functions

The characteristic function I(x) of phase 1 is defined
by

11 xeyl

I(X)= 0, XEV2'

(2.1)

To describe the structure of the system from statistical
point of view, it is useful to introduce the n-point proba-
bility function S,® which is defined according to the rela-
tion

n
S,,(xl,...,x,,)=< 1'[1 I(x,-)>. (2.2)
i

The angular brackets above denote an ensemble average.
S, is the probability of simultaneously finding » points at
positions Xxj,...,X, all in phase 1 region 7”,. If the medium
is statistically homogeneous, then the n-point probability
function is translationally invariant and as a result only a
function of the relative displacements, ie., S5,
= §,(X(3..,X1,), Where x,; = X;—X,. For statistically ho-
mogeneous media, invoking an ergodic hypothesis, one can
then equate the volume average f of some function f,

_ 1
F=lm L fav, (2.3)

f—* 0
to the ensemble average ( f). Furthermore, if the medium
is statistically isotropic, then .S, only depends upon the
relative distances xij,...,x;,, where x;; =| x;—x;|. For
simplicity, we shall consider statistically homogeneous but
anisotropic media only.

For homogeneous media, S is the probability of find-
ing a point at x; in region 7"}, and is independent of the
location of the point in the space. By definition, S| is just
the expected value of 7, i.e.,

S1(x1) ={I(x,)) =¢,

where ¢, is just the volume fraction of phase 1. Now let us
consider the two-point probability function

Sy (xp2) = (x)1(x3)),

which is the autocorrelation function of I. It contains con-
siderably more information than §;. In the event x,-x,,
we have

S7(x12) = ¢y

On the other hand, when the relative distance between the
two points becomes very large, we have

(2.4)

(2.5)

(2.6)

lim S,(x;;)=¢?,

X12—

(2.7)

assuming no long-range correlations.

The fluctuations associated with the characteristic
function of phase 1 can be measured by the variance o7
given by

o= —(I)’=¢,—$. (2.8)

At fixed ¢,, the variance is seen to be a trivial constant and
hence does not provide much useful structural information
about the random medium.

B. Local volume fraction fluctuations

The volume fraction of phase 1 (or phase 2) fluctuates
on a local level. That is, consider the volume fraction of
phase 1 contained in an arbitrary-shaped “observation re-
gion” 77, of D-dimensional volume ¥V, whose centroid is
located at x. As the observation region is moved from point
to point in the sample, it is clear that the volume fraction
of phase 1 contained in it will fluctuate for finite ¥,. Thus
this local volume fraction 7(x) is a random variable de-
fined to be

T(x)zvl(; f 1(z)0(z—x)dz, (2.9)
where
1, xe7;,
0(x) = 0, otherwise (2.10)

is the observation region indicator function. Note that as
Vo— w0, we have

T(x) = {I)=¢,. (2.11)

In the limit of a very small observation region (V,-0),
7(x) simply becomes the characteristic function of phase 1.
ie.,

T(x) = 1(x). (2.12)
The expected value of 7 is clearly given by
(r)=4¢1. (2.13)

A measure of local fluctuations in the volume fraction
is then given by

o, o,

C——‘m-—»a , (2.14)
where
or= () — (1) = () — ¢} (2.15)

is the variance associated with the 7(x). We term C, a
scaled standard deviation, the “coarseness” since it pro-
vides a quantitative measure of nonuniformity of coverage
of the phases. From Egs. (2.12) and (2.13), we have that
C for infinitely large and infinitely small observation re-
gions is given, respectively, by

C=0

and

(2.16)

UIM

o Foa 2.17)

The dependence of the coarseness C on the observation
region is, in general, nontrivial as it depends upon the de-
tails of the microstructure of the random medium. A der-
ivation of this relationship shall be presented in the follow-
ing section.
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lil. DERIVATION OF COARSENESS FORMULAS

In this section, we derive, using a new approach, a
general expression for the coarseness of arbitrary statisti-
cally anisotropic D-dimensional heterogeneous media and
an arbitrary-shaped observation region in terms of the two-
point probability function S,. For the special case of two-
dimensional media (D=2), our general coarseness for-
mula is equivalent to but functionally different than one
due to O’Neill’ who used a different derivation procedure.
An explicit representation of S, for a wide class of aniso-
tropic media composed of arbitrarily shaped particles is
described. Using this expression for S; and the general
coarseness formula, we then derive a new, explicit expres-
sion for the coarseness of the aforementioned class aniso-
tropic media.

