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Critical exponents of the continuum-percolation system of two-dimensional distributions of disks
in the penetrable concentric shell model are determined by Monte Carlo simulations and by real-
space Monte Carlo renormalization-group techniques. In this model, each disk of diameter o is
composed of a mutually impenetrable core of diameter Ag (0 <A =1) encompassed by a perfectly
penetrable shell of thickness (1—A)o /2. Pairs of particles are connected when the interparticle dis-
tance is less than 0. We find that the susceptibility exponent ¥ is given by 2.5010.03 for an impene-
trability parameter A=0.8 and the correlation-length exponent v to be between 1.30 and 1.35 for
various values of A. Both results consistently suggest that continuum percolation in the penetrable
concentric shell model for nonzero hard-core radii belongs to the same universality class as that of
ordinary lattice percolation and of randomly centered disks, as far as the geometrical critical ex-
ponents are concerned. We also present the critical reduced number densities and critical area frac-

tions for selected values of A.

I. INTRODUCTION

The preponderance of percolation investigations have
treated percolation on lattices"? in which each site or
bond is occupied with probability p and unoccupied with
probability 1—p (see Refs. 1 and 2 and references
therein). More recently, investigators have focused their
attention on continuum models of percolation since such
models, in many cases, are better able to capture the
essential physics of real systems.>!! It was relatively re-
cently that the question regarding the universality of con-
tinuum and lattice percolation was addressed.*> In the
prototypical continuum-percolation model, randomly
centered (or spatially uncorrelated) particles are distribut-
ed in space and a bond is assumed to exist between two
such particles if they overlap. Monte Carlo (MC) simula-
tions* and real-space Monte Carlo renormalization-
group® (MCRG) approaches were employed to estimate
various critical exponents and percolation thresholds for
continuum percolation of such freely overlapping disks.
All geometrical critical exponents were found to be simi-
lar to those of lattice systems, dispelling possible con-
cerns that freely overlapping particles and lattice percola-
tion might be in different universality classes.

A natural question which arises is the following: What
are the effects of exclusion-volume interactions on the
critical exponents of continuum-percolation systems?
For two-dimensional distributions of squares in the
penetrable concentric shell (PCS) model,'? this question
was examined by Gawlinski and Redner.* However, as
Gawlinski and Redner noted, the accuracy of their esti-
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mates were not sufficiently precise to determine whether
there is universality of continuum systems with respect to
exclusion-volume effects.

One of the purposes of this paper is to determine, with
high accuracy, the effect of exclusion-volume interactions
on the critical exponents for two-dimensional continuum
percolation of distributions of circular disks at number
density p in the PCS model.'”” In the PCS model, each
disk of diameter o is composed of a mutually impenetr-
able core of diameter Ao, encompassed by a perfectly
penetrable shell of thickness (1—A)o /2, with 0<A=<1
(see Fig. 1). The extreme limits of A=0 and A=1 corre-
spond, respectively, to the cases of fully penetrable (i.e.,
spatially uncorrelated or randomly centered particles)
and totally impenetrable particles. Thus, by varying A
continuously between zero and unity, one can vary the
degree of impenetrability (or exclusion-volume effects)
and, hence, the degree of the connectedness of the parti-
cles. The critical exponents, such as the susceptibility
and correlation-length exponents, may or may not de-
pend upon the impenetrability parameter A.

For A near but not equal to zero, one might expect
such properties not to be very different from those of ful-
ly penetrable particles (A=0). However, as A is made
larger and approaches unity, or in the extreme case of
A=1, the mean cluster size and percolation susceptibility
increase very rapidly as the inclusion area fraction ¢ ap-
proaches the critical area fraction ¢,, suggesting a possi-
bly large increase in the susceptibility exponent . (Note
that for an equilibrium distribution of totally impene-
trable particles, the mean cluster size is precisely unity
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FIG. 1. A computer-generated realization of a distribution of
disks of radius o /2 (shaded region) in the PCS model. The
disks have a hard core of diameter Ao indicated by the smaller,
black circular region. Here A=0.5 and the area fraction of
disks is approximately 0.3.

for ¢ <¢.; however, at ¢=¢,, i.e., the random close-
packing fraction, it diverges suddenly.) If this behavior is
indeed the case, one might question where the “unstable”
fixed point is located. It is at this “critical” point, if any,
that the critical properties of continuum percolation for
the PCS model are expected to be different from those of
the fully penetrable case.

