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One of the fundamental quantities which statistically characterizes a random system of 
interacting particles is the nearest-neighbor distribution function. We present computer- 
simulation results for two different types of nearest-neighbor distribution functions for random 
distributions of identical impenetrable (hard) spheres. We also report, for such systems, 
computer-simulation data for closely related quantities such as the associated cumulative 
distributions. From this information, we calculate the "mean nearest-neighbor distance" 
between particles. Our computer-simulation results are compared to the various sets of 
theoretical expressions derived recently by Torquato, Lu and Rubinstein. One of these sets of 
expressions is shown to be in excellent agreement with the simulation data. 

1. Introduction 

One  of  the basic statistical quanti t ies characterizing a r a n d o m  system of  
interacting particles is the neares t -ne ighbor  distr ibution funct ion He,  i .e. ,  the 
probabi l i ty  density funct ion associated with finding a nearest  ne ighbor  at some 

given distance f rom a reference  particle. Knowledge  of  Hp is of  impor tance  in a 

host  of  problems,  including the s t ructure  and proper t ies  o f  liquids and amorph-  

ous solids [1-4] ,  flow of  suspensions [5], flow in porous  media  [6, 7], diffusion- 
control led  reactions in he t e rogeneous  media  [8, 9], and stellar dynamics  [10], 
to  ment ion  but  a few examples.  It was Her t z  [11] who apparent ly  was the first 
to  consider  its evaluat ion for  "po i n t "  particles. It  is only  recent ly  [12] that  a 
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theory has been developed to represent and compute Hp for systems of 
interacting, finite-sized particles. It should be emphasized that Hp is dif ferent 

from the well known radial distribution function, the latter being proportional 
to the probability of finding any particle (not necessarily the nearest one) at a 
distance r away from the central particle. 

A different nearest-neighbor distribution function, Hv, arises in the scaled- 
particle theory of liquids [13]. This function (defined more precisely in the 
subsequent section) essentially characterizes the probability of finding a 
nearest-neighbor particle at a given distance from a point in the void region, 
i.e., the region exterior to the particles. The quantities Hp and H v are referred 
to as "particle" and "void" nearest-neighbor distribution functions, respective- 
ly. In addition to the nearest-neighbor distribution functions there are the 
closely related exclusion probability functions, Ep and Ev, and conditional pair 
distribution functions, Gp and G v, which are equally important statistical 
descriptors of the microstructure. 

This paper has a twofold purpose: 1) to develop an algorithm to compute the 
aforementioned nearest-neighbor and related functions for random distribu- 
tions of impenetrable (hard) spheres from computer simulations; and 2) 
compare the resulting data with the recent corresponding theoretical expres- 
sions derived by Torquato, Lu and Rubinstein [12] for such models. 

In section 2, we define the basic quantities and key theoretical results of 
Torquato et al. In section 3, we describe our simulation procedure. In section 
4, we present computer-simulation results for point particles and thus demon- 
strate the accuracy of the simulation technique. In section 5, we present 
computer-simulation results for the void nearest-neighbor distribution and 
related functions for impenetrable-sphere systems and compare the results to 
theory. In section 6, we report corresponding computer-simulation results for 
the particle quantities and the mean nearest-neighbor distance between parti- 
cles, and again compare them to theory. In section 7. we make concluding 
remarks. 

2. Summary of theory 

Here we shall summarize only some of the basic theoretical relations for the 
nearest-neighbor distribution functions and related quantities for random 
distributions of identical D-dimensional spheres obtained by Torquato, Lu and 
Rubinstein [12]. Although many of their results apply to inhomogeneous 
systems, we shall restrict the following discussion to statistically isotropic 
systems of spheres (with D = 3) since our simulations are carried out for 
isotropic hard-sphere and penetrable-sphere systems. 
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2.1. Definitions and basic relations 

Consider a random distribution of identical spheres of diameter o- at number 
density p. We want to study two different types of nearest-neighbor distribution 
functions, Hv(r ) and Hp(r), defined as follows: 

Hv(r ) dr  = Probability that at an arbitrary point in the system the center 
of the nearest particle lies at a distance between r and r + dr, 

(1) 

Hp(r) dr = Given any D-dimensional sphere of diameter o- at some arbi- 
trary position in the system, the probability of finding the 
center of the nearest particle at a distance between r and 
r + dr. (2) 

H v and Hp are referred to as "void" and "particle" nearest-neighbor distribu- 
tion functions, respectively. We refer to Hv(r  ) as void nearest-neighbor 
distribution function since it provides a measure of the probability associated 
with finding the nearest particle at a distance r from a spherical cavity centered 
in the void region (when r I> o-/2), i.e., the region exterior to the spheres. 
Hp(r) is termed a particle nearest-neighbor distribution function since it is the 
probability density associated with finding the nearest particle at a distance r 
from an actual particle at the origin. The void nearest-neighbor distribution 
function defined here is identical to the one defined in the scaled-particle 
theory of Reiss et al. [13]. The distinction between H v and H r, however, has 
heretofore not been made. Indeed, in the past, these functions have been 
incorrectly thought to be identical to one another. Note that since both of these 
functions are probability density functions, they have dimensions of inverse 
length. 

