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Photographic granularity: mathematical formulation and
effect of impenetrability of grains
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We develop a new and general formula for the granularity of a wide class of anisotropic media (for apertures of
arbitrary shape) that exactly accounts for the microstructure. Using this formula, we compute for the first time to
our knowledge, the granularity of a two-dimensional distribution of impenetrable, opaque circular disks for a wide
range of densities and aperture sizes. These results are compared with the much-investigated, random-dot model.
The effect of impenetrability of the grains for a fixed aperture area is to reduce the granularity relative to that of the
random-dot model, especially at high densities.

1. INTRODUCTION

Considerable effort has been put forth in describing and
measuring the granularity of photographic materials.'-"
Granularity is a measure of the transmittance fluctuations
in a scanning aperture. For photographic emulsions, many
theoretical studies of granularity have been based on the so-
called random-dot model, which neglects spatial correla-
tions between the grains in the emulsion layer; i.e., the grains
are able to overlap.1A- 6 ,8l0 But in fact a real emulsion is
composed of impenetrable grains. [The effect of the impen-
etrability of the grains in the emulsion will become stronger
when the layer becomes thinner (relative to the dimension of
the grain) and the density becomes higher.] Bayer6 has
shown that the random-dot model predicts a rapid increase
in the granularity at high densities and noted that measure-
ments on developed images have failed to show any effect as
great as that in the random-dot model. Consequently, the
random-dot model may be misleading for theoretical inves-
tigations of granularity. Attempts have been made to take
into account the effect of impenetrability of the grains,7 '9"'1
but these treatments either have been approximate (in that
they do not directly account for the microstructure) 7 9 or
have considered special, limiting cases."1

The problem of predicting fluctuations in transmittance is
also of importance in electrophotography,' 2 in which black
pigmented particles distributed on paper absorb light to
form the image that one sees. The effect of impenetrability
of the particles on the granularity is expected to be particu-
larly important in this application.

In this paper we present a general analysis to predict the
granularity of anisotropic heterogeneous media, using con-
cepts and results of random-media theory. Random-media
theory is a broad field that attempts to relate bulk properties
of disordered heterogeneous media to the details of the mi-
crostructure. 3 We shall begin by considering two-dimen-
sional models consisting of distributions of opaque particles
of arbitrary shape and size and of variable penetrability. A
two-dimensional distribution of particles is a reasonable
first approximation of thin films. Using our general formu-

la, we compute, for the first time known to us, the granulari-
ty of a distribution of impenetrable disks for arbitrary densi-
ties and aperture sizes.

This paper should be regarded as the first step in a sys-
tematic study of the granularity of real materials. Effects of
film thickness (i.e., three-dimensional effects), size distribu-
tion of the grains, etc. must also be taken into account in the
same rigorous manner. We intend to study such effects in
future papers.

In Section 2, we present some basic definitions and equa-
tions. In Section 3, we derive a general expression for the
granularity of arbitrary, statistically anisotropic media and
arbitrary-shaped apertures in terms of the microstructure,
using a new approach. We then review recent advances
made in the quantitative characterization of the microstruc-
ture of random media and give an explicit relation for the
granularity of a broad class of anisotropic media. In Section
4, we compute the granularity for distributions of impene-
trable disks and compare our results with the well-known,
random-dot model. Finally, we make concluding remarks
in Section 5.

2. DEFINITIONS AND BASIC RELATIONS

We shall generally model the photographic emulsion or elec-
trophotograph as a two-dimensional array of N arbitrary-
shaped opaque bodies distributed throughout an otherwise
transparent surface. In the language of random-media the-
ory,' 3 the random medium is a domain of space A(w) E 2

(where the realization is taken from some probability
space 2) of area A, which is composed of two regions: the
transparent region Al of area fraction 0l and the opaque
grain region .A2 of area fraction 02-

A. Point Transmittance
The characteristic function I(x) of the transparent region is
defined by

I(X) = 1'
x E EAi

X E A2
(2.1)
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Now the point transmittance at position x, t(x) is simply
equal to the characteristic function, i.e.,

t(x) = I(x). (2.2)