We specifically determine by MC simulations and
MCRG transformations the susceptibility exponent y
and correlation-length exponent v defined, respectively,
by

x~l¢p—¢. 177 (1)
and
E~lo—o.7", ()

for distributions of disks with impenetrability parameter
A and number density p. Note that one can replace the
area fractions ¢ and ¢, with the reduced number densi-
ties 7 and 7., respectively, in Egs. (1) and (2) (where
n=pmo?/4) since ¢ is an analytic function of 7 for
0<A<1."* MC simulations are carried out to estimate
the exponent ¥ below and above ¢, or 7, for a particular
choice of A (A=0.8) and system size L (L =50). MCRG
transformations are performed to calculate the exponent
v for various values of A. Based on our results for these
two critical exponents, we conclude that the PCS model
is in the same universality class as ordinary lattice per-
colation. We also estimate the values of the percolation
threshold ¢, or 7, for selected values of the impenetrabil-
ity parameter A.

In Sec. II, we describe the MCRG method employed to
obtain v and 7, for selected values of A between 0 and 1.
In Sec. III, we describe the MC procedure used to gen-
erate equilibrium continuum realizations. In Sec. IV, we
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present the results of our MC simulations and MCRG
transformations. We give estimates of the critical ex-
ponents v and y and the percolation thresholds 7. extra-
polated to the infinite-system limit. The critical area
fractions ¢, are also estimated from 7, for various values
of A. In Sec. V, we summarize our major findings and
make concluding remarks.

II. MONTE CARLO
RENORMALIZATION-GROUP METHOD

Consider a distribution of equisized disks of unit diam-
eter and an inner impenetrable core of diameter A. A re-
scaling is performed in which a b X b cell is mapped onto
a b'Xb' cell with the same core fraction for each disk.
The recursion relation of such a one-parameter cell-to-
cell transformation can be written as

R'(p',b")=R(p,b) , (3)

where R (p,b) is the connectivity function, i.e., the proba-
bility that there is a spanning cluster at concentration p
which connects any two opposite edges across the cell. A
parameter p is, in its original definition for lattice per-
colation, the fraction of occupied sites at which a span-
ning cluster appears for the first time. In continuum per-
colation, it is naturally considered to be the overall in-
clusion area fraction for which a spanning cluster appears
for the first time.

In lattice percolation, obtaining R (p,b) is simple. One
can take a b Xb cell and fill it on randomly chosen sites
until a spanning cluster appears across the cell. The pa-
rameter p is identified as the fraction of occupied sites
when spanning cluster appears for the first time. Repeat-
ing this procedure thousands of times, one can obtain the
distribution of p values which approximates the underly-
ing probability density function L (p,b). The connectivi-
ty function is obtained as

R(p,b)= ["L(p,b)dp . (@)

In continuum percolation, the inclusion area fraction ¢
plays the role of the parameter p in the renormalization
recursion relation (3). However, a formulation in terms
of ¢ has a drawback in that the area fraction is not a con-
trollable simulation parameter for the PCS model. The
area fraction of inclusions for any finite-sized system
varies from realization to realization for a given reduced
number density 7 because of different degrees of overlap
among the particles. Moreover, in the Metropolis algo-
rithm!* which we employ here, one cannot increase, for
fixed A, the number density of inclusions continuously
during the simulation, unlike the case of lattice percola-
tion.

In order to avoid this difficulty, we choose the reduced
number density 7 as a renormalization parameter and ob-
tain the connectivity function as a function of 7. (The
quantity 7 is related to ¢ as discussed in Sec. IV and Ref.
13.) We generate systems of N particles (thus fixing 7) in
a given cell of size b and sample realizations, following
the method to be described in Sec. III. Over thousands of
realizations, we search for spanning clusters and count
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the number of realizations having such clusters. This
number gives the approximate probability of having
spanning clusters at a given density. Repeating this
whole procedure over many different values of 7 and
spline fitting the results, we obtain a continuous connec-
tivity function R (7, b).