It is useful to introduce "exclusion" probabilities Ev(r ) and Ep(r) defined as 
follows: 

Ev(r ) = Probability of finding a region Ov, which is a D-dimensional 
spherical cavity of radius r (centered at some arbitrary point) 
empty of particle centers 

= Probability of inserting a " tes t"  particle of radius r - o-/2 (at some 
arbitrary position) in the system of spheres, (3) 

Ep(r) = Given any D-dimensional sphere at some arbitrary position, the 
probability of finding a region /2p, which is a sphere of radius r 
encompassing this central particle, empty of particle centers. 

(4) 
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Observe that the first and second lines of (3) are equivalent since the region 
excluded to a particle center of radius 0"/2 by a "test"  particle of radius r-0"/2 
is a sphere of radius r. The test particle serves to probe the void region. It 
follows that the exclusion probabilities are related to the nearest-neighbor 
distribution by the expressions 

Ev(r ) = 1 - f Hv(x ) dx 
o 

(5) 

and 

Ep(r) = 1 -  / Hp(X ) dx .  
0 

(6) 

The integrals of (5) and (6) respectively represent the probabilities of finding 
at least one particle center in regions g2 v and f~e" Differentiating the exclusion- 
probability relations with respect to r gives 

-OEv(r) 
Hv(r) - Or 

and 

-OEm(r) 
Hp(r) -- Or 

(7) 

(8) 

It is useful to write the nearest-neighbor distribution functions as a product 
of two different correlation functions: 

and 

Hv(r ) = p4arr2Gv(r) Ev(r) 

Hp(r) = p4~rr2Ge(r) Ep(r ) . 

(9) 

(10) 

Given definitions (1)-(4),  the conditional "pair"  distribution functions, G v and 
Gp, must have the following interpretations: 

p4"rrrZGv(r) dr = Given that region g2 v (spherical cavity of radius r) is 
empty of particle centers, the probability of finding 
particle centers in the spherical shell of volume 4~rr 2 dr  
encompassing the cavity, 

(11) 
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p4~rr2Gp(r) dr = Given that region Op (sphere of radius r encompassing 
any particle centered at some arbitrary position) is empty 
of particle centers, the probability of finding particle 
centers in the spherical shell of volume 4"rrr 2 dr  sur- 
rounding the central particle. (12) 

Note that Gv(r ) is simply the "radial" distribution function for the " tes t"  
particle (of radius r - o'/2) and a particle (of radius o-/2) at contact, i.e., when 
this pair of particles is separated by the distance r (cf. eq. (3)). Equations (9) 
and (10) may be regarded as definitions of G v and Gp, respectively. When 
r =o.,  then Gv(o. ) = Gp(o.) is just the standard radial distribution function 
g2(o.) for identical spheres at contact, i.e., at an interparticle separation of o'. 
Also as r--> ~, the sphere of radius r (in either the void or particle problems) 
may be regarded as a plane rigid wall relative to the particles and, in particular, 
to the particles in contact with wall, hence Gv(O0 ) = Gp(~).  To summarize, G v 
and Gp are identical when r = o. and r = oo. We know generally they are not the 
same for r ~  < o- (cf. (20) and (25)); but are they identical for r ~  > o.? This 
interesting question will be answered shortly. 

The exclusion probabilities are related to the pair distribution functions via 
the expressions 

Ev(r ) = exp(-f p4qry2Gv(Y)dr) , (13) 
0 

r 

Ep(r) = e x p ( - f  p4"try2Gp(y)dy), (14) 
0 

which are obtained by use of (7)-(10). Combination of (7), (8), (13), and (14) 
yields 

and 

r 

exp(-f dy) 
0 

r 

0 

(15) 

(16) 

Thus, one can calculate the nearest-neighbor distribution functions given either 
the exclusion probability functions {cf. (7) and (8)) or the pair distribution 
functions (cf. (15) and (16)). 
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From Hv(r ) one can obtain other  quantities of fundamental interests such as 
the "mean  nearest-neighbor distance" 1 between particles and the random- 
close packing density. The former is defined as 

1= f rHv(r ) dr. 
0 

(17) 

An operational definition for the random close-packing density then follows: 
the density at which l---~ o'. 

