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A new expression is derived for the expected surface area of a dispersion of spheres distributed 
with arbitrary degree of penetrability. A convenient representation of the characteristic function 
of the interfacial surface is also introduced. 

INTRODUCTION 

In a wide variety of applications it is important to deter
mine the expected specific surface area s of a two-phase ran
dom material. For example, the fluid conductivity or perme
ability of a porous medium 1 and the activity of a catalyse are 
known to be dependent upon s. 

Here we consider a two-phase random medium com
posed of a dispersion of N mutually penetrable spheres em
bedded in a matrix. The degree of impenetrability is charac
terized by some parameter A whose value varies between 
zero (in the case where the sphere centers are randomly cen
tered and thus completely uncorrelated, i.e., fully penetrable 
spheres) and unity (in the instance of totally impenetrable 
spheres). One of our main results is an expression for the 
expected specific surface area s (the surface area of the inter
face between particle and matrix phase per unit volume) in 
terms of probability density functions associated with the 
configuration of n spheres in three-dimensional space. For 
the special cases of A = 0 and A = 1, we recover simple 
closed-form expressions for s that are already known. For 
intermediate A we find an expression for s in terms of a set of 
n-particle distribution functions that characterize the micro
structure of the dispersion. Sphere distributions involving 
such intermediate A have already been introduced into the 
study of composites by the authors. One of us (G.S.) has 
proposed the permeable-sphere model,3 in which spherical 
inclusions of radius R are assumed to be noninteracting 
when nonintersecting (i.e., when r> 2R, where r is the dis
tance between sphere centers), with the probability of inter
secting given by a radial distribution function gIrl that is 
I-A, O,;;;A.;;;I, independent ofr, when r<2R. S. T. has re
cently introduced a somewhat different model, the penetra
ble-core model,4 in which spheres of radius R have a mutual
ly impenetrable core region of radius AR, O';;;A';;; 1. Although 
the first example assumes a condition of thermal equilibri
um, along with the constraints explicitly stated above, 
neither the second example nor the general results of this 
note assume that the sphere distribution is constrained to be 
one of thermal equilibrium.5 (For simplicity, however, we 
shall assume spatial homogeneity of the inclusions here.) 

Debye, Anderson, and Brumberger2 have already 
shown that the specific surface area s, for a system of arbi-

trarily shaped particles, is proportional to the slope of the 
two-point matrix probability function S2(r) at r = O. [S2(r) is 
the probability of finding two points, separated by a distance 
r, in the matrix phase.2

] Our expression for s is of a different 
type that becomes especially useful in the permeable-sphere 
model. 

ANALYSIS AND RESULTS 

The intersection or overlap volume of n mutually pene
trable spheres of radius R centered at positions r 2, r 3, ... , 

r n + 1 , On is given by the volume integral 

On (r2,r3 , .. ·,rn + I;R) = J drl~iI~m(rlj;R)' 
where m(r;R ) is the step function such that 

{
I if r<R, 

m(r;R) = 0 
if r>R, 

(1) 

(2) 

and rij = Irj - rj I. The surface area of overlaps An (r2,r3, .. ·, 

rn;R) is given by 

A = aOn • 

n aR (3) 

Since the spheres are statistically distributed throughout the 
matrix we shall use ensemble averaging techniques to obtain 
the expected specific surface area of the two-phase system. 
The subsequent geometric argument used to obtain s is the 
same one employed by Torquato and StelJ1 to obtain SI (the 
probability of finding one point in the matrix phase). It is a 
paraphrase of the latter author's extensions of a method due 
to Boltzmann for finding such quantities, which are funda
mental in considering the microstructure of a hard-sphere 
fluid. 

Let Pn(rl,r2, ... ,rn)drldr2,,·drn be the probability that 
particle 1 is in drJ , particle 2 is in dr2, ... , and particle n is in 
dr n' Then the expected or mean surface area of the particle
matrix interface, neglecting boundary effects, is at most the 
surface area of N spheres, which is 

NfA1(r2;R )P1(r2)dr2 =N41TR 2. (4) 

However, there is expected overlapping of spheres that we 
must consider when the spheres are not totally impenetrable. 
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We must subtract the expected surface area of the overlap 
volume between all indistinguishable pairs of spheres: 

N(N-I)ff 2 A2(r2,r3;R )P2(rZ,c3)dc2dc3 • (S) 

We have now overestimated this surface area because we 
have overcounted the overlap whenever three or more 
spheres happen to simultaneously overlap. This line of rea
soning may be continued until we obtain an expression for s: 

s = Sl - S2 + S3 - S4 + ... , 
where 

(6) 

(7) 

Herep"~ = [N!/(N - n)!]Pn,p = N IV. Equation (6) is our 
general expression for s. For the permeable-sphere model, as 
well as for fully penetrable and hard spheres, agn / aR = 0 for 
all r i in Eq. (7) such that An =1=0. For such a model 

SIt = L~ff"·fo,,{r2'C3, ... ,r"+I) 
Vn! aR 

(8a) 

= ~ {pit ff"'f[)fm(rlj;R )] 
aR nl J=2 

xg"{c2,r3, .. ·c,, + 1 )dc2df3 .. ·dc" + I} (8b) 

(8c) 

