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Expressions for the two microstructural parameters that appear in the variational third-order
bounds [G. W. Milton, Phys. Rev. Lett. 46, 542 (1981) 1 for the effective conductivity and
elastic moduli of composite media are derived analytically to first order in the sphere
concentration ¢ for random well-mixed dispersions of impenetrable spheres with an arbitrary
size distribution. These relations lead to rigorous bounds on the effective properties which are
exactly valid to order ¢? for such models. The apparent /inear behavior of the microstructural
parameters up to moderately high ¢ enables one to apply the bounds beyond second-order in ¢,
however. Employing these results, the effect of polydispersivity on the effective properties is
examined. It is worth noting that, under some conditions, polydispersivity can actually lead to
a slight decrease of the shear modulus, whereas, for highly conducting particies,
polydispersivity always increases the effective conductivity.

L INTRODUCTION

The problem of determining the effective transport coef-
ficients (conductivity, viscosity, and elastic moduli) of a dis-
ordered composite medivm from a knowledge of its micro-
structure has been studied actively for decades.”™ However,
in view of the complex geometry of even the simplest models,
and therefore of real systems, an exact calculation cannot be
carried out at present except for very idealized situations.

From the time of Maxwell® for the conductivity, Ein-
stein® for the viscosity, and Bruggeman’ and Dewey® for the
elastic moduli, the method most commonly employed for
mixtures containing particles has been the so-called “clus-
ter-expansion” technigue in which the effective coeflicient is
evaluated as a power series in the volume fraction of the
dispersed phases, each additional term accounting for the
average interaction effects of groups having increasing
numbers of particles. For instance, when the particles are
randomly distributed, impenetrable, equi-sized spheres of an
identical material, the four authors mentioned above derived
expressions for the corresponding coefficients that are exact
to first order in the particle concentration ¢, that is, when all
interactions between particles are neglected. Their extension
io second order requires the evaluation of the pair interac-
tion effects,” either by the exact solution of a general two-
body problem followed by an appropriate averaging process
or by use of an effective medium technique. Similarly, the
nth term of the cluster expansion accounts for the interac-
tions of n particles. Although the two-body problems for the
various transport processes have been solved exactly for
some of the simplest cases (spherical®'? or slender parti-
cles'!* for example), the three-body problems remain
mostly intractable, and further improvements of the esti-
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mates for the various effective coefficients via the exact clus-
ter-expansion technique are likely to be very limited and
costly. Another technique, in which the effective coefficient
to be determined is expanded in a power series of the differ-
ence between the coefficients of the two components,” has
even more serious limitations in that its use is restricted to
systems having constituents with similar properties.

The use of effective-medium methods is an appealing
alternative, owing to their relatively easy implementation,
and indeed, these were introduced quite a while back.” Here,
a many-body problem is replaced by that of a single particle
embedded in an effective medium whose macroscopic prop-
erties are those of the composite to be determined.*!* A self-
consistenicy equation is then used to close the problem. In the
most recent models of this kind, the effective continuum sur-
rounding the test particle may have position-dependent
characteristics according to the statistics of the microstruc-
ture,'%'-18 and the transport equation may even take a non-
local form.'* However, these methods are, as a rule, only
appreximate, and even though many of them give results to
all orders in the concentration, they often fail to give exactly
even the G (¢?) term in the corresponding cluster expansion.

The difficulty encountered in the direct evaluation of
the effective coefficients of composite materials has given
strong impetus for yet another alternative approach, specifi-
cally the establishment of rigorous bounds that result from
the application of various variational principles using only
limited microstructural information. These bounds are de-
rived formally, regardless of the shape of the inclusions, and
involve only a few average microstructural parameters. Of
course, the bounds become tighter as more morphological
information is included in the description of the structure
but such information is seldom available. Fortunately, even
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though the bounds generally diverge when the contrast be-
tween the materials increases, it turns out that, typically, one
of the bounds provides a fairly close approximation to the
actual effective coefficient.'®?°

The purpose of this paper is to analytically derive ex-
pressions for the microstructural parameters ¢ and 7 for po-
Iydispersed distributions of impenetrable spheres to O(c¢).
Substitution of these analytical expressions into variational
third-order bounds® on the effective conductivity and elastic
moduli leads then to rigorous bounds for such model micro-
structures which are exactly valid to order ¢°. Previous re-
sults, however, suggest that the respective slopes of these
parameters at ¢ = (0 determines their behavior for a wide
range of ¢. This therefore implies that the bounds computed
here may be applicable beyond second order in c.