Calculations of the nearest-neighbor distribution functions and the auxiliary 
quantities, the exclusion probabilities and conditional pair distribution func- 
tions, are generally nontrivial for mutually impenetrable particles of diameter  
or. However ,  for such a model,  one can state exact relations for certain small 
ranges of r. For instance it is clear from the definitions (2) and (6) that 

Ev(r ) = 1 for 0 ~< r ~< or, (18) 

Hp(r) = 0 for 0 ~ r ~< or, (19) 

G e ( r ) = 0  for0~<r<~o- ,  (20) 

because one particle excludes another  from occupying the same space. 
Futhermore,  in the case of the void problem, a spherical cavity of radius r 

and volume 4"rrr3/3 can contain at most one particle center if r ~< o'/2. Thus, for 
statistically homogeneous media, the exclusion probability is then given by 

4, r r r  3 
Ev(r  ) = l - p  3 f o r 0 ~ < r ~ o - / 2 ,  (21) 

and hence by (7) we also have 

Hv( r  ) = p4qrr 2 for 0 ~< r ~ o-/2. (22) 

For r ~  < o-/2, p4~rr3/3 is just the probability that the cavity of radius r is 
occupied and hence Ev(r  ) is just one minus this latter quantity. Note that for 
r < o-/2, the test particle may be regarded as a "point"  particle that is capable 
of penetrating the mutually impenetrable particles. Hence,  for r < o'/2, de- 
creasing r then increases Ev,  according to eq. (21), until E v reaches its 
maximum value of unity at r = 0. Note that for r = o'/2, 

E v ( O ' / 2  ) = 1 -- T~ = 1 --  (~2 = ~1 , ( 2 3 )  
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where 

r /=  p,rro-3/6 (24) 

is a reduced density which, in the case of hard spheres only, is equal to the 
particle volume fraction ~b 2. Therefore, ~b 1 = 1 -  ~b 2 is just the void volume 
fraction. From eqs. (9), (21) and (22), one also has 

1 
Gv(r) - 1 - p ,  rrr3,.~/J for 0 ~< r ~< o-/2. (25) 

For particles which can overlap one another, relations (18)-(22) and (25) 
will not hold. Moreover, for overlapping particles, ~7 ~ tk2, i.e., the reduced 
density 7/is not equal to the sphere volume fraction tk2. These points shall be 
elaborated upon shortly. 

2.2. Relationship between void and particle quantities 

Although the void and particle quantities are not the same for r < o-, they are 
in fact related to one another for r/> o- in the case of a statistically homoge- 
neous medium of hard spheres. Torquato et al. [12] found that for such 
hard-sphere systems 

Ev(r) 
Ep(r) - Ev(o-) , r i> o-. (26) 

Combination of (26) with (7) and (8) gives the following expressions relating 
the different nearest-neighbor distribution functions: 

Hv(r) 
Hp(r) - Ev(o-) , r I> o-. (27) 

From (9) and (10) one exactly has 

Gp(r) _ Hv(r) Ev(r ) 
r >I o-. (28) 

Gv(r) Hv(r) Ev(r) ' 

Combination of (26), (27) and (28) then yields 

Gp(r) = Gv(r ) , r I> o-. (29) 

For isotropic, equilibrium distributions of hard spheres, Reiss et al. [13] related 
the void pair distribution function at r = o" to this function at r = ~. This 
relation combined with eq. (29) then yields 

Gv(~ ) = Gp(~),  (30) 
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where 

Gv(~ ) = 1 + 4r/Gv(o-), (31) 

Gp(~) = 1 + 4r/Gp(o'), (32) 

for such hard-sphere systems. Note that (31) and (32) are the dimensionless 
equations of state [14] for hard spheres, i.e., 

P 
Gv(OO ) = G p ( ~ ) -  p k T '  (33) 

where p is the pressure, T is temperature, and k is Boltzmann's constant. 

2.3. Relations for arbitrary density 

Torquato et al. [12] have derived exact integral representations of all of the 
aforementioned functions for homogeneous distributions of identical D-dimen- 
sional spheres of diameter o- which interact with an arbitrary potential in terms 
of the n-particle probability density functions Pl . . . . .  Pn. The quantity 
pn(r l , . . .  ,r~) characterizes the probability of finding a configuration of n 
spheres with positions r 1 . . . . .  r~, respectively. 

2.3.1. Fully penetrable spheres 
For spatially uncorrelated spheres (Poisson distributed centers) or fully 

penetrable spheres, Pn = P n and the aforementioned expressions lead to the 
results first obtained by Hertz [11]: 

Hv(r) = Hp(r)= p4~rr 2 exp(-P4"rrr3) 
3 

(34) 

( -P4"trr3~ 
Ev(r ) = Ep(r) = exp 3 ] ' 

Gv(r ) = Gp(r) = 1. 

(35) 

(36) 

Note that the void and particle quantities become identical for fully penetrable 
spheres, as expected. 