It is useful to introduce the n-point probability function
Sn (Ref. 13), which is defined according to the relation

Sn(X,, * * * Xn) = KI I(Xi)j, (2.3)

B. Aperture Transmittance and Granularity
Consider 1-(x) the transmittance through an arbitrary-
shaped aperture of area Aa centered at x with some fixed
orientation:

r(x) 1 |t(z)(z-x)dz

= | I(z)6(z-x)dz, (2.11)

in which angle brackets denote an ensemble average. Sn
gives the probability of simultaneously finding n points at
positions xl, . . ., xn all in the transparent region .Al. If the
medium is statistically homogeneous, then the n-point prob-
ability function is translationally invariant and hence just
depends on the relative displacements, i.e., Sn = Sn(x12, * * *,
xin), where x1i = xi - xl. Invoking an ergodic hypothesis for
statistically homogeneous media, one can equate the area (or
volume) average J of some function f,

i= lim A fdA, (2.4)

to the ensemble average (f). If the medium is also statisti-
cally isotropic, then Sn depends on the relative distances x12,
... , Xn, where xh = Ixi - x. For simplicity, we shall

henceforth consider statistically anisotropic but homoge-
neous media.

Let us consider the first two n-point probability functions
in more detail. S,, the probability of finding a point at xi in
region Al, is just the expected value of I or t, i.e.,

where

6(x)= (O otherwise
(2.12)

is the aperture-indicator function and Da is the aperture
region. Note that aperture transmittance T(x) is, in general,
a random variable. Observe furthermore that as Aa ,

(2.13)

Also, in the limit of a very small aperture (Aa - 0), r(x)
becomes the point transmittance, i.e.,

T(x) - t(x) = I(x). (2.14)

The expected value of r is easily shown to be given by

(T-) = (t) = 4,. (2.15)

The granularity G a measure of the fluctuations in the
aperture transmittance, is defined here to be

G = 0 = a,
('r) 4,

(2.16)

SI(x,) = (I(x)) = (t(x,)).

For statistically homogeneous media, S, is independent of
xi, and we simply have

S= = (t). (2.6)

The two-point probability function

S2(x12) = (I(xd)I(x2)) (2.7)

is just the autocorrelation function of I. It contains consid-
erably more information than S,, such as the average inter-
particle spacing and average coordination number.'4' 9

When x2 - x,, then it is clear that

S2(x12) ' 01. (2.8)

When the relative distance between the points becomes very
large, then

0.2 = (
2
) - ()2 = (2) - 012 (2.17)

is the variance associated with the aperture transmittance.
From relations (2.13) and (2.14), we determine that the gran-
ularity for infinitesimally small and infinitely large aper-
tures is given, respectively, by

G at 44'1Ž
01 (P

(2.18)

and

G = 0. (2.19)

The dependence of the granularity on the aperture area A,
is, in general, nontrivial because it depends on the details of
the microstructure of the random medium. A new deriva-
tion of this relationship is described in Section 3.

S2 (X12) ' 01 ' (2.9)

assuming no long-range correlations.
The fluctuations associated with the transmittance t can

be measured by the variance at2 given by

t2- (t)(t) 2
at = (t2 ) - t2

= - - 012 = 02 (2.10)

where ait is just the standard deviation.

3. MATHEMATICAL FORMULATION OF THE
GRANULARITY FOR GENERAL CASES

We shall derive a general expression for the granularity for
arbitrary, statistically anisotropic microstructures and arbi-
trary-shaped apertures in terms of the two-point probability
function S2(r). Although the general formula that we derive
is obtained by using a new approach (namely, random-media
theory), an equivalent expression in a different form was
given by O'Neill.5 Using the explicit series representations

(2.5) where
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of S2 obtained by Torquato and Stell" for a broad class of
anisotropic media, we then explicitly give the granularity
relation for such heterogeneous materials.