This paper is organized as follows. The next section con-
sists of a brief review of the varicus sets of bounds available
for the effective conductivity and elastic moduli of compos-
ite materials, and the current knowledge regarding the two
microstructural paratneters § and # appearing in the tighter
ones. In Sec. II, an expression correct to O(c) is given for §
for random dispersions of impenetrable spheres with an arbi-
trary size distribution by comparing the series expansion, in
powers of the concentration ¢, of the bounds for the effective
conductivity with an existing expression for this bulk coeffi-
cient. We also evaluate £ directly thus providing an indepen-
dent check on our result. The same task is performed in Sec.
IV for the parameter % in the same geometry, using an esti-
mate for the effective shear modulus of a dispersion of
spheres, both materials being compressible, which is derived
here via an effective-medium technique. Again we compute
1 directly and find agreement with the results of the afore-
mentioned metiod. Finally, the influence of the polydisper-
sivity is considered in Sec. V, and the resulis are compared
with experimental data.

il VARIATIONAL BOUNDS FOR THE EFFECTIVE
PROPERTIES OF COMPOSITE MATERIALS

We give here a brief review of the variational perturba-
tion bounds for the effective coefficients of composite media,
starting with the illustrative case of the thermal conductiv-
ity. The bounds for the elastic moduli are then summarized
briefly.

A. Bounds on the effective conductivity

Consider a mixture of two homogenecus and isotropic
materials, with thermal or electrical conductivities A, and 4,
and with volume fractions ¢, and ¢,. In many instances we
shall actually deal with dilute dispersions of particles in a
connected matrix, in which case the subscript 1(2) will refer
to the connected (dispersed) phase, and ¢, and ¢, will be
replaced by (1 — ¢) and ¢, respectively. Also let

a; =A,/A,. (hH
All the sets of bounds to be discussed below result from the
application, with increasing degree of refinement, of identi-
cal extremurm principles, which in turn are a consequence of
the Laplacian form of the local transport equation. For more
details, see for example Torquatc’s review article.” Note that
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the terminology “perturbation bounds of order »” means
that the two bounds are identical to order {¢; — 1)” and
thus give a value for the effective conductivity 4 * exact to
this order, contrary to “cluster-bounds” which are identical
through given order in c.

The earliest result is due to Wiener,*!

(AhH7ar(dy, (2)
where the notation { ) denctes the volumeiric average

(X) = ¢ X| + X, = X, + (X, — X)) (3a)
For later use, let alsc

Xy =X, + (1 -6 (X, — X)), (3b)

XY =X, + 45X, — X)), (3¢}

(X>11:X1+77(X2‘X1)- (3d)

These first-order bounds are very general, since the vol-
ume fraction is the only required morphological informa-
tion. Thus {2) also applies to anisotropic media such as
layered composites (whose effective conductivities in the
principal directions actually correspond to the bounds), but
is of limited use if the mixture is known to possess a different
geometrical property. For example, the second-order
boundsfora, > 1 (andconversely fora,; < 1) of Hashinand
Shtrikman,*?

1+ 26,3, <A*<i, i+ 24,8,

(4)
L 1= 48 1 — ¢80
with
" :-'1_‘“:,1/__, (5)
YA 4240

are much tighter than (2), and as a matter of fact, are the
best possible set of bounds that can be stated for a mixture,
knowing only its composition and the fact that it is macros-
copically isotropic. Consequently, any higher-order results
have to appeal to a more detailed description of the micro-
structure. Beran™ established third-order bounds for the
bulk conductivity of an isotropic composite, subseguently
simplified independently by Milton' and by Torquato,”
which read
(<_i_> _20:8,1(1/4,) — (1/@12)4 B
3 - R
A 2{U/A %+ (1/4 ),
P16,(4r — /ix)z)
< ﬁ T e e |,
(- ©

The structural parameter £ (commonly calied £, in the liter-
ature), which lies between 0 and 1, is defined by

= = 1
e [ E [ geren
28, Jo r Jo 5 Jo

55(1)S,(9) >
2 9

where S,(r) and S; (r,s,f) are, respectively, the probability
of finding, in phase 2, the end points of a line segment of
length r and the vertices of a triangle with sides of length 7, 5,
and £; x is the cosine of the angle opposite the side of length ¢
and 80 7° = #* + 5° — 2rsx; and P, is the Legendre polyno-
mial of degree 2. The quantity S, is refered to as the n-point

><(S3<r,s,t) - 7
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probability function. Milton®™ has given the best lower
bound on A * for @; > 1, given the same amount of informa-
tion contained in (6). However, since the latter is identical
to Beran’s lower bound to O(c?), which is the order of the
forthcoming derivation, we shall employ the lower bound of
(6). In fact, Milton’s lower bound provides only a smail
improvement over Beran’s bound for higher densities.”

Various attempts have been made to derive higher-order
bounds on 4 * (see Ref. 2). However, the resulting formal
expressions contain microstructural parameters, compara-
ble to £, invelving high-order correlation functions (4 point
or higher) which are beyond practical reach.

The most appealing feature of (&) is the total absence of
a hypothesis {except for the isotropy requirement} concern-
ing the structure of the composite, in contrast to the cluster
bounds, which are derived using additional information re-
garding the shape of the particles,”® and have to be estab-
lished specifically for any given geomeiry. Unfortunately,
the direct evaluation of { is generally so complicated that the
list given below appears to contain, to the best of our knowl-
edge, all the three-dimensional problems that have been
solved to date.

