Bounds on the thermoelastic properties of suspensions of spheres
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Three-point upper and lower bounds on the effective thermal expansion coefficient and specific
heats of statistically isotropic suspensions of mutually impenetrable spheres are computed for
the first time. The three-point bounds depend upon the microstructure via a three-point spatial
correlation function of the medium. Both equisized and multisized spheres are considered, and
hence the effect of polydispersivity in sphere size on the thermoelastic properties is determined.
For reasons of mathematical analogy, the results of this study for the thermal expansion
coefficient translate immediately into equivalent results for the hygroscopic expansion

coefficient.

{. INTRODUCTION

The problem of theoretically determining the effective
transport, electromagnetic, and elastic properties of a com-
posite material of arbitrary microgeometry, given the prop-
erties of the constituent materials, has received considerable
attention (see Refs. I—4 and references therein). Compara-
tively speaking, little effort has been directed toward the pre-
diction of the effective thermoelastic properties, such as the
thermal expansion coefficient and the specific heats, of com-
posite materials. The effective therma! expansion coeffi-
cients of a composite material are defined as the average
strains that result from a unit temperature rise in a traction-
free material. The effective specific heat at constant volume
and at constant pressure, respectively, are the quantities of
heat necessary to produce a uniform unit temperature rise
under conditions of constant surface displacements and of
constant surface tractions. Thermal expansion behavior can
be important when composite materials are used in conjunc-
tien with other materials and when it is necessary to match
the thermal expansion coefficient of one structural compo-
rent with another. Knowledge of the specific heats of com-
posites is of cbvious importance in determining the thermal
transient response of the materials.

Levin® has shown that a simple relationship exists
between the effective expansion coefficients and the effective
elastic moduli of two-phase composites. This resuit was also
independently obtained by Schapery,® Rosen,” Cribb,® and
Steel.” The effective specific heats of two-phase composites
were shown by Rosen and Hashin'® to be simply related to
the effective elastic moduli. Thus, given the effective elastic
moduli, one may compute the effective expansion coeffi-
cients and specific heats exactly. These relations show that
the effective expansion coefficients and specific heats deviate
from simple mixture rules as a result of elastic interactions.
It also follows from these relations that bounds on the effec-
tive elastic moduli lead directly to bounds on the aforemen-
tioned effective thermoelastic properties.

In this article, three-point upper and lower bounds on
the effective thermal expansion coefficient «,, effective con-
stant-pressure specific heat ¢p ., and effective constant-vol-
ume specific heat ¢, of statistically isotropic suspensions of
mutually impenetrable spheres are computed for the first
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time. These bounds depend upon a three-point spatial corre-
fation function of the medium. The cases of both equisized
and multisized spheres are considered, and hence the effect
of polydispersivity in sphere size on the thermoelastic prop-
erties is studied.

For reasons of mathematical analogy, the results of this
study for the thermal expansion coefficient o, transiate im-
mediately into equivalent results for the hygroscopic expan-
sion coefficient B,." In the latter problem, instead of a unit
temperature rise, one is concerned with a uniform moisture
content or a relative humidity change. The swelling or
shrinkage of composites due to hygroscopic effects is a prob-
lem of important practical concern.

In Sec. ¥i, basic refations and bounds for the effective
thermoelastic properties are given. In Sec. I, the bounds on
the effective thermoelastic properties are computed for sta-
tistically isotropic composites composed of spheres with a
polydispersivity in size distributed throughout 2 matrix. In
Sec. 1V, concluding remarks are made.

fi. BASIC RELATIONS AND BOUNDS FOR THE
THERMOELASTIC PROPERTIES

A. Basic reiations

For isotropic two-phase composites, it has been shown
that the effective thermal expansion coefficient ¢, is given
byS—‘)

KIKg(a2—~a,)( i <1>)

a, ={a) - —F_——{——{—1]}, (1)

(@ X, - K, K, K

where for some general physical property X
<X>:X1¢1+‘X2¢29 (2}

&; is the volume fraction of phase i, @; is the thermal expan-
sion coefficient of phase £, K, is the bulk moduius of phase
and X, is the effective bulk modulus of the composite. For
such composites, it has been also shown that'?

e = en) _ Q(Kl&(az . an)z(_l__ _ (i>) L (3)
T, K:—K, J\K. K

where 7, is a base temperature. Given the effective constant-
pressure specific heat ¢, ., one may obtain the effective con-
stant-volume specific heat ¢, from the relation
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Cre ~ Cye = 3T0Kea3 . (4)
Now since the quantity X, > (K ~ ')~ (as will be shown),
then according to Egs. (3), ¢cp, <{cp).