A. General coarseness formula

From the definition of Eq. (2.15) we can get the vari-
ance for an arbitrary-shaped observation region with some
fixed orientation. Substitution of Eqs. (2.9) and (2.14)
into Eq. (2.15) gives

1
0 (3.1

Now since the above enemble average operator and the
integral operators commute, Eq. (3.1) can be rewritten as

o%=;,1~; f dy dz.0(y — x)Sy(z—y) — ¢}, (3.2)
0

where S,(z—y) = (I(y)I(z)) is the two-point probabil-
ity function defined by Eq. (2.5). Since we are treating
statistically homogeneous media, S;(z—y) = S,(y—2),
and because Eq. (3.1) is independent of position, we can
integrate over x instead of y and find

oi=—£z f 5,(r) V3 (x s0,)dr— ¢, (3.3)
Vo
where
Vil(r;o,) = j 9(y—x)6(z—x)dx (3.4)

is the intersection volume of two observation regions
whose centroids are separated by the displacement
r =z~ Y, and o, denote all of the shape parameters asso-
ciated with the observation region. Dividing Eq. (3.4) by
V% and integrating over r gives

1 .
— f Vi (r ;0,)dr=1. (3.5)
Vo
We then can write Eq. (3.3) in the following way:
1 ) 172
C=rr { f [S2(r) —$31V5(r ;0,)dr (3.6)
Vo

This is the desired general expression for the coarseness
valid for d-dimensional statistically anisotropic media of
arbitrary topology and is given in terms of S,(r) and
Vit(r ;0,).

B. Lu and S. Torquato: Local volume fraction fluctuations

In the term [S,(r) —¢3], which appears in the inte-
grand of Eq. (3.6), ¢? is the long range value of S,. Hence,
[S,(r) — 1] decays to zero for large r. We refer to the
range over which [S,(r) — ¢?] is nonnegligibly small as the
correlation length /. Consider the case where the charac-
teristic size of the observation region is much larger than /,
then V¥(r;o,) is approximately equal to VI'(0;0,)
= V. Thus, Eq. (3.6) in such instances yields

172

f 15y~ gl1ar (3.7)

C=17m
¢ Vo
The coarseness in brackets is a constant and hence for large
observation regions

C=KV,'"?, (3.8)

where

1 12
5| ], s —dhae (3.9)
¢l red
is a constant which depends upon ¢, or, equivalently, the
volume fraction of phase 2. Equation (3.9) is reminiscent
of the compressibility equation of liquid-state theory’ which
relates the D-dimensional volume integral over the toral
correlation function to density fluctuations in the system.
In the limit V- o0, Eq. (3.9) agrees with Eq. (2.16).
Information about the shape of the observation region
enters through the intersection volume V*(r ;0,) [cf. Eq.
(3.6)]. For D-dimensional spheres of diameter ¢, with
D=1, 2, and 3, one respectively has,

Vi(ro,)=(0,~r)H(o,—r). (3.10)

V"z"‘(r:oo)=i'§ [cos—1 — \/:—::]H(ao-n
(3.11)
and
. 770'2 3r P
V‘z"'(nao)=—-3—~(1—2—%+~2-;g)H(a,,—r). (3.12)

Where H(x) is the Heaviside step function. In these equa-
tions, r is the distance between the centers of the two ob-
servation regions. For D-dimensional rectangular paral-
lelepipeds with D=1, 2, and 3, one has, respectively,

Vit(x;a) = (a—x)H(a—x), (3.13)

Vit(xpa,b)=(a—x)(b—y)H(a—x)H(b—y), (3.14)

VM (xp,z;8,b,¢) = (a—x) (b—y)

X (c—z)H(a—x)H(b—y)H(c—1z).
(3.15)
B. Series representations of the n-point probabiiity
functions

In order to apply formula (3.6), knowledge of the two-
point probability function S, for the particular system of
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interest is required. Torquato and Stell® have given a rep-
resentation of S, for distributions of identical D-
dimensional spheres. These results have been generalized
to particles of arbitrary shape by a simple reinterpretation
of the “particle” indicator function.?