2.3.2. Impenetrable spheres 
For three-dimensional impenetrable spheres (as well as two-dimensional), 

the two-particle probability density P2 is only known approximately for arbit- 
rary density, albeit accurately [14]; the higher-order p~ (n/> 3) are generally 
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never known. This implies that the integral series representations of the void 
and particle quantities derived by Torquato et al. [12] cannot be evaluated 
exactly for such models. Torquato et al. thus developed approximate relations 
for these functions which amount to approximately summing the aforemen- 
tioned series representations. They derived three different sets of approximate 
relations for the void quantities and then obtained corresponding relations for 
the particle quantities via the "connection" equations (26), (27) and (29). 

Scaled-particle approximations of the void quantities were obtained by Reiss 
et al. [13]: 

o-Hv(x ) = 24"0(1 - "0)(ax 2 + bx + c) exp[- '0(8ax 3 + 12bx 2 + 24cx + d) ] ,  

x > ½ ,  (37) 

Ev(x ) = (1 - 7/) exp[- '0(8ax 3 + 12bx z + 24cx + d) ] ,  x > 1 , (38) 

b c 
Gv(x ) = a + - + - - 7 ,  x > ½ .  (39) 

x x 

Here x = r/tr and a, b, and c are the density-dependent coefficients given by 

2 
1 + ' 0 + ' 0  

a ( ' 0 ) -  ( 1 - ' 0 t  3 ' (40/ 

-3n(1  + n) 
b ( ' 0 ) -  2(1 _'0)3 , (41) 

3"0 2 

c(n) - 4(1 - n) 3" (42) 

Torquato et al. [12] then used these relations in conjunction with eqs. (26), 
(27) and (29) to obtain, for the first time, the particle quantities in the 
scaled-particle approximation: 

o-Hp(x) = 24"0(ax 2 + bx + c) 

× e x p { - r / [ 8 a ( x  3 - 1) + 12b(x 2 - 1) + 24c(x - 1)]}, 

Ep(x) = exp{-'0[Sa(x 3 - 11 + 12b(x 2 - 1) + 24c(x - 11]}, 

b c 
G p ( x ) . . = a + - +  -'7 

x x 
x > l  . 

x > l ,  

(43) 

x > l ,  
(44) 

(45) 
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Two additional sets of approximations for the void were found by Torquato 
et al. by exploiting the observation made earlier, namely that Gv(r  ) is just the 
contact radial distribution function for a test particle of radius r -  or/2 (at 
infinite dilution) and an actual particle of diameter tr. This was done [12] by 
employing the relation for the contact radial distribution function for general 
binary mixtures of hard spheres in the aforementioned limit in both the 
Percus-Yevick and Carnahan-Starling approximations. In the Percus-Yevick 
approximation, Torquato et al. found that the void and particle quantities are 
given by 

24*/ 
o ' H v ( x  ) - ( i ' ~ / )  [(1 + 2"O)x 2 - 3 , /x ]  

( */ 2 [8(1 +2 , / )x  3 -  18,/x 2 + s , / _  1] ) ,  x >  1, x e x p  (1 -* / )  
(46) 

( */ 
2 [8(1 + 2,/)x 3 - 18,/x 2 + 2*/ -  11), Ev(x ) = (1 - 7/) exp \  

(1 */) 
X >  1 , 

(47) 

Gv(x ) = (1 + 2 , / -  3,//2x) 
( 1  - * / )2  , x > ½ , ( 4 8 )  

24*/ 
(1 - */)2 [(1 + 2,/)x 2 - 3,/x] 

x exp(  (1 -~-- ,/)2 [8(1 + 2,/)(x 3 - 1 ) -  18,/(x - 1)]) 

~ / - / p ( X )  - - -  

-* /  [8(1 + 2, /)(x 3 - 1 ) - 1 8 , / ( x  - -  1)1 ) Ep(x) = e x p  (1  - */)2 

x > l ,  

x > l ,  

(49) 

(50) 

(1 + 2* / -  3,//2x) 
Gp(x) = (1 - */)2 , x > 1. (51) 

In the Carnahan-Starling approximation, it was found [12] that the void and 
particle quantities are given by 

Hv(x ) = 24,/(1 - ,/)(ex z + fx + g) exp[- , / (8ex  3 + 12fx z + 24gx + h)] ,  

x > ½ , (52) 

Ev(x ) = (1 - 7/) exp[ - , / (8ex  3 + 12fx z + 24gx + h)] ,  x > ½ , (53) 

g 
Gv(x ) = e + -f + --~ , x >  ½ , (54) 

x x 
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Hp(x) = 24~7[ex 2 + f x  + g] 

x exp{- 'r /[8e(x 3 - 1) + 12f(x 2 - 1) + 24g(x - 1)]},  x > 1,  

Ep(x) = exp{- r / [8e(x  3 - 1) + 12f(x 2 - 1) + 24g(x - 1 ) ] ) ,  x > 4, 

f g 
Gp(x) = e + "-- + --7 , x > 1,  

X X 

where 

371 

(55) 