In the first place, Miller?” evaluated £ exactly for a par-
ticular model, the so-called “symmetrical-cell materials,”
using the very specific properties of this structure to avoid a
direct calculation. All the subsequent determinations of { by
use of the n-point probability functions dealt with random
dispersons of spheres, and most of them with equi-sized par-
ticles. Specifically, Torquato and Stell,”® and Torquato and
Lado,” respectively, for fully penetrable and impenetrable
spheres, tabulated £ as a function of the concentration ¢, over
its whole range of admissible values, through use, in the sec-
ond case, of a superposition approximation to evaluate the
three-point probability function. In addition, Torquato™
gave an exact expression for the two first terms of the expan-
sion

é‘:iio eicis {8)

for random dispersions of spheres with arbitrary degree of
penetrability and showed that e, is zero for spheres regard-
less of whether the system is periodic or random or possesses
a size distribution. Felderhof,*' using the superposition ap-
proximation, evaluated the third and fourth terms for im-
penetrable spheres. Beasley and Torquate®® calculated (8)
exactly up to fourth-order terms. Berryman®? introduced an
experimental procedure, based on image processing tech-
nigues, to evaluate £ on samples of real materials, which was
validated when tested against the theoretical expression giv-
en by Torquato.?® Results for polydispersed suspensions are
even scarcer. Stell and Rikvold® studied dispersions of fully
penetrable spheres (i.e., spatially uncorrelated spheres)
with a particular type of size-distribution function, and
showed that the effective properties of the composite are
very weakly influenced by polydispersivity, However, their
conclusion cannot be extended to suspensions of impenetra-
ble particles without further analysis. Finally, the value of §
for some periodic arrays of spheres was deduced by McPhe-
dran and Milton™ from previous numerical results for 4 *,
that is without direct evaluation of the three-point probabili-
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ty function, while the coefficient ¢, was deduced by Tor-
quato® for suspensions of ellipsoidal particles by comparing
Beran’s bounds with the analytical expression of Poider and
Van Santen™ for A * to O(c).

It is important to note that in all the cases of random
systems of spheres described above, the linear term of (8),
e,¢, provides a very good approximation to§ for a widerange
of ¢. This observation shall be exploited in the ensuing sec-
tions.

B. Bounds on the effective elastic moduli

We consider here a mixture of two homogeneous mate-
rials having bulk and shear elastic moduli (k, &,) and
(gey, }42), respectively.

Their Poisson ratios are denoted by v; and v,, and we
define

a, =k/k,, a, =p,/p,. %

Bounds on the effective elastic moduli & * and g*, corre-
sponding to (4) (Hashin and Shtrikman,*® Walpoie®”) and
{6) are available in the literature. Third-order boundson k *
are due to Beran and Molyneux®® (BM). These were later

simplified by Milton,’ and entail the same parameters as in
Beran’s bounds for 4 *:

J1\ 46,0 (/ky) — (VEDIA_, ,
(\k> 4(1/k) + 3(1/k ), ) <k
3¢1¢2(k2—k1)2
k) — = )

<(< ) 3<k>+4{k);)

9539

(10)

Milton also recast McCoy
the symmetrical form:

(L) - etalldiea = <1/u1>2)‘1 <u*
Iz (1/p) + 62

A/ _ 6619, (it, ”#1)2)

xk(#) e e /)
where Z and G depend on { and on a second microstructural
parameter 77 defined as

third-order bounds on pu* in

(11)

5 150 (*dr (" ds ('

N i L axp
21§+7¢1¢2j; r,J; sJ.,l *Ealx)
><<S3(r,s,z‘) - Si(—";;‘?z(—”) , (12)

2

where P, is the Legendre polynomial of degree 4. Higher-
order bounds have also been introduced: Dederichs and
Zeller,* Kroner*! for k *; Milton and Phan-Tien*? (MPT)
for o *; but again, high-order morphological information, be-
yond practical reach, is required here. MPT furthermore
improved the third-order McCoy bounds, but these two sets
eventually prove to be identical to O[c’(e, — 1)’], and
hence the forthcoming derivation, exact to the same order,
will be carried out starting from (11).

The parameter 5 has been evaluated in the following
cases. It was numerically tabulated for random monodis-
perse suspensions of impenetrable spheres (Sen, Lado, and
Torguato®) in the superposition approximation and for ful-
ly penetrable {Torquato, Stell, and Beasley**) spheres. Tor-
quato, Lado, and Smith*® gave its O(c) expansion for equi-
sized spherical particles with an arbitrary degree of
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penetrability. As i the case of ¢, the order ¢ expansion of 3
provides a good approximation of it for a wide range of c.

OCur contribution here is as follows: Through a compari-
son of (6} and (11) with preexisting (for 4 *) or original
(for z*) results for the effective conductivity and shear
modulus of polydispersed suspensions of impenetrable
spheres, we shall derive analytical expressions for £ and 7 to
G (c) for random dispersions of such particles with arbitrary
size distribution (much in the same way as in Torquato’s®®
derivation of e, for ellipsoids). In other words, via an
Ofc*(a — 1)?] solution of the two easier probiems in this
geometry (heat conduction and elastic straining with incom-
pressible materials), we provide encugh information to state
bounds through O(c?) on A *, k *, and »*, for any polydis-
perse suspension of impenetrable spheres. In order to check
our results, we also evaluate £ and % directly. As discussed
below, since { and 7 are known to be approximately linear in
¢ for a relatively wide range of ¢ for ¢ 0, the bounds them-
selves can be applied to nondilute concenirations.