A. General Granularity Expression
Consider the variance expression (2.17) for an arbitrary-
shaped aperture with some fixed orientation. Substitution
of Eqs. (2.11) and (2.15) into Eq. (2.17) yields

O,2 = 2 ( IzO(z - x)dz | I(y)O(y - x)dY)- 42* (3.1)

Since the ensemble average operator and the area integral
operators commute, Eq. (2.1) can be rewritten as

a, 2 = 2 dYdzO(y - x)O(z - X)S2 (z - y) - 012, (3.2)

where S2(z - y) = (I(y)I(z)) is the two-point probability
function as defined by Eq. (2.7). Note that since we are
treating statistically homogeneous media, S2(z - y) = S2(Y -
z). Finally, we observe that because Eq. (3.1) is indepen-
dent of position, we can integrate over x instead of y and find
the equivalent expression

IT 2= 1 S2(r)Ai t(r)dr -012

a

where

Aint(r) = JO(y -x)O(z-x)dx

(3.3)

K = +1 {j [S2(r) - ,02 ]dr} 1/2 (3.9)

is a constant (having dimensions of length) that depends on
Xl or, equivalently, on the particle area fraction 02. Equa-
tion (3.9) is reminiscent of the compressibility equation of
liquid-state theory,20 which relates the D-dimensional vol-
ume integral over the total correlation function to density
fluctuations in the system. Ki gives a measure of the
nonuniformity of coverage of the transparent (void) region.
Equation (3.8) is in agreement with experimental observa-
tions5 and, in the limit Aa - x, agrees with Eq. (2.19).

For a circular aperture of diameter ma (see Fig. 1), the
intersection area is given by

Aint(r) = 2 [cos I_- (i- 1 )2 H(c -ar)

(3.10)

where H(x) is the Heaviside step function. For a rectangu-
lar aperture having sides of length a and b (as indicated in
Fig. 1), the intersection area is given by

Aint(X, y) = (a - x)(b - y)H(a - x)H(b - y). (3.11)

Here x and y are the distances between the centroids of two
(34) rectangular aperture regions in the x and x2 directions,

(3.4) respectively.

is the intersection area of two aperture regions in which the
centroids are separated by the displacement r = z - y.
Dividing Eq. (3.3) by Aa2 and integrating over r gives

1A2 Aint(r)dr = 1. (3.5)

Substitution of Eqs. (3.3) and (3.5) into Eq. (2.16) yields

1 a {J [S2(r) -, 12]Ant(r)dr}. (3.6)

This is the desired granularity expression, which is valid for
statistically anisotropic media and given in terms of the two-
point probability function S2(r) (the evaluation of which we
discuss below) and the intersection area Aant(r).

Note that Eq. (3.6) involves S2 (r) minus its long-range
value of 4,2 [compare expression (2.9)]. Hence [52(r) - 412]

generally oscillates about zero for small r and decays to zero
for large r. We refer to the range over which [ 2(r) - 412] is
nonnegligibly small as the correlation length, . If the char-
acteristic size of the aperture is much larger than 1, then
Ant(r) is approximately equal to Ait(O) = Aa. Thus Eq.
(3.6), in such instances, yields

G = I[S 2 (r) - 01']dr

B. Equations for the n-Point Probability Functions
In order to apply Eq. (3.6), one must know the two-point
probability function S2 for the particular microstructure of
interest. Until recently, a means of representing and com-
puting the n-point probability function for realistic model
microstructures had been lacking. Torquato and Stell'3

have provided such a formalism for distributions of D-di-
mensional spheres and, as a result, S2 has been computed for
such models.14' 8 The formal generalization of these results

X2

x1

(3.7)

X2

x1

Since the integral above is a constant, then for such large
apertures

(3.8) (A)

Fig. 1. (A) Circular aperture of diameter ca; (B) Rectangular
aperture with sides of length a and b.where

G = KAa /2,

* ad

(B)
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to anisotropic media with identical particles is actually triv-
ial.19 We shall briefly review some of these results.