(56) 

(57) 

1 + ~  
e ( n ) -  ( i - n )  3 '  (58) 

"q(3 + r/) 
f(r/) - 2(1 - ,1)3, (59) 

2 

g(n) -  n 
2(1 - ~7) 3 ' (60) 

--9,/2 + 7 r / -  2 
h(r/) = 2(1 - 7/) 3 (61) 

3. Simulation procedure 

Here  we shall describe the simulation procedure we employed to compute 
the exclusion probabilities, E v and Ep, and the nearest-neighbor distribution 
functions, H v and Ha. We do not directly simulate the conditional pair 
distribution functions since: (i) simulations of G v and Gp require substantial 
computational time to reduce the larger statistical fluctuations which arise; and 
(ii) they can be obtained from knowledge of the exclusion probabilities and 
nearest-neighbor distribution functions via eqs. (9) and (10) or through eqs. 
(13)-(16) .  The simulation procedure consists of two basic steps: (i) generating 
equilibrium realizations or configurations of the random medium; and (ii) 
sampling the desired quantities. 

We employed a conventional Metropolis algorithm [14] to generate equilib- 
rium distributions of both fully penetrable and totally impenetrable spheres of 
diameter  o-. Particles were initially placed in a cubical system of volume L 3 on 
the sites of a body-centered cubic array. The system was surrounded by 
periodic images of itself, i.e., periodic boundary conditions were employed. 
For impenetrable-particle systems, the model of prime interest, each particle 
was moved (by some small distance) to a new position, provided that no 
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overlap occurred; this process was repeated until equilibrium was achieved. 
For penetrable-particle systems, each particle was moved without regard to 
overlap; this process was repeated until the centers were Poisson distributed. 
Since the exact analytical results (34)-(36)  are known for penetrable spheres, 
this model serves as a useful test case. 

In generating hard-sphere configurations, we employed the "cell-list" 
method [15] to efficiently check for overlap among the particles. Specifically, 
the system volume was subdivided into cubic cells, each having a side of length 
slightly smaller than o-/X/-3; thus, each cell contained at most one sphere 
center. Each time a particle was moved to a randomly chosen point, we 
checked for overlap by first determining the cell in which the new position fell 
in. If the cell already contained a sphere center,  then that current attempt was 
discarded. If the cell did not contain a sphere center,  then the overlap 
condition was tested between the new position and the particles in the 
neighboring cell. Since the diameter of each particle is greater than the side of 
each cell, we only needed to test the overlap condition in the eight nearest- 
neighbor cells. If the new position is allowed, then the coordinates of the 
center of the moving particle are updated with those of the new position. This 
process was repeated for each particle until equilibrium was achieved. 

Our simulations were carried out for 500-particle systems for various values 
of the reduced density r /=  pTro'3/6. This system size was found to be large 
enough to eliminate finite-size effects. Each of our simulations, depending 
upon 77, consisted of 10000-60000 moves per particle, the first 200-400 of 
which were discarded before sampling for equilibrium statistical measures. 
Realizations were selected every 10-50 moves per particle, again depending 
upon the value of r/. 

Let us now describe the sampling methods for the exclusion probabilities and 
nearest-neighbor distribution functions. 

3.1.  S a m p l i n g  f o r  Ep and  E v 

The sampling techniques used to measure Ep and E v are very similar. First 
consider the determination of Ep. For j th configuration, we surrounded each 
sphere in the central system with concentric spherical shells of radii 

ri = i A r ,  i = 1, 2,3 . . . .  (62) 

and thickness Ar (where A r g o - ) .  For a particular value of r i, we then 
determined the total number  of situations N~j ) in which no sphere centers lie in 
concentric shells of inner radius or and outer  radius r i surrounding each sphere. 
Let N(,/) denote the total number  of shells of radius r i sampled for the j th 
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configuration and M denote the total number of configurations. Then, accord- 
ing to (4), the particle exclusion probability is algorithmically equivalent to 

1_ N(o i) 
Ep(r) = 2.., 

m j=, NI t) " 
(63) 

The simulation method for the void exclusion probability Ev(r ) is the same 
except for the fact that here a randomly chosen point (instead of an actual 
sphere) lies at the center of the concentric shells. 

