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Rigorous bounds on the fluid permeability (or resistance) of porous media composed of

spherical grains with a continuous size distribution are computed. For any finite degree of
polydispersivity, scaling the resistance bound by the square of the specific surface

(relative to the monodisperse case) yields effectively universal behavior at a fixed sphere

volume fraction. A new proposition regarding an exact relationship between the permeability

and another effective parameter, the trapping constant associated with diffusion-controlled reactions
among traps, is employed to assess the accuracy of the rigorous bound.

I. INTRODUCTION

The flow of a fluid through a porous medium plays an
important role in a variety of technological problems such
as oil and gas recovery, hydrology, gel chromatography,
filtration, and biological membranes, to mention but a few
examples. A key macroscopic property of interest for de-
scribing slow viscous flow through porous media is the
fluid permeability k defined through Darcy’s law. The fluid
permeability depends upon the microstructure of the me-
dium through an infinite set of statistical correlation func-
tions. Unfortunately, for random porous media, this set of
functions is never completely known and hence an exact
theoretical determination of k for general microstructures
is out of the question.

Theoretical approaches to predicting k of random po-
rous media fall primarily into one of two categories: deter-
mination of effective-medium approximations'™ or of rig-
orous bounds.>'? In this paper, we focus on the latter.
Since the papers of Prager’ and Doi,® which describe the
derivation of variational upper bounds on k, a considerable
amount of effort has been put forth to find improved upper
bounds™*!""12 and to derive lower bounds.!®!? These
bounds involve the microstructure of the medium via its
first few statistical correlation functions. Theoretical calcu-
lations of these bounds have thus far been limited to equi-
sized (monodispersed) distributions of spheres.s’s‘12 The
evaluation of rigorous bounds on k for porous media com-
posed of spherical grains with a polydispersivity in grain
size has heretofore not been carried out.

One aim of this paper is to compute and study the
so-called “two-point interfacial-surface” upper bound on k,
obtained by Doi® and, more recently, by Rubinstein and
Torquato,'? for such a model. Interestingly, scaling the
inverse permeability or resistance k ~ ! by the square of the
specific surface (relative to a monodispersed system) gives,
for the size distribution employed here, effectively univer-
sal behavior at a fixed volume fraction. We also employ a
new proposition concerning the relationship between the
trapping constant kj associated with diffusion-controlled

reactions among static traps and the fluid permeability k
for the same microgeometry to assess the accuracy of the
interfacial-surface bound.

Il. INTERFACIAL-SURFACE UPPER BOUND AND
MODEL-SYSTEM CORRELATION FUNCTIONS

A. Interfacial-surface upper bound

Doi,6 and later Rubinstein and Torquato,]2 using a
different variational approach, found that the fluid perme-
ability k for statistically isotropic media of general topology
with porosity ¢, and specific surface s was bounded from
above by

2 (= 2¢ ¢
2 —_—— — — —
k¢ )—3J-0 r(Fw(r) . F.(r) +Ssts(r))dr.
(1)

The functions F,,(r), F,,(r), and F(r) are the void-void,
surface-void, and surface-surface two-point correlation
functions, respectively. Following Rubinstein and
Torquato,'? who derived four different classes of bounds,
we refer to (1) as a two-point “interfacial-surface” upper
bound. This bound has been evaluated only for two mod-
els: monodispersed overlapping spheres® and monodis-
persed impenetrable spheres.®

B. Model system and correlation functions

We shall consider the evaluation of (1) for flow
around a bed of overlapping spherical grains with a con-
tinuous distribution in radius R characterized by the prob-
ability density function f(R). This is a good model of
consolidated porous media such as a sandstone, which is
characterized not only by an interconnected fluid phase but
an interconnected solid phase.

Now, in order to compute (1) we need to know the
one- and two-point correlation functions for our model.