Once R (7,b) is obtained both in b Xb and b’ X b’ cells,
the renormalization procedure is straightforward. The
fixed point 7} ,- of the recursion relation (3) is the inter-
section of R (7,b) and R (%,b’) and it gives the approxi-
mate critical point at which the system begins to per-
colate. The correlation-length exponent v can be ob-
tained, for a particular choice of b and b’, from

v=In(b/b')/InA,, , (5)

where
A= dR (7,b) / dR (n,b’) %
bbb’ . )
dn dT, M= Mp b

is the eigenvalue of the linearized transformation. Fol-
lowing Reynolds, Stanley, and Klein'’ one can obtain ex-
trapolations of v to the b/b’'—0 limit where the renor-
malization should be exact:

InA, =y In(b/b")+c . )]

Here y =1/v and c is a constant. Thus one can deter-
mine y from the slope of a plot of InA,, ;. versus In(b /b").
In the same limit, R (7,b) approaches a step function and
a jump discontinuity occurs at 7}, =7,. The deviation
of i} ,- from 7, for any finite system is known to scale as

An=|n}—n]~(b/b) 7", (8)

Therefore 7, is also determined from a plot of (b /b")™'/”

versus 7; .

III. MONTE CARLO PROCEDURE

We generate equilibrium realizations of the PCS model
employing the well-known Metropolis algorithm.!'* Disks
of unit diameter and inner impenetrable core of diameter
A are initially placed, with no hard-core overlaps, on the
sites of a triangular lattice in a b X b square cell. The cell
was surrounded by periodic images of itself. Each parti-
cle was then moved to some new position which was ac-
cepted or rejected according to whether or not the inner
hard cores overlapped. This process was repeated many
times until equilibrium was achieved. Each of our simu-
lation consists of 200 moves per particle before sampling
for equilibrium properties. Equilibrium realizations were
sampled at every 20 moves per particle. In order to en-
sure that equilibrium was achieved, we determined the
pressure as a function of 1 for systems of particles having
diameter Ao (0 =1). The pressures obtained were in very
good agreement with previous accurate determinations of
the pressure.!®

A. Monte Carlo simulations

In order to estimate susceptibility exponent ¥, we gen-
erate equilibrium realizations for A=0.8 in a given cell of
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size L =50. The number of particles used ranged be-
tween 1800 (7=0.565) and 2740 (1=0.861). In order to
calculate the percolation susceptibility, one must make
use of an algorithm which distinguishes between the vari-
ous clusters in the system. By definition, two particles
are assumed to be “directly” connected if their interparti-
cle distance is less than o (o0 =1). Pairs of particles may
be ““indirectly” connected, however, i.e., pairs can be con-
nected through chains of other particles. Existing
cluster-counting algorithms which can distinguish such
clusters include the “cluster-labeling” method!” and the
“connectivity-matrix” method.!° The former was origi-
nally developed for lattice percolation and subsequently
adapted for continuum percolation.* The latter was
developed for continuum percolation but can be applied
to lattice percolation as well. In this study, we employ a
modified cluster-labeling method. The susceptibility is
obtained according to the definition

X: 21 nssz , (9)

where the prime means that the biggest cluster was elim-
inated for 7>, and n, denotes the mean number of
clusters of size s per particle.

B. MCRG transformations

Consider a b Xb cell of N particles. In order to estab-
lish MCRG transformations, we generate systems of
b=5,6,7,10, 15, 20, 25, 30, and 40 for selected values of
A between 0 and 1; A=0, 0.3, 0.5, 0.7, 0.8, and 0.9. The
number of particles used varied widely from 17 (for
A=0.9 and b =5) to as many as 2350 (for A=0 and
b =40) depending on b and 7. The reduced number den-
sity 1 is given as n=Nm/4b% In each cell, we generate
500-20000 realizations and calculate what fraction of
realizations include spanning clusters across the cell, thus
obtaining R (7,b) given in Eq. (3).