3.2. Sampling for Hp and H v 

The sampling methods used to measure Hp and H v are related to the ones 
employed to measure the exclusion probabilities and hence simulation of the 
former can be done concurrently with the latter. Let us first consider Hp. As in 
the case of obtaining Ep, we constructed concentric spherical shells of radii r i 
(cf. eq. (62)) and thickness Ar around each sphere in the j th  realization. One 
then determines the total number of nearest-neighbor particles contained in the 
shells of radius ri, N(~ j), i.e., one determines which shells of radius ri are the 
innermost occupied shells and then counts the total number of particles 
contained in such shells. Hence, according to (2), we have that 

1 ~ N(n j) 
Hp(ri) Ar = ~ J =, Nil ) • (64) 

In order for (64) to yield accurate results, Ar must be chosen to be much 
smaller than o-. For our simulations, we chose 0.00125o-~< Ar ~< 0.0025o-. The 
cell-list method was also used here to efficiently count the number of nearest- 
neighbor particles. The simulation technique for the void nearest-neighbor 
distribution function Hv(r ) is the same except that here a randomly chosen 
point lies at the center of the concentric shells. 

In the subsequent sections, we shall report our simulation results and 
compare these data to the aforementioned theoretical expressions in various 
figures. Since the density of simulation points is quite large, we will only report 
a subset of those data in order to distinguish the data from the theory. Our 
hard-sphere data will include cases up to ~ = 4)2 = 0.5. At  about this volume 
fraction, the equilibrium hard-sphere system undergoes a fluid-solid phase 
transition [14]. Simulations of hard-sphere systems for th2 between 0.5 and the 
random-close packing fraction (estimated [2] to range between 0.62-0.66) are 
quite subtle [3] and shall be examined in a future work. 
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4. Results for fully penetrable spheres 

As indicated earlier, the instance of fully penetrable spheres (randomly 
centered spheres) provides a useful test case of our simulation technique since 
for such a system we have the exact results (34)-(36). Specifically, we have 
determined the exclusion probability function and the nearest-neighbor distri- 
bution function for a system of fully penetrable spheres at a reduced number 
density 77 = 0.7. For such distributions, -q ~ (h2, unlike the case of impenetrable 
spheres, but 9 is related to tha through the relation 

~b 2 = 1 - exp( - r / ) .  (65) 

Since there is no distinction between the void and particle quantities for 
randomly centered spheres, E(r) shall denote Ep( r )=  Ev(r ) and H(r) shall 
denote Hp(r) = Hv(r ). In fig. 1, we show our simulation data for the dimen- 
sionless nearest-neighbor distribution function trH(r) and the exact result (34). 
Fig. 2 depicts our simulation results for the exclusion probability E(r) as well as 
the corresponding exact result (35). From figs. 1 and 2, it is seen that the 
simulation results for H(r) and E(r) are in excellent agreement with the 
corresponding exact results. 
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crH(r) 
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0.5 

2L 

O~ 
0 

. . . .  i . . . .  ! • 

0.5 1 

r/• 
Fig. 1. The dimensionless  neares t -ne ighbor  distr ibution funct ion trH(r) for a distr ibution of  fully 
penet rable  spheres  of d iameter  tr at a reduced density r; = 0.7 (4'2 = 0.5). Circles are our  s imulat ion 
data and the solid line is obta ined  f rom the exact result  (34). Here  ~7 = P ~r(r3/6, P is the n u m b e r  
density, and the sphere  vo lume fraction is 4'2 = 1 - e x p ( - r / ) .  
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Fig. 2. The exclusion probabilty E(r) for a distribution of fully penetrable spheres of diameter tr at 
a reduced density 7/= 0.7 (~b 2 = 0.5). Circles are our simulation data and the solid line is the exact 
result (35). Here 77 = P ~rtr3/6, P is the number density, and the sphere volume fraction is 
~b 2 = 1 - exp(-~/). 

5. Results for impenetrable spheres: void quantities 

Here  we shall repor t  our  s imulat ion results for  the void quanti t ies,  H v and 

Ev,  in the cases o f  hard  spheres.  One  of  our  aims will be to ascertain which of  
the a fo remen t ioned  three approximat ions  for  the void quanti t ies best  agrees 

with the s imulat ion data.  We have carr ied out  s imulat ions for  th2 = r / =  0.1, 0.2, 

0.3, 0.4, and 0.5. For  reasons which will soon b e c o m e  apparent ,  we will only 
need  to explicitly repor t  results for  ~b 2 = 0.2 and 0.5. 

First it is impor tan t  to observe  that  the three  a fo remen t ioned  sets of  

theoret ical  expressions for  H v and E v do not  appreciably  differ f rom one 
another ;  the greatest  differences occur  at the highest densities repor ted  (~b 2 = 

0.5). In  general ,  the expressions which give the best  ag reement  with the data  
are the void quanti t ies ob ta ined  in the Ca rnahan -S t a r l i ng  approximat ions ,  eqs. 
(52) and (53). 