2 Also at the Department of Chemical Engineering, North Carolina State University, Raleigh, North Carolina 27605-7910.
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Chiew and Glandt!® have obtained expressions for the po-
rosity ¢, and specific surface s (interface area per unit
volume) for polydispersed overlapping spheres at total
number density p:

¢ =exp[ — p(47/3)(R%)], (2)
s=p41r(R2)exp[ —p(41r/3)(R3)], (3)
where
(R™ = f ® R'f(R)dR 4)
0

are the moments of the probability density f(R).
Stell and Rikvold'* obtained F,,(r) for this model as

F,,(r)=exp[ — p{V>(r;R))], (5)
where

4 . 3r r
Vz(’;R)=-§-R (1+E—@)H(2R—r) (6)
and H(x) is the Heaviside step function.

Expressions for the surface correlation functions Fj,
and F,, have not been obtained for this model, however.
Miller and Torquato'> have obtained these quantities for
bidispersed overlapping spheres by extending the formal-
ism of Torquato8 to compute F,, and F; (and their gen-
eralizations) for monodispersed spheres. Following this
procedure, we find, for our model, that

F,(r)=4mp(R* — (R*/2 — rR/4)H(2R — r))F,,(r) (7)
and
R* R

Fy(n)= ll61r2p2<R2 - (—-

2
2 T)H(ZR - r))

2mp(R2H(2R —
LI RHOR =) o 0. (8)

r

Note that one can obtain corresponding results for
overlapping spheres with p different sizes from the results
given above by letting

4

fR)= D %"a(R—Ri), 9)

i=1

where p; and R; are the number density and radius of type-i
particles, respectively, and 8(R) is the delta function. For
example, the combination of (9), with p=2 and the
surface-correlation-function relations (7) and (8) yields
the bidispersed results of Miller and Torquato.’

For polydispersed beds of spherical grains, there are a
variety of choices available to scale k by so as to render it
dimensionless. One natural scaling factor is the appropri-
ately generalized Stokes dilute-limit permeability:

k=2(R%/(9(R)¢,),

where ¢, = 1 — ¢, is just the sphere volume fraction. How-
ever, in the dilute limit, the bound (1) gives

ko=2(R*¥/(9(R*?¢,),

(10)

(11)
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which implies that the bound is exact for dilute concentra-
tions of spheres (be they overlapping or nonoverlapping)
in the monodisperse limit. For spheres with any polydis-
persivity in size, on the other hand, relation (11) implies
that the bound must always be greater than %, in the dilute
limit. Miller and Torquato'® found a similar discrepancy
between the interfacial-surface lower bound on the trapping
rate kp (associated with diffusion-controlled reactions
among static traps) and the Smoluchowski dilute-limit re-
sult for k.

What is the physical significance of k,? For fixed
¢y, ky is inversely proportional to S?, where S is the ratio
of the specific surface of a polydispersed system of over-
lapping spheres to that of a monodispersed system with
radius (R). From (2), (3), and (11), it is easily seen that

ko=2(R)?/(94,5%), (12)
where
S=({R%)/{(R*))(R). (13)

In order to compute (1), one must choose a probabil-
ity density function f(R). The one we employ in this study
is the Schulz distribution,'¢

S(N=[1/(m— l)!](m/(R))mRm—l
Xexp( — mR/(R)), (14)

which normalizes to unity. The moments of the Schulz
distribution are
(RYy=[(n+m—1)}/(m— 1) m"1(R)". (15)

Therefore, by increasing m, the variance decreases, i.e., the
distribution becomes sharper. In the monodisperse limit,
m- o, f(R)=56(R — (R)). From (13) and (15), one
finds that the specific surface ratio S for the Schulz distri-
bution is given by

S=m/(m + 2). (16)

m>1,

Equation (16) leads to the interesting conclusion that a
polydispersed system with finite m has a smaller specific
surface than a monodispersed one at fixed ¢,.

lil. CALCULATION OF THE INTERFACIAL-SURFACE
BOUND

Here we shall compute the bound (1) for overlapping
spheres with the radii R distributed according to the con-
tinuous Schulz distribution (14). Such calculations require
the use of the correlation functions (2), (3), (5), (7), and
(8) for this model.