fil O{c) EXPANSION FOR §

We deal in this section with dilute, well-mixed disper-
sions of impenetrable spheres, having an arbitrary size distri-
bution that is characterized by the density function n{«), the
average number of particles with radii lying between g and
a + da per unit volume being n(a)da. The corresponding
partial volume fraction is then

cl(a) = 4mwa ‘nia), (13
and the global concentration is given by
c =—4;£fa3n(a)da. (14)

Aside from an O(c?) evaluation of 4 *, via the direct
exact solution of & general two-body conduction problem,
Thovert and Acrivos'® presented an approximate analytical
expression for A # in this geometry by use of an effective con-
tinuom method. In this approximation, the thermal dipole
strength induced within a reference particle in the presence
of a macroscopic temperature gradient is estimated via the
solution of a single-sphere problem, this particle being em-
bedded in an effective continuum with position-dependent
thermal conductivity which is related to the statistics of the
microstructure. Chang, Yendler, and Acrivos'” showed that
this method yields estimates of A * exact to G (a; — 1)°],
and as a matter of fact to O(c?f 3, }, even though this refine-
ment is not required here. Finally,

’zf =1 +3/3c+3,82fﬂ1 +ZBA;<-§—>}

Xe(aye(byda db + O (a; — 1)*], (15)

with
=0, = (a, — 1)/{a; +2). (16)

The function A, decreases with increasing size ratio
(see Fig. 1) and is given by

3 ( (1 4+2p)*—1 )
A, = ; —W(1+2p), N
ST\ Al 290 4
with the properties
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FIG. 1. Functions A, (17) and &, (59) vs the size ratio (decimal loga-
rithm).

A (0)=1,
A1y =5 — 3 In3=021068, (18}
A;(oo) = 0.

On the other hand, using (8), we can expand the third-
order bounds (6) in powers of ¢. It is known®® that whereas
e, depends on one- and two-body information, e, is uniquely
determined by the shape of the particles and vanishes for
spheres.

Therefore,

— 1 ®
1+ 38c+ 3,3202<1 +§Me,) <+ €’.f)(c:'3)<——-;L
0 A

1
<1+3Bc+38%* [ +3(a; — De ] +0(e), (19)
and thus
A¥/A, =14 38c+ 38?1 + 28e,]
+O[c*(a, — D], (20)
Comparison of (15) with (20) yields directly:

elﬂ—ff ( c(a)e(b)da db.

For a monodisperse composite, (21) gives ¢, = A s(1), in
accordance with Felderhof. !

Wenow evaluate § through first order in ¢ using another
method and thereby provide an independent check on (21).
Specifically, we shall compute the integral (7) directly using
the spherical-harmonics-expansion technique of Ref. 29 and
the appropriate polydisperse generalizations of the explicit
expressions for the §, developed by Torquatec and Stell*® for
monodispersed impenetrable inclusions. Through two-body
terms, the S, depend upon the radial distribution function of

(2n)
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the medium. Omitting these detaﬂs, we find through first
order in ¢ that

3 * a*rdr
. bYda db —_— 22
¢ ¢ ffc(a)c( yaa as s (P —b2)? (22)
Now, since
* dr
A§=3a3£+bm, (23)

we find that ¢; =0, and e, is exactly given by (21). The
monodisperse equivalent (22} was given by Torquato®° to
be

L
&=3a cia oy
One sees that there is a simple prescription for mapping the
monodisperse resuit (24) into the polydisperse result {22):
on the right-hand side of (24) replace a® with 4 % and 2a with
a -+ b; then weight the right-hand side with the factor
cf{a)e{b)/c* and integrate over g and b.

(24)

V. Ofc) EXPANSION FOR q

crostructural parameter %. To this end, by analogy to (8),
we have

7= ;)f;c‘;

where, again, f; vanishes for spherical particles, and f; de-
pends only on one- and two-point geometrical information.
The O(c) expansions of BM and McCoy’s bounds (10) and
(11) were given by Torguato, Lado, and Smith,** and may
be recast in the form:

(25)

k*
1+Lklc+ch

1

14+ = {a;, — 1)91) +0(c%),

( 2 1-—2v
3 1—v

k* )
S 14 Lo+ L
ky

EHz 1-21/,( X~
31— a,

i
)C’l} -+ O(Cs)s

A. Expansion of BM and McCoy's bounds (26)
We shall now apply the same line of reasoning as that of
the previous section to the determination of the second mi-  and
§
13— 14  — 1 4(1 ++ -1
B L+, c(1+(1—2v,) ( vid(a, — D) Ay vl -1
My 12(1 — v} (4 — 5vy)
9a, — DA )+O(c3),
20(1 — v ) (4 — S5v))
13 — 14 — 1 4(1 —1
LA “<1+<1—2v1)( volle, — D/, ] +40 + v (@ - D/ad
By 12¢(1 —v) {4 — 5vy)
Sl{a, — 1)/,
[ al ) * :E-fl )+ (C3). (27)
20(1 — v} (4 — 5vy)