In figs. 3 and 4 we repor t  ou r  s imulat ion results for  the void neares t -ne ighbor  
distr ibution funct ion H v at 4) 2 = 0.2 and 0.5, respectively.  (Again  note  tha t  we 

repor t  only a subset o f  the data  obta ined. )  Inc luded  in the figures is the 
predict ion o f  eq. (52) which is seen to be in excellent ag reement  with the data.  
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Fig. 3. The  dimensionless void nearest -neighbor  distribution function o 'Hv(r  ) for an equil ibrium 
distribution of impenetrable  spheres of  d iameter  tr at a sphere volume fraction 4~2 = 7/= 0.2. Circles 
are our  simulation data and the solid line is the relation (52) obtained in ref. [12]. Here  
'1 = P ~rtr3/6 and p is the number  density. 
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Fig. 4. As  in fig. 3 with ~b 2 =~7 = 0.5. 
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At ~b 2 = 0.2, the other theoretical expressions (eqs. (37), (46)) are impercep- 
tibly different from eq. (52) on the scale of the figure and hence are not shown. 
At  th2 = 0.5, the other expressions, although perceptibly different from (52), 
are still relatively close to (52) and hence are again not shown. Among the 
expressions (37) and (46), the relation (46) is generally the most accurate. 

In figs. 5 and 6 we give corresponding results for the void exclusion 
probability functions. Included in these figures is the prediction of eq. (53), 
i.e., E v in the Carnahan-Starling approximation. Again the other theoretical 
expressions (38) and (47) are relatively close to (53), with (47) usually being 
the closest to (53). 

Results for tb2 = 0.1, 0.3 and 0.4 are not shown since they are, not surprising- 
ly, in excellent agreement with the expressions (52) and (53). 

Employing our simulation results for Hv(r  ) and Ev(r),  we have determined 
the conditional pair distribution function Gv(r  ) using eq. (9). The resulting 
values of Gv(r  ) were found to be scattered around the corresponding Car- 
nahan-Starling prediction (eq. (54)). The scatter in the "data"  was significantly 
reduced and agreement with eq. (54) substantially improved as the number of 
configurations in the simulations for H v and E v were increased. This indicates, 
as expected, that eq. (54) provides an excellent approximation to Gv(r  ). Since 

0.5 

0 
0.5 

~2=0.2 

1 1.5 

r/G 
Fig. 5. The void exclusion probability Ev(r) for an equilibrium distribution of impenetrable  
spheres of  diameter  tr at a sphere volume fraction ~b 2 = r / =  0.2. Circles are our  simulation data and 
the solid line is the relation (53) obtained in ref. [12]. Here r / =  p~rtr3/6 and p is the number  
density. 
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Fig. 6. As in fig. 5 with ~b z =77 = 0.5. 

reducing the aforementioned fluctuations requires very large amounts of 
computer time and since eq. (54) is undoubtedly accurate, we do not present 
such results for Gv(r ). Note that Gv(r ) in the Percus-Yevick approximation 
(eq. (48)) underestimates the data, especially at high densities. 

6. Results for impenetrable spheres: particle quantities 

Our simulation results for the particle quantities, Hp and E p ,  in the instance 
of hard spheres is reported here. Again, one of our objectives will be to 
determine which of the three aforementioned approximations for the particle 
quantities best agrees with the data. We have carried out simulations for 
~b 2 = 0.1, 0.2, 0.3, 0.4, and 0.5 but only explicitly report results for 4'2 = 0.2 and 
0.5 for the same reasons stated in section 5. We shall use our complete 
simulation results, however, to calculate the mean nearest-neighbor distance 
between particles, l, for ~b 2 =0 .1 ,  0.2, 0.3, 0.4 and 0.5. Finally, we shall 
explicitly test the validity of the relations (26)-(29) derived by Torquato et al. 
[121. 

In figs. 7 and 8 we plot our simulation data for the particle nearest-neighbor 
distribution functions Hp at ~b 2 = 0.2 and 0.5, respectively. Included in the 
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Fig. 7. The dimensionless particle nearest-neighbor distribution function trHe(r ) for an equilib- 
rium distribution of impenetrable spheres of diameter tr at a sphere volume fraction th2 = 7/= 0.2. 
Circles are our simulation data and the solid line is the relation (55) obtained in ref. [12]. Here 
71 = p~rtr3/6 and p is the number density. 
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Fig. 8. As in fig. 7 with ~b 2 = 7/= 0.5. In addition to the solid line, eq. (55), we have also included 
eq. (43) ( . . . .  ) and eq. (49) ( - - - ) ,  all of which were obtained in ref. [12]. 
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figures is the Carnahan-Starling approximation (55) for Hp which is shown to 
be in excellent agreement with the data. At th2 = 0.2, the other expressions, 
(43) and (49), are numerically close to (55) and hence are not shown. Eqs. 
(43) and (49) are included in fig. 8 for ~b 2 = 0.5, however. 