From relations (1), (3), and (4), it is clear that if the
effective bulk modulus X, is known along with the physical
properties of the phases at some volume fraction, then one
may calculatea, , ¢p,., and ¢y, . Equations (1) and (3) show
how both &, and ¢y, deviate from simple mixture rules (i.e,
a, = {a)andcp, = {cp)) asaresult of mechanical interac-
tions embodied in the terms involving K ;' — (K 7). Note
that the simple mixture rules approximately apply when

1 1
K, <K> ’ )
which corresponds to a composite that bas an approximately
uniform stress distribution when it is is externally pressur-
ized, such as a two-phase material in which the shear modu-
tus of one of the phases is very small compared to the shear
moduius of that phase.

B. Bounds

Except for a few idealized microgeometries, the infinite
set of spatial correlation functions required to compute ef-
fective properties such as X, is never available, and hence
exact evaluations of effective properties for composites of
arbitrary microstructures are generally out of the question.
Using limited microstructural information on the compos-
ite, however, one can set rigorous bounds on the effective
properties. The functional forms of (1) and (3) ensure that
bounds on K, translate immediately to bounds on e, and
Cpes respectlvely Specifically, given a-point bounds (ie.,
bounds which depend upon one-point through n-point spa-
tial correlation functions) on the effective bulk modulus X,
denoted by K "Yand K (", then one has from Eq. (1) that

a((‘)nl.)<\a”<\.a((?nll) , (6)
where
@Y = (a) — KK (o, —a)f{ 1 . <l>)
¢ K,—K, \K"H \K
@ = (g} — K Ko, —a, )[I | <l\)
¢ K,—K, \Ko» Ki)
when
a, — &,
2T, (93
K,—K,
and from Eq. (2) that
Cé"L)<Ce<C§"U) , (10)
where
CeE (c}’); Cpe (11)
1]

C(nU)=9(K1K2(a2“’a1)>2<<__1_> _ i } (12)
€ K2 ____Kl K K‘(,HU) ;

Cg*‘“=9{/———————K1K2(“2_a‘))2<<i>— . ) (13)
AN KZ_KI X K;nL)

Note that for {a, — a,}/(K, — K,)»0 the bounds (7} and
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(8} reverse themselves, i.e., the right-hand sides of (7) and
(8) become a'™ and al"”? , respectively.

One of the simplest bounds on X, are one-point bounds
due to Paul:"

K =(K), (14)

K(IL) <K‘—l>—1 (15)
Combination of Egs. (7}, (12), and (15) yields the fact that
a.<{a) for (a,—a))/(K,—K)<0, a,»(a) for
{a, — a)/(K, — K})>»0, and ¢, <{cp).

The most restrictive bounds on K, given the simplest of
statistical quantities, the volume fractions ¢, and ¢,, are the

two-point bounds obtained by Hashin and Shtrikman'® and
by Walpole:3

=K2+ ¢] »

K9 (16)
‘ i 43¢
K, —K, 3K,+4G,
KO =K+ — 2 T (17
+ H
K,— K, 3K, +4G,
when
(G, —G (K, —K)>0. (18)

Here &, is the shear modulus of phase /. The bounds (16)
and {17) are reversed when (G, — G} (K, — K,)<0. Note
that the bounds (16) and (17) depend upon two-point cor-
relation functions in a trivial manner.

Beran and Molyneux'* derived three-point bounds on
K. that are narrower than the aforementioned two-point
bounds. These bounds were subsequently simplified by Mil-
ton'® and are given by

3¢!¢2(K2 - K{)Z

3w
K=8 5% s w00, ()
Koo =(<i> _4:4,(1/K, — I/Kz)zjq, (20)
K 41/K) +3(1/G),
where, for any property X,
(5(>:Xs¢2+xz¢w 2
<X>g;X1§1+X2§2: (22)
G=1-¢
=2 f i’r fi’ﬁf du Sy(rs,00P (),  (23)
2l¢20 FJo X J-1
Sy(rs) = Sy(rs) — 5—%& (24)

Here S,(7) is the probability of finding the end points of a
tine segment of length 7 in phase 2 when placed randomly in
the composite. S;(r,s,7} is the probability of finding the ver-
tices of a triangle of lengths #,5, and ¢ in phase 2 when placed
randomly in the composite, with £2 = 7 + 5% — 2rsu. Po(u)
is the Legendre polynomial of order two. Note that the three-
point microstructural parameter §;, which lies in the inter-
val [0,1]," contains nontrivial spatial information about the
composite.

In summary, given the one-, two-, and three-point
bounds on K, described above, one can obtain correspond-
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ing bounds on a, and C, using relations (7}, (8), (12}, and
(13). In the foliowing section, we will compute three-point
bounds on ¢, and C, using Egs. (19) and (20). Note that
corresponding results for the effective hygroscopic expan-
sion coefficient 5, can easily be obtained by replacing
a,a™, al"? a,, and o, in the equations above with
B, B0, B, By, and B,.