Here, the subscripts U and L are associated with the upper
and lower bounds, and

(l—vl)(ak —1)
(1+v)a, +2(1 —2v)°

k1

(28)
(1—v1)(1+v1)(ak°—1)2
k2 =3 [(L+v)a, +2(1—2vp]’
L, =15 (I —v)(a, —1) ’
2(4 —5va, +7— 5v;
(29)
L g =S, — 1)

M 24— Sv)a, + T 5v P

When the materials are incompressible, the bounds on u*
reduce to

%
L Lo+ L, (1t + e, — D) + 0y <E-

My

—1
fl) +O(c%). (30

"

24
<1 +me—§—L#2c2(1 —e-%— =
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§
In view of (30), it is clear that £, can be evaluated, provided

that z* is known independently to O[c*(«a, — 1)’]. But
since the equivalent of (15) for u* was not available, it had
to be derived for the occasion. Although such a derivation is
somewhat more cumbersome when the transported quantity
is vectorial (displacement) than scalar (heat), the effective-
medium method mentioned above can also be applied suc-
cessfully to the present problem.

B. The shear modulus of a polydisperse,
incompressible dispersion of spheres to O[¢%(a, —1}%]

We consider the polydisperse composite medium de-
scribed at the beginning of Sec. IV under the action of a
macroscopic uniform strain field E. Both materials being
incompressible (v, = v, = 1) the local equations for the
problem are

Au =0,

o=2u, e, 3D

with u, o, and e being the local displacement, stress, and
strain tensors, respectively, and g, ( = 1,2) the local shear
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modulus of the appropriate material. The constituents and
geometry being isotropic, we expect the mixture to have a
similarly macroscopic Newtonian behavior:

(o) = 2u*(e) = 2u*E. (32)
The equations for the average quantities are given by Batche-
lor*’:

1

(&) =2pIE+?ES, (33)
where the summation is over all the particles in the macro-
scopic volume ¥, and S is the stresslet within a particle,

S:f (nsm'm%(nemr)l——pi(un.g-nu)) dA. (34)
A

The integral (34) is cver the surface 4 of the particle, nis the
outward unit normal vector, and I is the unit second-order
tensor. Owing to the linearity and symmetry of the problem,
the stresslet has be to proportional to the bulk strain

S=JSE, (35)

and upon averaging S over the particles of the same sizes, the
combination of (32} and (33) yields

y*=y1+éfn(a)§;da. (36)

To evaluate g ¥, it is sufficient to solve the elasticity problem
for a particular bulk strain which for convenience is chosen
as the axisymmetric pure straining displacement field (in
rectangular coordinates),

E;=6,6; + 8,6, —20,8,. (37)

We apply here the same effective medium method as in
Sec. II1, which is now described in more detail. The average
stresslet within a particle with radius a is evaluated by solv-
ing a single-body problem, this particle being embedded in
an incompressible continuum with position-dependent shear
modulus,

w(ry =p{l +ep(n]. (38
The crigin is taken at the center of the the particle, and

e=36,¢, B, = (o, —D)/(a, +1}. (39)

The function p(#) is the normalized conditional probability
that a point in the composite medium will lie within an inclu-
sion, provided that the center of the reference particle is at
the origin. This function vanishes for r = q, tends to unity as
» tends to infinity, and is actually unity to O(c*) when 7 is
larger than a plus the diameter of the largest sphere in the
dispersion. It can easily be shown, by following reasoning
similar to that given in Chang, Yendler, and Acrivos'’ for
the conductivity problem, that the value of 2 * resulting from
this approximate method is exact through O[c*(a, — 1 »’1

Chang and Acrivos®® addressed a problem closely relat-
ed to that presently being considered, specifically the deter-
mination of the effective viscosity of suspensions of equisized
hard spheres, and had to sclve a less generai but comparable
single-particle problem with the following minor differ-
ences; in the present case, the probability function is affected
by the size distribution, while the restriction to rigid parti-
cles in their case (5, = 1), simplified the boundary condi-
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tions on the surface of the test sphere as well as the local
equation within it (which becomes trivial}. Outside the test
particle, however, the equations are identical in both cases.

Taking advantage of the incompressibility of the materi-
als and the axial symumetry of the geometry and boundary
conditions, we express the displacement fieid, in spherical
coordinates, as

wo L 08 1 3 )
#sin @ 36 rsin@ dr
with
¢ = cos 9 sin® 6F(r), r<a,
¢ = cos B sin® G (r), rra. (41
Then the second equation in (31) reduces to:
For rza,
#II<GIIWiGI+£G)+#7<ZGI"miG”
¥ < 7
10 24
BDe 2 G)
7 7
12 24
G““‘"""""‘G”‘l""’r’G’):O 42
Y @
and
12 24
FIIII__MFII +'—==—=F,'._—_TO
7 P
for
r<a,

with the primes dencting derivatives with respect to r. Also
S, is given by

= 47 a
Sa — ( ““*‘"Gm ZG 2
s 3 (a) +a*G"(a)

+ 2aG'{a) — IOG(a))p:i. (43)
The boundary condition at infinity is
G-r as r— o, (44)

and the continuity of normal stress and displacement at the
interface yields, at r = a,