In Fig. 1, we plot the scaled inverse permeability (or
scaled fluid resistance) k,/k for several values of the pa-
rameter m as a function of the particle volume fraction as
obtained from (1). Thus the curves presented represent
rigorous lower bounds on k/k. Recall that k; is the exact
dilute-limit permeability as given by (10). Note that as the
degree of polydispersivity increases (i.e., as m decreases)
for fixed ¢,, the scaled resistance decreases. This is ex-
pected behavior since, as observed earlier, the specific sur-
face s decreases as m decreases for fixed ¢,. Again, for
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FIG. 1. Two-point interfacial-surface lower bound on the scaled fluid
resistance k/k for polydispersed, overlapping spherical grains versus the
particle volume fraction ¢, as computed from Eq. (1). The radii are
distributed according to the Schulz distribution (14). The cases m = 1, 4,
and « are shown.

reasons mentioned above, only the monodisperse limit
(m=o0) of the bound gives the exact result as ¢,—0.

Interestingly, if one multiplies 1/k by kjp, the exact
dilute-limit behavior of the upper bound on the permeabil-
ity given by (11) or (12), all the curves, to an excellent
approximation, collapse onto the monodispersed curve, re-
gardless of the degree of polydispersivity. This is shown in
Fig. 2 for m=1, 4, and o, where it is seen that, on the
scale of the figure, the results for any value of m are vir-
tually indistinguishable from one another. Thus, given the
monodisperse bound on the scaled resistance for overlap-
ping spheres, one can obtain any corresponding polydis-
perse bound on the inverse permeability, at the same value
of ¢,, by dividing the former bound by the simple expres-
sion for ky, Eq. (12). Recall that k; is inversely propor-
tional to the square of the relative surface area S. There is
no reason to believe that this simple scaling will apply to
bounds for other model microstructures or to the exact
expression for the inverse permeability.

iV. RELATION BETWEEN PERMEABILITY AND
TRAPPING CONSTANT

The problems of diffusion-controlied reactions among
perfectly absorbing traps of slow viscous flow in porous
media share a common feature: screening effects, at small
solid volume fractions, lead to expansions for the steady-
state trapping constant X and fluid permeability k, which
are nonanalytic in ¢,."'!" (In the trapping problem, reac-
tant is being produced at a constant rate and diffuses in the
trap-free region but is instantly absorbed in contact with
any trap. The steady-state trapping constant kj, is propor-
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FIG. 2. Two-point interfacial-surface lower bound on the scaled fluid
resistance ko/k [where k is given by Eq. (12)] for polydispersed, over-
lapping spherical grains versus the particle volume fraction ¢, as com-
puted from Eq. (1). The radii are distributed according to the Schulz
distribution (14). The cases m = 1, 4, and « are shown. All curves, to an
excellent approximation, collapse onto the monodisperse curve
(m= ).

tional to the ratio of the rate of production to the mean
concentration field.%'®'%) No one, however, has ever con-
sidered investigating the possibility of a deeper relationship
between these two different physical parameters.

Here we use a new proposition regarding the relation-
ship between the fluid resistance k! and trapping con-
stant kj, for an isotropic porous medium of general topol-
ogy having a fluid region of porosity ¢,, namely,”

k= '>kp. (17)