It is useful a¢ this point to comment on the utility of
bounds on effective properties. Besides being useful for test-
ing the merits of theoretical expressions for effective proper-
ties, bounds are useful because (1) as successively more mi-
crostructural information is included, the bounds become
progressively tighter, and (2} one of the bounds can typical-
ly provide a good estimate of the effective property, even
when the reciprocal bound diverges from it. Calculations of
three- and four-point bounds on the effective conductivities
and elastic moduli of model suspensions and fiber-reinforced
materials has certainly borne out the fact that data lie closer
to one of the beunds.* ' For example, in the case of the bulk
modulus X, , upper bounds X ("% tend to infinity in the limit
G./G,— o and K,/K,— «. In the limit G,/G,— o and
K,/K |~ w0, the lower bound remains finite and, in particu-
lar, three-point and higher-order lower bounds give good
estimates of K, /K, provided that phase 2 does not possess
large connecied structures. In the case of many random sus-
pensions where the inclusions make up the stronger phase 2,
large clusters of inclusions do not form until the random-
close-packing density is approached, and hence for such me-
dia the lower bound will provide a useful estimate of K, /X
when G,> G, and K, » K. The model suspension that shall
be examined here falls into this class of microstructures, im-
plying that the actual results for o, will be closer to a0*",
Eq. (7), and for C, will be closer to C ", Eq. (13).

il CALCULATIONS OF THREE-POINT BOUNDS ON
THERMOELASTIC PROPERTIES

Substitution of the three-point bounds (19} and (20)
for X, inte relations (7}, (8), (12}, and {13) vield three-
point bounds on @, and C,. In order to compute such
bounds, one must first determine the three-point microstruc-
tural parameter £, for the model of interest. The model mi-
crostructures that are considered here are distributions of
mutually impenetrable equisized as well as multisized
spheres.

A. Three-point parameter §,

To date, the three-point parameter £, has been comput-
ed to all orders in the volume fraction ¢, for three model
isotropic suspensions: equisized full penetrable spheres,™
multisized fully penetrable spheres,”’ and an equilibrium en-
semble of equisized impenetrable spheres.'® A hallmark of
all of these results is the fact that £, is nearly linear in the
sphere volume fraction ¢, for ¢,>0 for a wide range of vol-
ume fractions and thus, since §,(4, = 0) =0 for random
distributions of spherical inclusions,? the slope of £, at

, = 0 approximately determines the behavior of §, for a
wide range of ¢,>0. The slope of £, at &, = 0 is determined
by the zero-density limit of the radial (pair) distribution
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function.”? For example, for equisized impenetrable spheres,
through order ¢,, one exacty has®

L=(3m3—3)4,, =0210688,. (25)

Thus, in accordance with the discussion above, relation (25)
provides a good approximation to £, for'® 0<¢, < 0.5: a very
wide range of ¢, considering that the random-close-packing
volume fraction is about 0.63 (see Refs. 23 and references
therein).

Very recently, Thovert ef al.** computed ¢, exactly
through order ¢, for an equilibrium ensemble of spheres
with a continuous distribution in radii ¢ characterized by 2
density function n(a); they found

sr=eds, (26)
where
1 b
‘. :.__,ff A<_)¢zca)¢2(b)da db 27)
é3 a

3 1+t~ N
A = . —In{l+2¥1!, 8
= m ;)) (28)
4
$,(a) = ;w*n(ax (29)
and
by, = A7 J‘m a'n(a)da. (30)
3 Jo

Note that for monodispersed spheres of radius R at number
density #, n{a)} = né{a — R) [where §(a) is the Dirac delia
function ], and Eq. (27) leads to

e,=0(1) =23 —3, G

which is in agreement with Eg. (25). For any finite degree of
polydispersivity

e > A(L). {32)
Thovert et al.>* determined that ¢, achieves a maximum
e, =0.5 (33}

for a polydispersed suspension of impenetrable spheres con-
taining N different and widely separated particlesizes {in the
limit N o }, and hence substitution of Eq. (33} into Eq.
(26) gives the result

& =056, (34)

which corresponds to the microgeometry that gives the lar-
gest effect of polydispersivity.

In light of the sbove discussion, one can use relation
(26) to evaluate three-point bounds on a, and C, for poly-
dispersed suspensions of impenetrable spheres for a wide
range of sphere volume fractions.