Consider a statistical distribution of N identical, inter-
acting D-dimensional particles whose positions are com-
pletely  specified by center-of-mass coordinates
r¥={ry,...,ry}. This class of anisotropic media includes
distributions of D-dimensional spheres, oriented D-
dimensional ellipsoids, oriented D-dimensional rectangular
parallelpipeds, oriented D-dimensional cylinders, etc. Let
the space interior to the particles be phase 2. For such a
distribution of particles the .S, are related to the n-body
distribution function g, according to the following relation:
2 (_1ykok
san=1+ £ 2 [ [ gt

k=1
k n
X H [[1“ H [1—m(x;— j)]]drp
= = (3.16)
where

1, XEDP

m(x)= 0, otherwise

(3.17)

is the particle indicator function and Dp denotes a particle
region. One can now, in principle, compute the S, for any
n, given the g,,. It is useful to consider the following special
cases.

1. Fully penetrable particles

In the instance of “fully penetrable” particles, the par-
ticle centers are Poisson distributed, i.e., no spatial corre-
lations exist between the particles and

g,(r"y=1 for ail r". (3.18)

Substitution of Eq. (3.18) into Eq. (3.16) then yields the
analytical expression

S, (x") =exp[ —p¥,(x")], (3.19)
where V,(x") represents the union volume of n identical
particle regions centered at x", respectively. In the special
instance of D-dimensional spheres of diameter o, for exam-
ple, the volume of a single inclusion is

/2 o\ D
1D (5)
1"(1 + 5 —-)

22

Vilo)= (3.20)

and the union volume of two such objects whose centers
are separated by the distance 7 is given by

Vi(rio)=20—(0—r)H(o—r), (3.21)

mo? o? T 2
Vz(r;O'):T—’E— cos™ (—T—;‘ I—F]H(a—r),
(3.22)
ro woo 3r P
Va(ro) =3 "¢ ll—; + F]H(a—r) (3.23)

v T AR | v L] v L]
0.4 4
Sy(n)
0.2 -
o PEY ) S | T PR Y 3 A
) 1 3 4 5

r/o

FIG. 1. The two-point probability function S,(r) for three-dimensional
distributions of fully penetrable spheres (Ref. 10) (---) and totally im-
penetrable spheres (Ref. 13) (—) of diameter ¢ at a particle volume
fraction ¢, = 0.6.

for D=1, 2, and 3, respectively. Here I'(x) is the gamma
function.

Low-order S, have already been evaluated for fully
penetrable spheres,'® fully penetrable circular disks,!! and
fully genetrable oriented, circular cylinders of finite aspect
ratio.

2. Totally impenetrable particles

For totally impenetrable particles, the infinite series
(3.16) truncates exactly after the nth term in the sum. The
first two n-point probabilities, after some simplification, are
given by

Si=1—pV,, (3.24)
Sy(x13) =1—pVy(x)3) + p? f J 8(ry3)
Xm(x,—r)m(x,—r,)dr; dr,. (3.25)

Comparison of Eq. (3.23) for n=1 to relations (3.27)
reveals that the volume fraction of phase 1, ¢, ( = S;), for
the fully-penetrable-sphere model is always greater than
¢, for the totally-impenetrable-sphere model at the same
number density. Low-order S, (e.g., S}, S,, and S;) have
been computed for equilibrium ensembles of impenetrable,
equisized rods,'? circular disks'? and spheres.!* For the
case of the rods, Torquato and Lado'? gave an exact ana-
lytical solution for S,(r). In contrast, S,(r) for equilib-
rium distributions of hard circular disks'> and spheres'®
were computed in the Percus—Yevick approximation.

In Fig. 1, we compare the two-point probability func-
tions for fully penetrable spheres!® and totally impenetra-
ble spheres'? at a particle volume fraction ¢, = 0.6. In the
former model, S,(r) monotonically decreases from its
maximum value of ¢, at r=0 to its minimum value of ¢? at
r=o; for r>o, S,(r) = ¢}, indicating no spatial correla-
tion for such . In contrast, S,(7) for hard spheres oscil-
lates about its long-range value of ¢? for several diameters
indicating short-range order as the result of exclusion-
volume effects.
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T Tp—p—— T YT

04 1

O—Dimensional impenstrable Sphares

S

r/o

FIG. 2. The two-point probability function S,(r) for equilibrium distri-
butions of D-dimensional totally impenetrable spheres (Refs. 12, 13) at
¢, = 0.6: hard rods (....), hard circular disks (---) and hard spheres (—).

In Fig. 2, we depict S,(7) for hard D-dimensional
spheres'?!® at ¢, = 0.6 for D=1, 2, and 3. Increasing the
dimensionality, for small r, decreases §,. For large r, in-
creasing D decreases the amplitude of the oscillations.