In figs. 9 and 10 we show the corresponding results for the particle exclusion 
probabilities. Again, it is seen that the Carnahan-Starling expression (56) for 
Ep is in excellent agreement with the data. 

We now shall compute the mean nearest-neighbor distance between parti- 
cles, l, defined by (17). Integrating (17) by parts and using (8) gives the 
alternative form for hard spheres: 

-trl = 1 + f Ep(x) dx 
1 

(66) 

Eq. (66) is numerically computed using a trapezoidal rule in conjunction with 
our simulation data for ~b 2 = 0.1, 0.2, 0.3, 0.4 and 0.5, and the approximation 
(56). These results are summarized in fig. 11 where it is seen that theory and 

Ep(r) 
0.5 

! • ! 

202 

1.2 1.4 

r / / G  

Fig. 9. The  particle exclusion probability function Ep(r) for an equilibrium distribution function of 
impenetrable  spheres of  diameter  o, at a sphere volume fraction ~b 2 =~7 = 0.2. Circles are our  
simulation data and the solid line is the relation (56) obtained in ref. [12]. Here "0 = P ~rtr3/6 and p 
is the  number  density. 
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Fig. 10. As  in fig. 9 with ~b2 = ~7 = 0.5. In addition to the solid line, eq. (56), we have also included 
eq. (44) ( . . . .  ) and eq. (50) ( - - - ) ,  all of  which were obtained in ref. [12]. 

O" 

1.2 

1.1 

1 

I I 

5 10 

Fig. 11. The dimensionless mean  nearest -neighbor  distance between particles, l/tr, as a function of 
inverse sphere volume fraction ~b~ 1 for hard spheres  of  d iameter  tr as computed  from eq. (66). 
Circles are obtained from our  simulation data  and the solid line is obtained using eq. (56). 
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simulation data are in excellent agreement. Preliminary calculations (not 
reported here) show that the Carnahan-Starling relations for Ep(r) and Hp(r) 
will be fairly accurate up to ~b 2 = 0.6, thus indicating that its prediction of l (up 
to ~b 2 = 0.6) will also be fairly accurate. For ~b 2 in the near vicinity of the 
random close-packing value (~b 2 =0.64---0.02) [2] however, the Carnahan-  
Starling approximation must necessarily break down since it predicts ~b ~ = 1. 
Simulation results for ~b 2 > 0.5 will be obtained in a future work. 

It is of interest to explicitly test the validity of the expressions (26) and (27), 
which relate the void to the particle quantities for hard-sphere systems, using 
our simulation datal The case ~b 2 = 0.2 will be examined. At th2 = 0.2, we find 
that the void simulations, among other values, yield Ev(0- ) = 0.0841, Hv(0- ) = 
0.716, Ev(1.10- ) = 0.0325, Hv(1.10- ) = 0.341, Ev(1.2o- ) = 0.010, and 
Hv(1.20) = 0.129. Hence, according to relations (26) and (27) we can calculate 
the corresponding particle quantities and find that Ep(0")= 1, Hp(0-)= 8.51, 
Ep(1.1o') = 0.386, Hp(1.10-) = 4.05, Ep(1.20-) = 0.119, and Hp(1.20") = 1.53. 
These predicted values are to be compared with the corresponding direct 
simulation results: Ep(0" )= l ,  Hp(0")=8.53, Ep(1.1o-)=0.388, Hp(1.10-)= 
4.06, Ee(1.2o- ) =0.121, and Hp(1.20-)= 1.54. It is seen that the predicted 
values from the right-hand sides of eqs. (26) and (27) yield for the particle 
quantities which are in excellent agreement with the independently obtained 
simulation values. 

7. Conclusions 

We have obtained Monte Carlo simulation results for the void and particle 
nearest-neighbor distribution functions and exclusion probabilities for hard- 
sphere systems up to the volume fraction corresponding to the fluid-solid phase 
transition. It was generally found that the sets of expressions obtained by 
Torquato et al. in the Carnahan-Starling approximation gave excellent agree- 
ment with the simulation data. How accurate are these expressions expected to 
be for 4~2 > 0.5, i.e., for 0.5 < ~b 2 < ~b~, where 4~2 (~b2 =0.64)  is the random- 
close-packing value? Preliminary calculations show that the Carnahan-Starling 
expressions should still be relatively accurate up to th2 = 0.6. In the near critical 
region, however, these relations clearly break down. At any rate, detailed 
simulations of the nearest-neighbor functions for hard-sphere systems for 
0.5 < ~b 2 < ~b 2 using the algorithm described here will be the subject of a future 
investigation. 
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