F=@G, F'=G/,
a,(@°F" — 2aF' + 6F) =a’G" — 2aG’ + 6G,

@ o . @ . ,
(45)

Problems (42)-(45) are solved by expanding all the
guantities in powers of the small parameter € according to
generic form

X =X, + €X; + O(%). (46)

The sclution for the leading terms was given by Batchelor
and Green®® and, translated into our notation, reads

Fo=(1-8,)7,

a-li-50(8)a ()]

Thus

(47)
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Sao :—-g“ﬂ'd3ﬁpﬂl, (48)
and we obtain, regardless of the size distribution,
pr=u 1+ 3B.c+ 0], (49)
in agreement with Dewey’s® result.
The first-order problem is
12 24
FII’I_‘ Ffi +—_~Fl :0’ r a’
VT A <
rere 12 # 24 F— h ( r)
Gl —?Gl+7 1= r4 ’ r>ay (50>
with the boundary conditions (43) on (F,, G}, and
G,—»0 as ro o, (1)
where
h(r) =¥ [ (ZGW __2’__@('; ___19;5;6 +—2g‘Go)
r r F

+p" (G:;——ZéGHiGO\}. (52)
7 7 )

The solution of the first-order problem is somewhat compli-

cated, but by taking advantage of the fact that the »— %, »*, and

r terms of the general sclution to (50} do not contribute to

the stresslet one can show that

B 2
=gt |, (2]
5
— Z{—1| § A(")dr.
3(r)} (rdr

When the test particie is surrounded only by a random
dispersion of spheres with radius b = yg, the function p is
given (Acrivos and Chang'®) to O[c*(b)] by

(53)

14

3
Y v6r+2v+ L
poty) = léf[ (a) @7+ 2+ 1) 2
—8(372+3y+1)+3(1+2?/)—§—],
for lg—r—gl + 2y, and
a

os(¥) =1 for %1 +27. (54)

Consequently, for a polydisperse composite, to O(c?),
1
p= > prc(b)db,
and if &, is related to p, by (52).

:ifhbc(b)db.
[

(35)

(56)

Equation (53) then becomes

— o et + 29)
T
15 F

- i(i) ] k, (r)drdb,
~

3 (57}

hence (36), (46), and (57) yield
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®
A L Ry 32

Uy
ff [1 + =8, A,,( )] claye(blda db, (58)
with
A E Fz & 4 Z
() = ( Liors + 291 — 1017 + 2)

t6r: \ 4re

—151n1"), =142y (59)

Note that A, is a decreasing function of the size ratio (Fig.
1), with

A,(0)=1,
A, (D) :-ﬁ—l—l———}il 3=0.482 74,
2916 16
A, (0) =0 (60)
C. The coefficient £y

Apptlication of the bounds (30) together with (29)
yields

p* 5 5 2( 3 )
=14 = + = 14+ =
s 5 Buc+ 5 B\ L+ B

+O[ca, — )], (61)

and since (58) is exact through the same order, we obtain
readily that

f f A, ——) c{a)e(b)da db.

In the case of a monodisperse composite, (62) agrees with
the numerical value for f; given by Torquato, Lado, and
Smith,*® and with the result for the ¢ coefficient in (61) of
Acrivos and Chang® when 8, = 1. Again, we have derived
(62) by directly evaluating (12). Specifically, as in the con-
ductivity calculation, we have taken the monodisperse solu-
tion given in Refs. 43 and 45 and mapped it into the polydis-
perse solution in a manner similar to that done at the end of
Sec. L

(62)

V. DISCUSSION
A. Effect of the polydispersivity

Since the upper and lower bounds given above for the
various transport coefficients are identical to order
(a — 1), we can recast our results into the unified expres-
sion,

*
S =14 o+ Dc+ (p+ 1B
i

XJJ{ {1 -%—pBA(Tl;—)} cla)e(b)da db

+0O[c*(a — 1)4], (63)

where the generic transport coefficient K denotes 4, &, or
(with v, = | in the latter case), and the notation is
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K a A 2

A a, A 2

k a, A, g 1=2vi
; 14,

poa, A, 3

In all cases
B={a—1)}/{(a+p).
In addition, if we let

1 A(y) +A(V/y) —2A(1)
H(y) = (_>= s (65
W) =19 ” X6 )

(64)

(63} rearranges into

%
%: P+ (2 + DB+ (p+ DB+ pBA(L) ]S

i
2 0] [ 42

Xe{aye(byda db + Ol (a — 1], (66)

where the last term represents the departure of K * from its
value for a moncdisperse composite with identical global
concentration. The function ¢ is depicted in Fig. 2.

The influence of the polydispersivity on 4 * has been
studied in Thovert and Acrivos'® and its effect on & * is simi-
iar since the expressions for both quantities involve the same
parameter A,. Moreover, since i, is always positive, any
kind of polydispersivity increases A * or k£ * {for @, or a,
greater than unity). This result holds to Ofc’(a — 1}%], but
the exact solution of the thermal problem (Thovert and
Acrivos'®) showed that (66) is exact to O(c?), provided that

¥

i 1 2 3 )
FIG. 2.Functions #, and ¥, defined by (65), plotted against the size ratio.
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A, is replaced by a function 6 of both @, and the size ratio,
which has, for any value of @, , the same gualitative depend-
ence on the size ratio as A,. Specifically, the corresponding
function ¢, is positive and grows monotenically from Otoa
finite Himit when the size ratic is increased from unity to
infinity.