3. Penetrable-concentric-shell model

An interesting model which lies between the two ex-
tremes of fully penetrable and totally impenetrable parti-
cles is the penetrable-concentric-shell model.!* In this
model, the particles possess a small hard core encompassed
by a perfectly penetrable concentric shell. The size of the
internal hard core is assumed to be proportional to an
impenetrability index A4, 0<A<1, withA =0and A = 1 cor-
responding to fully penetrable and impenetrable particles,
respectively. The penetrable-concentric shell model enables
one to continuously change the degree of overlap, and
hence the degree of connectedness of the particle phase.
The two-point probability function for disks in the
penetrable-concentnc-shell model has been computed by
Smith and Torquato.'

C. Explicit relation for C for a class of anisotropic
media

Using the results of the previous two subsections, we
can obtain an explicit relation for the coarseness of the
wide class of anisotropic media described in Sec. III B, for
arbitrary-shaped observation regions. Recall that this class
of media contains all statistically anisotropic distributions
of identical, oriented inclusions of arbitrary shape. Substi-
tuting Eq. (3.17) with n=2 into the general coarseness
formula (3.6) yields, we substitute Eq. (3.17) with n=2
into the general coarseness formula (3.6) yields

1—¢? .
C= [——;& azp—-z Viy(r,o) Vit(r;0,)dr
i
1 172
+ Sé"’(r) Virt(ro,) (r)de|
(3.26)

B. Luand S. Torquato: Local volume fraction fluctuations

where

S0 (x,,

(—1) Dia f fg ()
k
x 11
j=1

Note that anisotropic structural information enters
through the terms involving two and higher-body effects,
i.e., in the sum of Eq. (3.26). Equation (3.26) is valid for
distributions of identical particles whose positions are com-
pletely specified by center-of-mass coordinates. It is impor-
tant to emphasize that the interparticle interactions that
one can consider are perfectly general; hence, the particles
may partially overlap one another, interact through repul-
sive forces (e.g., impenetrable cores and Coulombic forces)
as well as attractive forces, etc.

dr, (327)

2
- I:Il [I“m(xi_rj)]

V. RESULTS FOR THE COARSENESS OF
DISTRIBUTIONS OF D-DIMENSIONAL SPHERES

The results of Sec. III are applied here to obtain ex-
plicit relations for the coarseness of distributions of iden-
tical D-dimensional spheres of diameter o, in both the fully
penetrable particle and totally impenetrable particle mod-
els. A D-dimensional spherical observation region of diam-
eter o, is employed. These coarseness expressions are then
computed for various values of the particle volume fraction
¢, and the observation volume V).

A. Coarseness expressions for D-dimensional
spheres and observation regions
1. D-dimensional fully penetrable spheres

For the case of D-dimensional fully penetrable spheres,
the coarseness formula, for a D-dimensional spherical ob-
servation region of diameter o, is easily obtained by sub-
stituting Eq. (3.19) into Eq. (3.6). After some simplica-
tion, one finds

3 \[iﬂ,lm
T VT (D/2)

J lexplpV 3t (o) 1 — 11V (ro, )P dr
4.1

1/2
X

Here ViM(r0,) is given by relations (3.21)-(3.23). Ex-
pression (4.1) is the D—dlmensmnal generalization of the
result obtained by Bayer® for two-dimensional distributions
of penetrable disks.

2. D-dimensional totally impenetrable spheres

In the instance of an isotropic distribution of D-
dimensional totally impenetrable spheres of diameter o and
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spherical observation region of diameter oy, Eq. (3.26)
yields

1—¢2 4
C= —;ﬁ——zp—ff Va(ro)Vy'(ro,)dr
# Yo

1

172
+ 77 f Sé”(r)V‘z“‘(r,ao)dr] , (42)
1v o

where

S5 (r1y) =p? j fgz(’u)m("la)m(rm)dl‘s dry. (4.3)

The particle indicator function for D-dimensional spheres
is simply given by

1, r<o/2 .

4.4
0, r>o0/2 (44)

m(r)=

B. Calculations of the coarseness for D-dimensional
fully penetrable and impenetrable spheres

We now calculate the coarseness C for D-dimensional
distributions of fully penetrable and totally impenetrable
spheres of diameter o for selected values of the sphere
volume fraction ¢, and observation volume V. In the case

FIG. 3. The coarseness C vs the particle volume fraction ¢, for three
different values of the scaled observation-region volume V,/¥; for one-
dimensional distribution of fully penetrable rods (lighter curves) and
totally impenetrable rods (heavier curves) of diameter o. F, is the ob-
servation volume equal to o, and V) is the particle volume equal to o.