Consider a distribution of N identical particles whose po-
sitions are completely specified by center-of-mass coordi-
nates rN = r,, . . ., rN1. In two dimensions this specification
includes circular disks, oriented rectangles, oriented ellipses,
etc. The particles are distributed over an area A according
to the N-particle probability density PN(rN), which charac-
terizes the probability of finding the particles labeled 1, . . ..
N with a particular configuration rN, respectively. PN nor-
malizes to unity, i.e.,

J P(rj)dr = 1, (3.12)

where drN _ dr, ... drN. The function PN depends on the
interparticle interactions (impenetrability effects, Coulom-
bic interactions, etc.) and, in principle, is given for the en-
semble under. consideration. The ensemble average of any
many-body function f(rN) is given by

(f(rN)) = f(rN)PN(rN)drN. (3.13)

The reduced n-particle probability density n(n < N) is
defined by

Pn(rn) = (N- n)! J PN(rN)drnn+l... drN. (3.14)

The quantity Pn(rn) characterizes the probability of simulta-
neously finding the center of a particle in the area element
dr, about rl, the center of another particle in area element
dr2 about r2 , etc. If the medium is statistically homoge-
neous, the Pn(rn) depend on the relative displacements r2 -
ri, ... , rn - r. In such instances, it is implied that the
thermodynamic limit has been taken; i.e., N - -, A -

such that the number density p = N/A = pl(rl) is some finite
constant, and it is convenient to introduce the n-body distri-
bution function gn defined by

n)Pn(r n)
g ( n) pn (3.15)

When the relative distances between each of the n particles
is large, the n-body distribution function has the simple
property

gn(r n) 1,

assuming no long-range correlations.
It has been shown' 3"19 that for such a distribution of

cles the Sn are related to the gn according to the foll
relation:

Sn(xn) = 1 + E k! J ... J gk(rk)

k n 

x II 1- I| [1 - M(Xi - r drj,
j=l i=l

where

M( ) 1, X E DP
t, otherwise

(3.16)

parti-
lowing

is the particle indicator function and Dp denotes a particle
region. Given the gn, one can in principle compute the Sn for
any n.

Fully Penetrable Particles
The fully penetrable particle model employed in random-
media theory is precisely the same as the so-called random-
dot model used in photographic science; i.e., this model as-
sumes that the particle centers are Poisson distributed, and
hence spatial correlations between particles are completely
neglected. For fully penetrable particles, the gn are trivial:

gn(rn) = 1 for all rn. (3.19)

In such instances, Eq. (3.17) is formally easy to evaluate.
For two-dimensional systems, it is found that

Sn(Xn) = exp[-pAn(xn)], (3.20)

where An(xn) represents the union area of n particle areas
centered at xn.

In the special case of equisized circular disks of diameter
c, for example,

m(x) = {0 otherwise

and the first two union areas are, respectively,

l i

and

(3.21)

(3.22)

A 2 (r)--_- ICos --- il--i MHci-r).
2 2 [ ci ci ci 2 ) (

(3.23)

Lower-order Sn were evaluated for fully penetrable
spheres,' 4 circular disks,'7"18 and oriented circular cylinders
of finite aspect ratio.' 9

Totally Impenetrable Particles
For totally impenetrable particles, Torquato and Stell3
showed that the infinite series [Eq. (3.17)] exactly truncates
after the nth term in the sum. For instance, for n = 1, 2, we
have

S = 1 - pAj, (3.24)

S2 (x12 ) = 1 - pA 2 (Xl2 )

+ P2 J J g2(rl2 )m(xl - rl)m(x2 - r2 )drdr2 . (3.25)

Note that there are two-body terms in Eq. (3.17) (second
term in the sum) that are identically zero for n = 2. Com-
parison of Eq. (3.20) for n = 1 with Eq. (3.24) reveals that the
void-volume fraction 01 = S, for the fully penetrable particle
model is always greater than il for the totally impenetrable

(3.17) particle model at the same number density. This is true
(3.17) since there is no interparticle overlap permitted in the for-

mer model. Lower-order Sn have been computed for impen-
etrable equisized spheres' 5 and disks.' 6

In ;ig. 2, we plot the two-point probability function S2(r)
(3.18) for an isotropic distribution of fully penetrable disks (ran-

dom-dot model)' 7 and totally impenetrable disks' 6 as a func-

B. Lu and S. Torquato
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Fig. 2. Two-point probability function S2(r) as a function of the
distance r for distributions of disks of diameter a at a disk area
fraction 02 = 0.7.

tion of the distance r for a particle area fraction 02 = 0.7.
The function S2(r) for the random-dot model decays expo-
nentially until it achieves its long-range value at r = ci, but
the corresponding function for impenetrable disks oscillates
around its long-range value for small r, indicating short-
range order due to exclusion-volume effects that are totally
absent in the random-dot model.