Whereas the monodisperse configuration corresponds
(for a given global concentration} to aminimum of A *or k *
(for a; or o, greater than unity), it is easily seen that the
maximum value

K* 2 /4 2
Kt g+t ornp(i+Lp)

i
+ O (e — 1)%], {67}

is reached ultimately for 2 particular type of size-distribution
function consisting of a large number of widely separated
peaks.

On the other hand, the effective shear modulus of in-
compressible composities has very different properties. In
the first place, it should be noted that the range of variation
of ¢, is much smaller than that of ¥, and consequently the
relative dependence of the value of the ¢? coefficient in (66)
on the size distribution is very weak, specifically less than
2% or 3%, which is one order of magnitude smalier than for
A * or k *. However, the main feature here is the change of
signof ¢,,.

Thus, whereas (67), corresponding to the size distribu-
tion consisting of a large number of widely separated peaks,
is still an extremum (a maximum, for @, > 1) of u¥, the
shear modulus of a monodisperse composite is no longer the
minimum, which is probably close to the shear modulus of a
bidisperse mixture with a size ratio y=9.12. In other words,
when the contrast between the two phases is small, the poly-
dispersivity may either increase or decrease g*. Although
the situation is more complicated when the matrix is com-
pressible, the same ambiguity remains.

One might be surprised by this last result, since it is
widely believed (Rutgers®), that in the mathematicaily re-
lated case of 2 random dispersion of spherical droplets or
solid particles in & viscous liquid, any type of polydispersi-
vity decreases the effective viscosity with respect to a refer-
ence monodisperse suspension. However, it should be re-
membered that (63) is valid only in the limit of small
contrast and only for the elasticity problem because, for the
case of flow past spherical drops or solid spheres, the normal
stress balance in Eq. (45) is discarded and the extra kine-
matic constraint G = 0 at r = a is introduced.

Recall that, as discussed by Thovert and Acrivos,'®
Bruggeman’s®* expression for 4 ¥, resulting from an effective
medium derivation, yields exactly (67) when expanded to
Q(c*). The corresponding expression for u* was given erro-
neously by Bruggeman,’ but the same effective medium ar-
gument applied for any effective transport coefficient, start-
ing from the first-order expansion:

K*K =1+ (p+ 1)pc, (68)
yields the relation
_E* Vip+ 1)
1_c=£z__;§_(ﬁ) o (69)
Thovert of &/, 8085




provided that p does not depend on the characteristics of the
constituents. Therefore, (68) is not applicable to k *, nor to
#* if the matrix is compressible. However, if v, = |, the ex-
pansion of (68) to O(c?) is in full agreement with (67}, as
expected in view of the approximation underlying Brugge-
man’s argument.

As noted earlier, evaluation of the microstructural pa-
rameters £ and 17 to O(c) lead torigorous boundson 4 *, k *,
and g* which are exact to O(c?). Such results are not useful
for the more practically interesting regimes of moderate ic
high particle concentrations. The results obtained in the
present paper, however, can be used to study the macroscop-
ic behavior of the composite in this more interesting regime if
one exploits the observation that § and » for the previously
studied random systems are exactly linear or nearly linear in
¢ for a wide range of ¢>0 (Torquatc and Lado, Tor-
quato,” Sen, Lado, and Torquatc®®). For example, for sym-
metric-celt materials®’ in which the cells are spheres, both £
and 5 are exactly linear in ¢ for all ¢. This model corresponds
to a certain polydisperse distribution of spheres. For equi-
sized fully penetrable spheres (i.e., spatially uncorrelated
spheres}, { and 9 are very nearly linear for almost the entire
range of ¢ {Torguato and Lado,”® Torquato,®, Sen, Lado,
and Torquato®). In the case of equisized impenetrable
spheres, { and  are approximately linear in ¢ for <4, where
¢ = 0.4 corresponds to about 65% of the random-close-
packing volume fraction. (Torquato and Lado,” Sen, Lado,
and Torquato*’). Hence, there is strong evidence to suggest
that £ and 7 for random systems will be nearly linear in ¢ up
to moderately high c.

Let us first consider the conductivity problem. The
cases of a monodisperse suspension, a bidispersed suspen-
sion with widely separated particle sizes, and a polydis-
persed suspension containing » different and widely separat-
ed particle sizes (n— 0 ), (8) and (21), respectively, yield

£ =0.210 68¢ + O(c?), (70)
£ =0.355 34c + O(P), (71)
E=lc+O(A). (72)