IV. RESULTS AND DISCUSSION

In order to estimate the susceptibility exponent y, we
have carried out MC simulations for the PCS model for a
particular choice of impenetrability parameter A=0.8, in
a given system of size L =50. The percolation suscepti-
bility defined by Eq. (9) was calculated in each realization
and the final result was obtained by averaging over 200
realizations for each selected 7, given as n=Nm/4L>.

Simulation data are plotted in Fig. 2 on a log-log scale
as a function of |1—7/7m.|. The percolation threshold
used is 77, =0.7685, which was estimated in such a way
that susceptibilities below and above 7, produce parallel
lines in this plot. This value of 7, is considerably greater
than the accurate determination of it by the finite-size
scaling analysis, 17, =0.7533+0.0003 (see the results and
discussion below). The large value of 7, used in this plot
is consistent with the general trends that percolation
thresholds are significantly overestimated if obtained
from the critical behavior of mean cluster size (and corre-
spondingly susceptibility) for any finite system.!! This is
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FIG. 2. Double logarithmic plot of the percolation suscepti-
bility x against |1—n/%.] for A=0.8 and L =50. Parallel
straight lines were obtained at 7. =0.7685 and the critical ex-
ponent ¥ estimated from the slope is y =2.50+0.03.

expected since MC simulations underestimate the mean
cluster size for any finite-sized system, and thus, the
long-ranged behavior of the pair-connectedness function
begins to occur for 7 greater than true percolation point.

The critical exponent ¥ and amplitude ratio R for the
susceptibility above and below 7). are estimated from the
slope and the vertical displacement of two parallel lines
in Fig. 2. We find

¥ =2.50%0.03 (10
and
R=C,/C_=1050t32 . (11

In both cases, the quoted errors are those associated with
linear regression. This value of y is reasonably close to
the lattice value (y =2.43£0.03, cf. Ref. 18) and is also
comparable to the continuum values for fully penetrable
disks (y=2.431+0.04, cf. Ref. 4), random bond percola-
tion of points (y=2.50, cf. Ref. 19) and penetrable
widthless sticks (y =2.55%0.08, cf. Ref. 20). On the oth-
er hand, the amplitude ratio R, which is supposed to be
universal, is significantly different from the continuum
value of randomly centered disks (R =50, cf. Ref. 4).
This situation is quite similar to the cases of lattice-
continuum percolation and percolation-gelation analo-
gies.! In continuum percolation of randomly centered
disks, Gawlinski and Stanley* asserted on the basis of MC
data that all critical exponents are the same as those of
ordinary lattice percolation but the corresponding ampli-
tude ratio is about 50 instead of 200.2> Similar results
were also observed for bond percolation of two-
dimensional random lattice!® in that the susceptibility ex-

ponent was found to be close to the lattice value but the
amplitude ratio was found to be equal to about 14. In
three-dimensional Kkinetic gelation,21 the critical ex-
ponents are again estimated to be the same as for three-
dimensional percolation, while the amplitude ratio R is
apparently much smaller. More accurate estimates of
amplitude ratios may be obtained by use of finite-size
scaling; however, we did not concentrate on such calcula-
tions here.

In order to estimate the correlation-length exponent v
of continuum percolation for the PCS model, we have
performed MCRG transformations of a b X b cell onto a
b'Xb' cell for various values of A. The connectivity
function R (7,b) was obtained by MC simulation in a
b X b cell for each selected b and A. Plotted in Fig. 3 are
the results for A=0.8. Symbols are the simulation data
and curves are the spline fits. Rescaling is performed for
cells of b =7, 10, 15, 20, 25, 30, and 40 onto the cell of
b’=5, and the fixed points 7} ,- and the eigenvalues A, ;-
of the recursion relation (3) are calculated from R (7,b)
and R (7,b’'). The exponent v is determined from the In-
In plot of A, , versus b/b’, and results for A=0 and 0.8
are compared in Fig. 4. The slopes of the lines fitted
from the data are 0.7517+0.0126 and 0.7577+0.0122 for
A=0 and 0.8, respectively. The corresponding
correlation-length  exponents are 1.33+0.02 and
1.32+£0.02. The errors quoted were obtained from the
linear regression but there may be additional statistical
errors not accounted for. The result for A=0 is in excel-
lent agreement with the result of Vicsek and Kertesz> for
randomly centered disks obtained by the same method.
These values of v are very close to each other and are also
very close to the lattice value of £.2* Similar transforma-
tions were also carried out for A=0.3, 0.5, 0.7, and 0.9
and the results were found to lie between 1.30 and 1.35
depending on A.