The two-point probability function computed by Tor-
quato and Lado16 for impenetrable disks (without attractive
interactions) assumed an equilibrium ensemble. For an
equilibrium distribution, the two-body distribution func-
tioning (called the radial-distribution function for isotropic
media) can be obtained by solving the Ornstein-Zernike
integral equation.2 0 Torquato and Lado used the solution of
this integral equation in the Percus-Yevick approximation
as obtained by Lado.20 In general, the impenetrability con-
dition alone does not uniquely determine the distribution
(ensemble). One may assume an equilibrium distribution
or some nonequilibrium distribution, such as random-se-
quential addition of hard particles, for which Smith and
Torquato2 l computed S2.

Penetrable-Concentric-Shell Model
Interpenetrable-particle models lie between the two ex-
tremes of fully penetrable and totally impenetrable parti-
cles. One such model is the penetrable-concentric-shell
model,22 which considers particles that possess a smaller,
internal hard core encompassed by a perfectly penetrable
concentric shell. The size of the internal hard core is pro-
portional to an impenetrability index X, 0 S X < 1, with X = 0
and X = 1 corresponding to fully penetrable and totally
impenetrable particles, respectively. This model enables
one to change continuously the degree of overlap and hence
the degree of connectedness of the particle phase. This
more general model may be of value in photographic science
applications. The two-point probability function for disks
in the penetrable-concentric-shell model (cf. Fig. 3) has been
computed by Smith and Torquato.21 Equation (3.17) for Sn
is general enough to treat the penetrable-concentric-shell
model.

C. Explicit Relation for G for a Class of Anisotropic
Media
Using the results of the previous two subsections, we can
state an explicit relation for the granularity of the class of
anisotropic media described in Subsection 3.B. Specifical-
ly, we substitute Eq. (3.17) for n = 2 into the general granu-
larity expression from Eq. (3.6) and find that

G =[ X 2 i
2

Aa
2 J A2 (in)A

t
(r)dr

11/2
+ 1 I E S()(r)Aint(r)dr , (3.26)

40i 2Aa2- S 2 a

where

S2(k) = kk J ... gk(rk)

k n 

x I - 171 [1- m(xi - ri)]} drj (3.27)
j=1 i=l

and A2(r) is the union area of two particle regions in which
the centroids are separated by the displacement r. Note
that anisotropy appears in terms involving two- and higher-
body effects, i.e., in the sum of Eq. (3.26). It is useful to
recall the class of anisotropic media for which Eq. (3.26) is
applicable. Equation (3.26) is valid for distributions of
identical particles whose positions are completely specified
by center-of-mass coordinates rl, r2 , ... , which in two di-
mensions include circular disks, oriented rectangles, and
oriented ellipses. The interparticle interactions that one
can consider are perfectly general; hence, the particles may

Fig. 3. Computer-generated realization of a distribution of disks of
diameter ci (hatched and black regions) in the penetrable-concen-
tric-shell model.22 The disks have a hard core of diameter Xa
indicated by the smaller, black circular region. Here X = 0.5 and 02

0.3.
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partially overlap one another, interact through repulsive
(e.g., impenetrable cores and coulombic forces) as well as
attractive forces, etc.

4. CALCULATION OF GRANULARITY FOR
DISTRIBUTIONS OF DISKS AND A CIRCULAR
APERTURE

We shall apply previous results to obtain specific expres-
sions for the granularity for distributions of equisized circu-
lar disks of diameter ci in both the fully penetrable disk
(random-dot) model and the totally impenetrable disk mod-
el with a circular aperture of diameter ca. We then compute
these expressions for arbitrary aperture sizes. The calcula-
tions for impenetrable disks are believed to be new.