B. Results

The three-point boundson o, , Eqgs. (7) and (8),and on
C., Egs. (12) and (13), are computed for suspensions of
monodispersed, impenetrable spheres using relation (25).
Such three-point bounds are also evaluated for the polydis-
persed suspension corresponding to relation (34), thus en-
abling one to study the maximum effect of polydispersivity
on bounds on the effective thermoelastic properties. In all
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cases, results are reported for the sphere volume fraction
range 0<¢,<0.5. For concreteness, we consider the dimen-
sionless material properties a,/a, = 14, K,/K, = 9.1, G,/
G, =126, G,/K, =021, and G,/K, = 0.6, which corre-
sponds to a composite composed of glass spheres in an epoxy
matrix. (Note only three of the ratios K,/K,, G,/G,, G\/K,,
and G,/K, are independent.)

In Fig. 1, two- and three-point bounds on the scaled
expansion coefficient a, /&, are plotted versus the sphere
volume fraction for the monodispersed case. Note that the
three-point bounds provide significant improvement over
the two-point bounds for a wide range of ¢,. The greatest
improvement cccurs in the fower bound, as one would ex-
pect based upon the discussion in the preceding section, i.e.,
the actual value of o, /a, will lie closer to the three-point
lower bound when the inclusions are stiffer than the matrix.
The dotted line in the figure is the simple mixture rule {a)/
«,, which also corresponds to the one-point upper bound.

Bounds for the polvdispersed microgeometry corre-
sponding to Eq. (34) are plotted in Fig. 2. Although the
three-point bounds improve upon the two-point bounds, the
three-point bounds widen (relative to the monodisperse
case) and shift downwards. This indicates that the effect of
polydispersivity is to decrease o, /&, relative to the monodis-
perse case. This will be true for any composite in which
{a, —a)/ (K, — K} <0, G,>G,, and K, > K,. In many
applications, it is desired to minimize the thermal expansion
coefficient of composites. Thus if minimization of o, is de-
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FIG. 1. Upper and lower bounds on the scaled effective thermal expansion
coefficient &, /&, for suspensions of monodispersed, impenetrable spheres
vs the sphere volume fraction ¢, with a,/a, =14, K,/K, =9.1, G/
G, =26, G,/K, =0.21, and G,/K, = 0.6. Two-point bounds are dashed
lines as computed from Egs. (7) and (8) with r = 2. Three-point bounds
are solid lines as computed from Egs. {7) and (8) with # = 3. The dotted
line is the simple mixture rule (@) /a |, which also corresponds io the one-
point upper bound.
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FIG. 2. As in Fig. ! except for suspensions of polydispersed, impenetrable
spheres wth the three-point microstructural parameter £, given by Eq.
{34}.

sired for the aforementioned large class of composites, one
should manufacture the inclusions with different sizes rather
than with the same size.

In Fig. 3, two- and three-point bounds on the dimen-
sionless gquantity C,/(7,K,a} ) are plotted versus ¢, for a
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FIG. 3. Upper and lower bounds on the dimensionless quantity C,/
(T,K @) [defined by Eq. (11) ] for suspensions of monodispersed, impen-
etrable spheres vs the sphere volume fraction ¢, with a,/a, = 14, K,/
K, =9.1,G/G, =26, G /K, =0.21, and G,/K, = 0.6. Two-point bounds
are dashed lines computed from Eqgs. (12) and (13) with # = 2. Three-
point bounds are solid lines as computed from Egs. (12) and (13) with
n =3, The abscissa corresponds to the simple mixture rule ¢, = {¢p).
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FIG. 4. As in Fig. 3 except for suspensions of polydispersed, impenetrable
spheres with the three-point microstructural parameter {, given by Eq.
(34).

monodispersion of impenetrable spheres. Note that the ab-
scissa corresponds to the simple mixture rule ¢, = (¢, ).
The three-point bounds again provide significant improve-
ment over the two-peint with the largest improvement com-
ing from the three-point upper bound, as expected.

Figure 4 depicts the bounds on C, /( ToK a1 ) for the po-
lydispersion of impenetrable spheres corresponding to rela-
tion (34). Not surprisingly, the bounds widen (relative to
the monodisperse case) and shift upward. Thus, the effect of
polydispersivity is to increase C, or decrease the effective
censtant-pressure specitic heat ¢,,,. Note that correspond-
ing bounds on the constant-volume specific heat ¢y, can be
simply obtained by employing the results given here and re-
lation 4.
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IV. CONCLUSIONS

Bounds on the effective thermal expansion coefficients
and specific heats that depend upon the three-point correla-
tion function of the medium have been computed for suspen-
stons of both monodispersed and polydispersed spheres. In
all cases, the three-point bounds provide significant im-
provement over two-point bounds (which contains only vol-
ume fraction information) for a wide range of sphere volume
fractions, For the large class of particulate composites char-
acterized by (o, —o )/ (K, —K)<0,G,>G, and
K, > K, the effect of polydispersivity (relative to the mono-
disperse case) is tc lower the effective thermal expansion
coefficients and specific heats.
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