Note that the last result could have been obtained from (67)
and therefore 1 corresponds to the maximum slope of § at
¢ = 0, i.e., this is the geometry that gives the largest effect of
polydispersivity. Observe further that the bidispersed result
{71) lies exactly midway between the monodispersed result
(70} and the result {72). A larger value of £ for conducting
particles {¢; > 1) implies a larger lower bound on the effec-
tive conductivity 4 *. As is well known, the lower bound, in
such instances, provides a good estimate of the effective
property (even though the reciprocal upper bound may di-
verge from the lower bound) as long as the system is below
the percolation threshold of the conducting or more rigid
phase.'®?° {Note that completely analogous statements ap-
ply for the lower bound on the elastic moduli when the parti-
cles are more rigid than the matrix.**) Finally, it is impor-
tant to note that in contrast to the geometry of
polydispersed, fully penetrable spheres,* the linear term of §
(the quantity e, ) for impenetrable-sphere systems is rela-
tively sensitive to polydispersity in size.
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FIG. 3. Beran’s third-order lower bound on the effective conductivity
whena, = o« for: 2 monodispersion [using (70}, short dashes]; a polydis-
persion [using (72), long dashes}. The second-order lower bound (solid
line) of Hashin and Shtrikman.

In Fig. 3 we plot, for theextreme caseof @; = oo, which
will show the largest effect of polydispersivity, Beran’s lower
bounds as obtained from (6} after substituting the monodis-
persed result (70) and the polydispersed result (72) for
0<c<0.4 together with the lower bound of Hashin and
Shtrikman. Since the system is well below its percolation
threshold, the lower bounds are expected to provide useful
estimates of A * for the respective models. Clearly then, for
the moderate range of ¢ considered in this figure, the effect of
polydispersivity on A * relative to the monodisperse case is
not large, with the largest effect occurring at the highest
volume fraction shown. On the other hand, for volume frac-
tions larger than 0.4 and approaching the close-packing frac-
tion, the effect of polydispersivity on 4 * is expected to be
significantly larger.

Mow let us consider the elasticity problem. For a mono-
dispersion, bidispersion with widely separated particle sizes,
and polydispersion: containing # different and widely sepa-
rated particle sizes n— <, (20} and (62), respectively, give

7 = 0.482 T4c + O(c*), (73)
7= 0.491 37¢ + O(c?), (74)
7=14c¢+ O(c?). (75)

Again we find that the bidispersed result (74) lies exactly
midway between the monodispersed result {(73) and result
(75). However, we observe that the effect of polydispersivity
on 7 is considerably smaller than the corresponding effect on
{. Consequently, when the matrix is incompressible
(v; = 1), the effect of polydispersivity on the effective shear
modulus g* will be very small, since the contribution of 7 to
pg in (11) vanishes.

In Fig. 4, we plot the bounds on £ * and * as obtained
from (10} and (11) after substituting the monodisperse re-
sults (70) and (73) and the polydisperse results {72) and
{75), for 0<c<0.4, and for

o, =991, a, =286, v, =0239%, (76}
together with the bounds of Hashin and Shtrikman. As in
the conduction case, and even for these compressible materi-
als, the effect of the polydispersivity on the lower bounds for
k * and p* is not large for this range of volume fractions.

The available experimental data for the elastic effective
moduli of polydisperse composite media are rather rare and
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FIG. 4. (a) Beran’s third-order bounds ¢n the effective bulk modulus for
case (76), for a monodispersion |using (70), short dashes]; a polydisper-
sion [using {72}, long dashes]. The bounds of Hashin and Shtrikman (solid
tine). Smith’s (see Ref. 53) data (dots). (b) McCoy’s third-order bounds
on the effective shear modulus for case (76), and for: a monodispersion
[using (70} and (73), short dashes]; a polydispersion [using (72) and
{75}, long dashes]. The bounds of Hashin and Shtrikman (solid line).
Smith’s (see Ref. 533) data (dots).

incomplete, because as a rule only one coefficient {generally
Young’s modulus) was reported. A complete set of data is
due to Smith® for composites consisting of glass spheres
embedded in a glass epoxy matrix, verifying (76). Unfortu-
nately, the size distribution of the inclusions was not fully
characterized, and only the range ( 1-30 um) was reported.
Smith’s data are plotted in Fig. 4.

Although the data for #* fall between the bounds (11},
within the accuracy of measurements, the values for & * are
scattered, and outside the bounds {10) as well as the bounds
of Hashin and Shtrikman. The strong aging effect reported
by Smith might be partly responsible for these discrepancies
{data depicted in Fig. 4 corresponé te Table 2 in Smith,>
i.e., to samples that were 200 days old). In addition, a con-
siderable uncertainty on the reported values of & * may result
from the fact that the measurements were performed on
samples undergoing a monoaxial extension in which
Young’s modulus (related to the axial stress) and Poisson’s
ratio {ratic of transverse and longitudinal strain) were mea-
sured.
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Thus, when calculating the bulk and shear moduli,

k=E/3(1 -2}, pu=E/2(1+wv), (77
the bulk modulus &, unlike g, is a very sensitive function of v
(especially when the medium is weakly compressible}. Re-
call, for illustration, that the same flaw appeared in Rich-
ard’s® classical data for a quasi-monodisperse composite.
As outlined by Laws,” Richard’s data for & * (but not for
#*), obtained by the same method as Smith’s, viclate the
lower bound of Hashin and Shtrikman. Thus it seems that
only triaxial trials are able to provide accurate information
on the bulk modulus.
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