A. Expressions for Circular Disk and a Circular
Aperture

Fully Penetrable Disks
For fully penetrable disks, it is useful to substitute Eqs.
(3.10), (3.20), (3.22), and (3.23) into the general expression,
Eq. (3.6), to yield

G = 4 { rexp[pAi t(r)]-

Waa~~~~a °a 0
X [cos-L--(i ~ 2 dn 1/ (4.1)

where

Aint(r) = 2 [cos' - _ r (1 - 2)] H(a - r), (4.2)

which agrees with the expression given by Bayer6 (apart
from a trivial constant due to a difference in our definitions
of G).

Totally Impenetrable Disks
For an anisotropic distribution of totally impenetrable
disks, Eq. (3.26) gives

G = -1 + 02P ca2 JrA2t(r)

[ - r r r2 \12
X Cos- - dr[ ci 0 ca ca 2 /

+ 8 f S2(2)(r)
0221r aa 2rhea

X os-l r__ 1- r2 dr $ (4.3)
L ca cia c ia /J

where

S2(2)(r) = p2J J g2(r34)m(r13)m(r14)dr3dr4 . (4.4)

and m, as noted earlier, is simply given by Eq. (3.21). We
have changed the variables r12, xl - ri, and x2 - r2 to r 34, r13 ,

and r 4, respectively, with r -= r 2. Note that anisotropy
enters through the last integral of Eq. (4.3), i.e., through the
term involving the two-body distribution function g2(r34).

In the case of an isotropic distribution of impenetrable
disks, Eq. (4.3) yields

G = 2 {-1 + 2 2P) rA2"t (r)

'01 'Y2 70'a r \1/2

1-- Idr
x[os'!L ai( ,Ja ]

+ 16 rS (2)(r)
4'2 ra JO

X~cos~ r r r 2 1/ . (4.5)

B. Calculations for Impenetrable and Fully Penetrable
Disks
We compute the granularity Eqs. (4.1) and (4.5), using a
trapezoidal rule. In evaluating Eq. (4.5), we make use of the
results of Torquato and Lado'6 for the two-point probability
function of an equilibrium distribution of impenetrable
disks without attractive interactions. Torquato and Lado
provided results up to a disk volume fraction ¢k2 = 0.7, which
corresponds to approximately 87% of the random-close-

C
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Fig. 4. Granularity G versus the disk-area fraction 2 for three
different values of the scaled aperture area Aa/Aj in both the fully
penetrable disk (random-dot) model (lighter curves) and the totally
impenetrable disk model (heavier curves). A is the aperture area
(caa2/4), and A, is the disk area (7ra 2/4).
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Table 1. Granularity, G, for Totally Impenetrable
Disks as a Function of the Scaled Aperture Area A./Al

for Several Values of the Disk Area Fraction 02a

02

A,

0.0 0.333 0.500 0.655 0.816 1.000 1.225 1.528
0.5 0.251 0.362 0.452 0.527 0.589 0.632 0.643
1.0 0.215 0.303 0.367 0.412 0.437 0.435 0.400
1.5 0.188 0.261 0.308 0.335 0.340 0.323 0.284
2.0 0.169 0.231 0.268 0.285 0.285 0.270 0.249
2.5 0.155 0.201 0.239 0.253 0.253 0.244 0.234
3.0 0.144 0.192 0.219 0.231 0.232 0.228 0.219
3.5 0.134 0.179 0.203 0.214 0.217 0.213 0.201
4.0 0.127 0.168 0.191 0.201 0.204 0.199 0.182
4.5 0.121 0.159 0.181 0.190 0.192 0.185 0.166
5.0 0.115 0.152 0.172 0.181 0.182 0.173 0.154
5.5 0.110 0.145 0.164 0.172 0.172 0.164 0.147
6.0 0.106 0.139 0.157 0.165 0.164 0.156 0.142
6.5 0.102 0.134 0.151 0.158 0.156 0.150 0.139
7.0 0.099 0.130 0.146 0.153 0.152 0.145 0.135
8.0 0.093 0.122 0.137 0.143 0.142 0.136 0.127
9.0 0.088 0.115 0.129 0.134 0.134 0.129 0.117

10.0 0.084 0.110 0.123 0.128 0.127 0.122 0.109
15.0 0.070 0.090 0.101 0.104 0.103 0.099 0.090
20.0 0.061 0.078 0.087 0.090 0.089 0.085 0.077
25.0 0.055 0.070 0.078 0.081 0.080 0.076 0.068

a Aa is the aperture area (7ra2/4) and Al is the disk area (7ra2/4).