That is, the fluid resistance bounds the trapping constant
from above for the same microgeometry. This should prove
to be a useful relationship, since in some cases one property
may be easier to measure or predict than the other. The
proposition, which in its general form for anisotropic media
is a tensor relation,20 was motivated by several observa-
tions. First, rigorous two-point interfacial-surface bounds
for k= ! and kp, which are valid for arbitrary topology,'>'®
satisfy relation (17). Second, for a disconnected or non-
percolating fluid phase of general microgeometry, it is
known that kj, is finite?! while X~ ! must be infinite, thus
expression (17) is obeyed in such instances. Third, ine-
quality (17) is satisfied for random arrays of spheres at low
but nondilute concentrations"!” and for periodic arrays of
spheres for arbitrary densities.?*?> Fourth, two-point
bounds for k~! and kj for irregularly shaped particles
with cusps satisfy the inequality (17) (see Ref. 22). A
rigorous proof of the general form of this proposition for
anisotropic porous media will be forthcoming.?*
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TABLE I. Effective parameters for transport around overlapping spheres
with radii distributed according to the Schulz distribution (14); m = «
(monodisperse), m = 4, and m = 1. Tabulated for several values of the
sphere volume fraction ¢, is the two-point interfacial-surface lower bound
on the scaled fluid resistance k,/k as computed from relation (1) and the
scaled trapping constant kp/kp, as computed from (19). The results for
kp/kp, obtained from Ref. 15, combined with inequality (18), give the
best estimate of the scaled fluid resistance to date for this geometry.

m= o m=4 m=1
¢, k/k kp/Kpy k/k kp/kp k/k kp/kp,
0.1 1.22 1.97 1.02 1.89 0.82 1.80
0.2 1.51 2.91 1.27 2.74 1.20 2.57
0.3 1.93 4.19 1.63 391 1.30 3.62
0.4 2.55 6.11 2.15 5.65 1.73 5.16
0.5 3.53 9.20 2.99 8.42 2.40 7.62
0.6 5.22 14.64 442 13.30 3.56 11.91
0.7 8.57 25.66 7.26 23.12 5.85 20.49
0.8 16.86 53.78 14.33 48.02 11.57 42.12
0.9 51.54 173.63 43.61 153.39 35.33 132.76

A practically important question is how sharp is ine-
quality (17)? This is a difficult question to answer at this
point since there are very few geometries for which we
have exact results. For periodic arrays and random arrays
at low but nondilute concentrations, (17) is relatively
sharp. For such dispersions, however, the more restrictive
inequality

k= k>kpkp,

holds, where k; and kj are dilute-limit results for k and

(18)

kp, respectively. For example, for simple cubic lattices,?>*
k/k = 1212 and kp/kp;=1211 at ¢, =0.001;
k/k=2810 and kp/kp;=2.606 at ¢,=0.064;

k/k=429 and kp/kp,=3.62 at ¢,=0.125 and
ks/k =15.4 and kp/kp ;= 7.82 at ¢, = 0.343. It is impor-
tant to emphasize that such bounds are considerably
sharper than any “direct” variational bounds on k! or
kp that have been evaluated thus far (see the bounds of
Refs. 12 and 23).

Miller and Torquato'® have recently obtained a highly
accurate analytical expression for the trapping constant of
overlapping spherical traps with a continuous size distri-
bution (the same model considered in the previous sec-
tions) by extending the results of Richards.”> For such a
microgeometry, they found that?®

kp 7 1

Hmszfﬁld’z 1— \/1_rye"Z erfc(y)’ (19)
where

ko =362(R)/(R%), (20)

y=2p"2(R%) /(R (21)
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n=p(47/3){(R%). (22)

Equation (19) was found to be in good agreement with
“exact” computer-simulation data and hence, to a good
approximation, may be regarded as exact.

In Table I, we compare our calculations of the two-
point interfacial-surface lower bound on the scaled resis-
tance k/k and the scaled trapping constant kp/kp, ; as ob-
tained from (19). If we invoke inequality (18), then an
obvious conclusion is that the two-point bound on the
scaled resistance is not very sharp. Thus two-point bounds
are insufficient to yield accurate estimates of the fluid per-
meability or resistance, i.e., one must rely upon higher-
order variational bounds to give good estimates of k. More-
over, result (19), in light of the inequality (18), must be
regarded as the best estimate of the scaled fluid resistance
ky/k for this polydispersed geometry.
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