Considering these data and the value of y for A=0.8

1.0 T T T
A=0.8
ob=5
e b="7
a b=10
A b=1§
o b=25§
— = b=40
)
= 05} 4
[°5
-
Ly
0.0 - 1 |
0.6 0.85 0.7 0.75 0.8 0.85

n

FIG. 3. Monte Carlo data for the connectivity function
R (n,b) for A=0.8 as a function of 7. The smooth curves
through the data represent the best fits. Notice that as the cell
size increases, R (7),b) approaches a step function.
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FIG. 4. Double natural logarithmic plot of A, , against b /b’
for A=0 and 0.8. Rescaling of cells of b =7, 10, 15, 20, 25, 30, 0.8
and 40 was performed onto the cell of b'=5. The correlation- ’
length exponents v determined from the slopes of the best fits (b)
are v=1.331+0.02 and 1.32+0.02 for A=0 and 0.8, respectively.
0.6 -
obtained by MC simulation, we conclude that continuum 'T{
percolation of the PCS model for 0 <A <1 belongs to the S 04} .
same universality class as that of randomly centered disks E
and, thus, as that of ordinary lattice percolation, as far as
the geometrical critical exponents are concerned.
The percolation thresholds were also estimated from ozl i
the finite-size scaling analyses described by Eq. (8) for
various values of A between zero and unity. Here we
have performed additional rescaling of cells of b =10, 15,
20, 25, 30, and 40 onto a cell of b'=6. As b /b’ becomes 0.0
infinite, the fixed points 7, for b6'=5 and b'=6 are ex- 10.70 0.72 0.74 0.76

pected to approach a single point, 7., following Eq. (8).
Figure 5(a) shows the plots of (b/b') /¥ versus 0} ;- for
A=0, i.e., randomly centered disks. The percolation
threshold obtained from the intercept on the abscissa in
this plot is 17, =1.1283+0.0011. The corresponding criti-
cal area fraction of inclusions is, if converted from the ex-
act relation ¢=1—exp(—7), ¢.=0.676410.0010. This
value of ¢. is very close to the previous estimates
$.=0.68,2* 0.67,”° and 0.676.* It is, however, slightly
smaller than that of recent work of this kind by Vicsek
and Kertesz, ¢, =0.68810.005;° the difference might be
due to different approximations*® used to calculate the
connectivity function. Plotted in Fig. 5(b) are corre-
sponding results for A=0.8. The intercept on the abscis-
sa, 1.e., critical reduced number density, is
7. =0.7533£0.0005. The corresponding area fraction ¢,
was estimated using our recent numerical study of ¢ as a
function of 7;'* ¢,=0.7142+0.0010. The percolation
thresholds 7, and ¢, for other values of A are also ob-
tained using the aforementioned technique and are listed
in Table I.

*
b,/

FIG. 5. Plots of the fixed points 7, ,- against (b/b')~ /" for
(a) A=0 and (b) A=0.8. Rescaling of cells of b =7, 10, 15, 20,
25, 30, and 40 was performed onto the cell of b'=35 (closed cir-
cles) and that of b’ =6 (open circles). The percolation points 7,
obtained from the intercepts on the abscissa are (a)
1.128340.0011 and (b) 0.7533+0.0005 for A=0 and 0.8, respec-
tively.