0.8 u enetrable Disks - - - - _
(Random-Dot Model) 02=C

Totally Impenetrable Disks 02_t

- 0.6

0 5 10 15 20

Area Ratio, A /A1

Fig. 5. Granularity G multiplied by the square root of the scaled
aperture area, (As/A,)1/2, versus the scaled aperture area, Aa/A, for
both fully penetrable disks (lighter curves) and totally impenetrable
disks (heavier curves) at 02 = 0.2 and 0.6. A is the aperture area
(7rcai 2 /4), and Al is the disk area (7rci2/4).

packing fraction.23 We include the results for fully penetra-
ble disks (random-dot model), first given by Bayer,6 in order
to compare them with the impenetrable-disk model.

In Fig. 4, we plot the granularity G as a function of the
disk-area fraction 012 for various values of the scaled aperture
area Aa/Aj for both fully penetrable and totally impenetra-
ble disks. For the same value of the scaled aperture area Aa/
Al, the granularity is always smaller for impenetrable disks
than for fully penetrable disks at the same value of 012. This
effect becomes more pronounced at higher values of the disk
area fraction. Physically, this is true because impenetrable
disks (unlike fully penetrable disks) cannot overlap one an-
other and, in this sense, constitute a less random distribu-
tion than the random-dot model. For fixed Aa/A1 , the gran-
ularity for fully penetrable disks is a monotonically increas-
ing function of '02. This dependence is in contrast to that of
the impenetrable-disk model in which G increases with in-
creasing 1)2 for small to moderate 012, reaches some maxi-
mum, and then decreases with increasing 02. Finally, we
note that G decreases with increasing area ratio Aa/Aj for
either model.

In Table 1, we tabulate G for totally impenetrable disks as
a function of Aa/A for 0.1 < 02 S 0.7 in increments of 0.1.
The same trends described above are seen in the table.

In Fig. 5, the function GVA;a/7 versus A/A, is plotted for
both models for 412 = 0.2 and '02 = 0.6. Recall that for large
apertures G Aa"-/2 [cf. Eq. (3.8)], and thus GVa/7A ap-
proaches a constant [equal to K of Eq. (3.9)] for large aper-
tures. At 1)2 = 0.6, GVAaA for fully penetrable disks is
more than twice as great as the corresponding quantity for
impenetrable disks for Aa/Al > 2. An interesting effect is
seen to occur in Fig. 5 for impenetrable disks at 02 = 0.6.
GJA0 7A, oscillates about its long-range value of K (2 = 0.6)
for area ratios in the range 0 • Aa/A, < 15. (Note that K
for impenetrable disks was computed by Hong.") The
oscillations for impenetrable disks actually become more
pronounced as '12 is made to increase, and the amplitude of
the oscillations is greatest for sufficiently small area ratios,
i.e., AaA < 5. Oscillations begin to become noticeable at
02 = 0.4 (not shown). The oscillations occur because of the
short-range ordering that is due to exclusion-volume ef-
fects, which become significant at higher densities.

5. CONCLUSIONS

In this paper, we have presented a systematic theoretical
procedure to express explicitly the granularity for a wide
class of two-dimensional, anisotropic, particulate media in
terms of the microstructure for apertures of arbitrary shape
and size. Specifically, the granularity is given in terms of
the n-body distribution function gn, which characterizes the
positions of n particles in the system. Given the interparti-
cle interactions, one can, in principle, obtain the gn and thus
compute the granularity as a function of the aperture size.
For concreteness, we have computed, for the first time to our
knowledge, the granularity for a distribution of impenetra-
ble, opaque disks (and a circular aperture) as a function of
the aperture size for a wide range of densities. We have
found that the effect of impenetrability is to reduce the
granularity relative to the random-dot model, especially at
high densities. All the results of the present study have
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been generalized for arbitrary dimensions elsewhere. 24 In a
future study, it would be of value to consider the effect of
film thickness on the granularity.
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