1 v T

Il

Vo/V,-1
Vo/Vi=4 == T

-

- =g

FIG. 4. As in Fig. 3 for the case of two-dimensional distributions of
circular disks of diameter a. ¥, = m0%/4 and V| = 7o /4.

of fully penetrable particles, the integral of Eq. (4.1) is
numerically evaluated using a trapezoidal rule. In the in-
stance of impenetrable particles, the second integral of Eq.
(4.2) is also computed employing a trapezoidal rule. Here
the equilibrium result for the two-point probability func-
tion S,(r) of hard rods,!? hard circular disks,'? and hard
spheres'® are utilized.

In Fig. 3 we display the coarseness for penetrable and
impenetrable rods (D=1) as a function of the ¢, for three
values of the scaled observation volume Vy/V;. In Figs. 4
and 5 we depict corresponding results for D=2 and D=3,
respectively. It is seen that for fixed D and volume fraction
Vo/V\, the coarseness is always smaller for impenetrable
particles than for the penetrable particles at the same value
of ¢,. This effect becomes more pronounced at higher val-
ues of the particle volume fraction. Physically speaking,
this is true because exclusion-volume effects associated
with the impenetrable particles results in a distribution
which is less “random” than that with randomly centered
particles. For fixed D and V/V, the coarseness for fully
penetrable particles is a monotonically decreasing function
of ¢,. This functional dependence is in contrast to that of
the impenetrable-particle model in which C first increases
with increasing ¢, for small to moderate ¢,, reaches some
maximum value, and then decreases with increasing ¢,.
Moreover, C decreases with increasing volume ratio
Vo/V, for either penetrable or impenetrable particles. Fi-
nally, from Figs. 24, it is obvious that for either particle
model, increasing the dimensionality has the effect of de-
creasing the coarseness since the particle coverage is more
uniform in higher dimensions.

In Fig. 6 we depict the quantity C(Vy/V,)"? as a
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FIG. 5. As in Fig. 3 for the case of three-dimensional distributions of
circular disks of diameter 0. ¥V = wo)/6 and ¥, = 75°/6.

function of the volume ratio ¥/ ¥, for both models with
D=3 for ¢, = 0.2 and ¢, = 0.6. Recall that for large ob-
servation regions C ~ V5'? [cf. Eq. (3.8)], and thus
C(Vo/V)"? approaches the constant XV /% [where K
given by Eq. (3.9)], for large V, At ¢,=0.6,
C(Vo/V,)V? for penetrable spheres is generally consider-
ably larger than the corresponding quantity for impenetra-
ble spheres. Note that at ¢, = 0.6 for impenetrable spheres,
C(Vo/V,)/? oscillates about its long-range value of ap-
proximately 0.15 due to exclusion-volume effects. Oscilla-
tions begin to become noticeable for impenetrable spheres
at ¢, = 0.4 (not shown). Observe also that for the same
model at ¢, = 0.2, the long-range value of C(Vo/ V)% is
achieved for considerably smaller values of the volume ra-
tio (Vo/Vy > 2). The same general trends described here
for D=3 are observed for arbitrary D.

V. CONCLUSIONS

In this paper we have defined the coarseness C which
gives a measure of local volume fraction fluctuations in
heterogeneous media. This definition provides a means of
obtaining C either experimentally or theoretically. The
coarseness, for arbitrary D-dimensional two-phase aniso-
tropic media and observation region, is shown to be related
to an integral involving the two-point probability function.
Using this general relation, we then obtained an explicit
relation for the coarseness of anisotropic media composed
of identical particles of arbitrary shape whose positions are
completely specified by their center-of mass coordinates
(ellipses, rectangles, ellipsoids, cylinders, etc.). For con-

B. Lu and 8. Torquato: Local volume fraction fluctuations

08}

Pensetrable Spheres

$,=0.2 ]
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FIG. 6. The coarseness C multiplied by (¥,/V,)"? as a function of the
scaled observation volume Vy/V, for both three-dimensional fully pene-
trable (lighter curves) and impenetrable spheres (heavier curves) at
¢, =02and0.6. V= mo’/6and V; = wc'/6.

creteness, C was computed for D-dimensional distributions
of penetrable as well as impenetrable spheres (with D=1,
2, and 3), for a wide range of particle densities and
observation-region sizes. The effect of impenetrability of
the particles, for fixed observation-region size, is to reduce
the coarseness relative to that of the penetrable-particle
model, especially at high densities. The effect of increasing
the dimensionality is to decrease the coarseness.
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