The quantity S \,,) is precisely the nth term of the series 
expression for SI(R), the volume fraction of matrix tfJl [S\O) 
== 1] .7 Therefore, we have 

s = - aSt(R) (9a) 
aR 

= ~ [S\I)_S\2)+S\3)_ ... ] 
aR 

(9b) 

have shown that for a system of mutually penetrable spheres 
N 

J{x;R) = 1- II [1- m{lx - fil)] (I2a) 
i=1 

N N 

= L m{lx - fj 1)- Lm{lx - fj I)m{lx - fj I) 
i= 1 i<j 

N 

+ L m{lx - fj I)m{lx - Cj I)m{lx - Ck I) 
i<j<k 

(I2b) 

Substituting Eq. (12b) into Eq. (10) gives 
N 

M(x;R) = LD(R -Ix - Cil) 
i= 1 

N 

- LD(R - Ix - c;j)m(lx - Cj I) 
i<} 

N 

- LD(R - Ix - fj IJm(lx - ri I) -... . (13) 
i<j 

Equation ( 13) demonstrates that the generalized function M 
may be looked upon as a characteristic function of the inter
face, i.e., the function M (x;R ) is nonzero when x describes a 
position on the interfacial surface. Such a function, to our 
knowledge, has never been used before (or even defined) in 
the study of two-phase media. 

Equation (13) gives the explicit dependence of M on the 
positions of the N spheres. The usefulness of Eq. (13) lies in 
the way it permits one to explicitly evaluate ensemble aver
ages of M and any other many-body random function in 
terms of nobody distribution functions gn' There are two im
portant instances of such averages that readily come to 
mind, the first of which is the ensemble average of 
M (xl)M (x2)···M (xn ). In particular, the expected specific 
surface area s is simply (M (x). It is of interest to calculate s 
for both the impenetrable-sphere case (Ii = 1) and the fully 
penetrable-sphere case (Ii = 0). For A = 1, 

SI{R ) = 1 _ P 41T R 3 
3 

= ~tfJ2(R) (9c) and thus from Eq. (9d) we obtain the obvious result that the 
specific surface areas s equals p41T R 2. For Ii = 0, 

a 
= - aR tfJl(R) , (9d) SI{R) = exp ( _p ~1T R 3] , 

where tfJ2 = 1 - tfJl is the volume fraction of particles. Equa
tion (9) states that the expected specific surface area is equal 
to the derivative of tfJ2 (or - tfJl) with respect to the radius of 
the spheres. As explained below Eq. (7), Eq. (9) is a less gen
eral result than Eq. (6). 

It is of interest to consider the derivative of the charac
teristic function of the particle phase J with respect to the 
radius of the spheres, i.e., 

a 
M(x;R) = -J(x;R), 

aR 
where 

{
I if XED 

J(x;R) = 0 
otherwise. 

(10) 

(11) 

D is the space occupied by particles. Torquato and Ste1l6 

and hence 

s =p41TR 2 exp( _p 4; R 3] 

(14) 

Equation (14) has a simple interpretation. It states that sis 
equal to the specific surface area of fully penetrable spheres 
multiplied by the probability of finding one point in the ma
trix (the volume fraction of matrix). This specific result for 
fully penetrable spheres has already been expressed by 
Weissberg and Prager. s Note that since SI < 1, S{A
= I»s{1i = 0) which is expected. As aforementioned, De

bye et al. 1 have obtained the result 

s = - 4 dS2{r) I . 
dr r=O 

(IS) 

J. Chern. Phys., Vol. 80, No.2, 15 January 1984 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.112.124.31 On: Tue, 30 Sep 2014 14:13:31



880 S. Torquato and G. Stell: Two-phase random media. IV 

Using the results of Torquato and Stell6 for S2 one can show 
that Eq. (15) yields the expression for s in the cases A. = 0 and 
A. = 1 that we have obtained above. We can also combine 
Eqs. (9) and (15) to obtain for permeable spheres the result 

~2Ir=o = ! a~:) (16) 

The significance of higher-order correlations involving M 
remains to be investigated. 

A second important example that can be systematically 
treated once Eq. (13) is introduced is the ensemble average 
that arises when one is interested in obtaining the integral of 
some local physical quantity (which is a random function of 
position) over the surface area of the interface. This is seen in 
the study of flow through porous media where one is con
fronted with the task of integrating the local stress in the 
fluid over the interfacial surface.9 

The functionsSJ (R ) ands cannot be exactly evaluated in 
our permeable-sphere or penetrable-core models mentioned 
in the Introduction. For the permeable-sphere model, how
ever, both functions can be easily expressed in the context of 
a generalized superposition approximation 10 

gn(rJ, ... ,rn) = II g2(rjlrj ). (17) 
I<i<j<n 

For all values of the variables of integration in Eq. (S) for 
which no m is zero (i.e., every m is unity) we have g2 = 1 - A. 
in the permeable-sphere model. Thus, substituting Eq. (17) 
into Eq. (S) yields immediately 

SJ(R ) = 1 + f ( - 41rpR 3/3t(1 - A. tIn - 1)/2 (ISa) 
n=1 

s = 41TpR 2 f ( - 41TpR 3/3)n - 1(1 _ l1.jn(n - 1)/2. (ISb) 
n=l 

Equation (17) becomes exact for all n as either p or A. goes to 

zero, and Eq. (IS~is exact for allp when A. is 0 or 1. As long as 
A. is either small or close to 1, we would expect Eq. (18) to be 
quantitatively useful over a wide range of p. For A.;:::: 1/2, Eq. 
(IS) can only be used with confidence for pR 3 small com
pared to 1 (say pR 3 < 1/3) until a more detailed assessment of 
its accuracy is made. 
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