Our results for 7, are close to but appear to be slightly
smaller than recent MC estimates by Bug, Safran, and
Grest’ obtained without making any type of extrapola-
tions to the infinite-system limit. These discrepancies are
expected since the percolation points in their work were
approximated from the “fixed” points in a finite system
according to a certain rule and such points are in general
greater or smaller than true percolation points depending
on the spanning rules employed.
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TABLE 1. Percolation thresholds for the PCS model ob-
tained by the MCRG method for selected values of A. The
values of the critical area fraction ¢. were estimated from 7. us-
ing the recent numerical work of Lee and Torquato (Ref. 13).
Errors listed are associated with linear regression in the finite-
size scaling.

A 7. b,
0.0 1.1283+0.0011 0.6764
0.3 0.9833+0.0013 0.6780
0.5 0.8520+0.0006 0.6797
0.7 0.7691+0.0006 0.6951
0.8 0.7533+0.0005 0.7142
0.9 0.7745+0.0004 0.7606
1.0 0.82° 0.82

2 Hard-disk random close-packing area fraction is quoted from
Ref. 27.

In Fig. 6, the thresholds 7, and ¢, are plotted as a
function of A. The plot of 7, first decreases up to A=0.8
and then increases toward the random close-packing area
fraction of hard disks, ¢,=0.82,%" i.e., there is an op-
timum value of the excluded-volume parameter A at
which the number density required to percolate the sys-
tem reaches a minimum. On the other hand, the critical
area fraction ¢, is nearly constant up to A equal to about
0.5 and thereafter it increases monotonically. This indi-
cates that excluded-volume interactions among the parti-
cles do not change the critical area fraction significantly
as long as the size of hard core is not very large. As A is
made larger than 0.5, repulsive interactions are such that
the average coordination number decreases, making per-
colation more difficult, and thus the critical area fraction
increases.

V. SUMMARY AND CONCLUSIONS

We have studied continuum percolation of the two-
dimensional PCS model by MC simulations and MCRG
approaches. The susceptibility exponent ¥ and
correlation-length exponent v were found to be close in
value to those of randomly centered disks (A=0) for
some nonzero values of the impenetrability parameter A.
Thus we conclude that the two-dimensional PCS model
for 0 <A <1 belongs to the same universality class as that
of randomly centered disks and ordinary lattice percola-
tion, as far as geometrical critical exponents are con-
cerned.

In this work, we restricted ourselves to one-parameter
renormalizations. If one considers two-parameter renor-
malizations, such as that of  and A, one can naturally
expect from our results that there is a nontrivial fixed
point on the A=0 axis in the two-parameter space, with
renormalization flows directed toward this ‘‘critical”
point along the A axis. We, however, do not know if
there is any additional unstable fixed point on the A=1
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FIG. 6. Percolation thresholds as a function of the impene-
trability parameter A. Spline fits of the data for the critical re-
duced number density 7, and the critical area fraction ¢,.

axis, i.e., for the case of hard disks. This situation is
quite similar to other two-parameter renormalizations in
critical phenomena, such as the renormalizations of ran-
dom walks with an excluded-volume parameter?® and
that of ferromagnetic systems with impurities.?’ In the
former case, rescalings were performed for the fugacity of
each step of the random walks and the excluded-volume
parameter. In the latter case, on the other hand, field-
theoretical calculations resulted in a well-known heuristic
argument, called the Harris criterion. In many such
cases, it has been found that there are at least two non-
trivial fixed points in the two extreme limits of the second
parameter and that renormalization flows are from one to
the other, indicating that critical behavior for intermedi-
ate values of the second parameter is the same as that of
either one of these two ‘‘critical” points. If one accepts
such analogies in the present problem also, one can ex-
pect another unstable fixed point on the line A=1. The
critical behavior at such a point, if any, should be
different from that of randomly centered disks. Our
present work does not rule out such possibilities.

We also reported that amplitude ratio of the suscepti-
bility below and above the percolation threshold for
A=0.8 and L =50. This value of R was found to be
significantly greater than that of randomly centered disks
and that of the lattice value. Further investigations of
this problem for other values of A are in progress by one
of us.??

Accurate determinations of 77, for the PCS model were
also carried out for selected values of A using finite-size
scaling analyses. The critical area fractions ¢, are also
tabulated for the first time as a function of A.
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