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Perturbation expansions and rigorous bounds on the effective conductivity tensor o, of d-
dimensional anisotropic two-phase composite media of arbitrary topology have recently been
shown by the authers to depend upon the set of #-point probability functions §{7,...,.§ (7. §?
gives the probability of simultanecusly finding # points in phase i ( = 1,2). Here we describe a
means of representing these statistical quantities for distributions of identical, oriented
inclusions of arbitrary shape. Gur results are applied by computing second-order perturbation
expansions and bounds for a certain distribution of oriented cylinders with a finite aspect ratio.
We examine both cases of conducting cylindrical inciusions in an insulating matrix and of

insulating cracks or voids in a conducting matrix.

LINTRODUCTION

The problem of relating the macroscopic properties of a
heterogeneous (or composite) material to its microstructure
is a long-standing one in science, attracting the attention of
Maxwell,! Rayleigh,” and Einstein.” In this paper, we focus
on studying the microstructure and the effective electrical
(or thermal) conductivity tensor &, of a random d-dimen-
sional two-phase anisotropic composite medium. Examples
of anisotropic composite materials include distributions of
oriented, nonspherical inclusions (e.g., short-fiber compo-
sites), layered media (e.g., sandstones and laminates}, etc.
For macroscopically isotropic two-phase composites (ie.,
o, =0, U, where U is the unit dyadic), considerable ad-
vances in predicting o, have been made*™ since the pioneer-
ing paper of Brown’ in which it was shown that o, depends
upon an infinite sei of correlation functions that statisticaily
characterize the composite.

The rigorous determination of the conductivity tensor
<, for the more complicated case of a macroscopically aniso-
tropic composite has been less comprehensively studied. Ro-
cha and Acrivos® determined o, for infinitely dilute disper-
sions containing inclusions of arbitrary shape. Hori’
developed perturbation expansions and bounds for o,
which, as indicated below, have some undesirable features.
Willis'® derived bounds on ¢, for composites containing
aligned, ellipsoidal inclusions which depend upon the micro-
geometry via the shape of the inclusions and volume fraction
only. More recent work includes the development of Ha-
shin-Shtrikman-type bounds by Kohn and Milton'' and the
powerful continued-fractions approach to bounds of Mil-
ton™; see also references contained therein.

Sen and Torguato'? very recently derived a new pertur-

' Present address: Dept. of Chemical Engineering, University of Houston,
Houston, TX 77204-4792.
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bation expansion for the conductivity tensor @, of a macro-
scopically anisotropic d-dimensional two-phase composite
of arbitrary topology. The nth-order tensor coefficients AL”
of the expansion are absolutely convergent multidimen-
sional integrals over the set of #-point probability functions
5,87 of the medium in contrast to the work of Hori."?
The quantity § {7 (x,...,x, )} gives the probability of finding
r points at positions x,,....X,,, respectively, simultanecusly in
phase i (/ = 1,2). The tensors AL? are shown'” to be related
to Milton’s* weights and normalization factors, and thus the
latter quantities (for # = 2, 3, and 4) have been given exph-
citly in terms of integrals over the § (" for the first time. Sen
and Torguatc’” then derived new, rigorous nth-order
bounds on o, that depend upon the a-point parameters ALY
for n = 2, 3, and 4. Thus, in order to compute perturbation
expansions or bounds, cne must have knowledge of the §{°
which, untii recently, were difficuit to ascertain.

The present paper has a twofcld objective. First, we de-
scribe a means of representing and computing the z-point
probability functions for anisotropic media comprised of a
distribution of oriented, arbitrary-shaped inclusions of one
type of material {or void) in a matrix of another material.
Laying this groundwork then enables one to compute the
perturbation-expansion tensor coefficients and bounds for
o, Second, we apply the aforementioned results by evaluat-
ing the two-point parameter AY” for a certain distribution of
oriented cylinders of a finite aspect ratio. Such an evaluation
enables us to compute second-order perturbation expansions
and bounds for this model. We consider both cases of con-
ducting inclusions in an insulating matrix and of insulating
inclusions (i.e., cracks or voids) in a conducting matrix.

Finally, we note that, for reasons of mathematical anal-
ogy, the general results for the conductivity tensor given
here translate immediately into equivalent resuits for the di-
electric constant, diffusion coefficient, and magnetic perme-
ability tensors of such composites.

© 1990 American institute of Physics 1145




H. CONDUCTIVITY TENSOR: PERTURBATION
EXPANSIONS AND BOUNDS

Sen and Torquato'* have derived perturbation expan-
sions and rigorous bounds for the effective conductivity ten-
sor o, of two-phase anisotropic composite media of arbi-
trary topology and dimensionality 4. The composite
medium is a domain of space D of d-dimensional volume ¥
which is subdivided into two phases: one phase D, charac-
terized by volume fraction ¢, and isotropic conductivity o,
and another phase D,, characterized by a volume fraction ¢,
and isotropic conductivity 0. The local conductivity at posi-
tion x is given by the scalar function

o(x) =0, + (o, — o} V(x), i#), (1)

where the characteristic function of phase i is
xeD;

H

I0(x) = {1’ (2)

0, otherwise.

Asindicated above, each phase is isotropic and hence macro-
scopic anisotropy arises out of some asymmetry in the mi-
crostructure, i.e., due to statistical anisotropy, such as a dis-
tribution of oriented nonspherical inclusions in a matrix,
layered media, such as sandstones and laminates, etc. For
the purposes of the present work, it is useful to summarize
some of the findings of Ref. 12.

A, Perturbation expansions

Sen and Torguato'” found the following perturbation
expansion involving the conductivity tensor:

(Bii@éi)z(ﬁe _“U‘U)_I[Ge + (d— I)U}U}

where

T, .

I J

o, +(d—1)o; ’

and the tensor coefficients AL” are volume integrals over the
set of m-point probability functions §{”,...,§ {? associated
with the phase /. Relation (3} actually represents two series
expansions, one for /i = 1 and j = 2, and the other for i =2
and j = 1. The n-point probability function

16;9':

svon=(f

1] 76 )) @

gives the probability of finding » points with positions x”
={x,,...,.X, r all in phase i. For statistically anisotropic but
homogeneous media, the 5.7 depend upon the relative dis-
placements x; = x; — %,, so that, for example, §{” equals
the volume fraction of phase 7, ¢,. The angular brackets in
refation (4) denote an ensemble average. The general
expression for the symmetric tensor coefficients AL’ (also
referred to as n-point microstructural parameters) are given
explicitly in Ref. 12. The n-point tensors A (n=12,3,...)
generally will not possess common principal axes. This im-
plies that for general media the principal axes of the macro-
scopic conductivity tensor o, will rotate as the phase con-
ductivity ratio changes, such as composites with chirality,
i.e., composites with some degree of left- or right-handed
asymmetry.'? There exists a large class of media, however,
which, in fact, do possess the symmetry required for all the
ALY to possess common principal axes (e.g., 2 tandom array
of oriented, identical ellipsoids in a matrix). It is useful here

=¢.8, U— Z ALgr " i, (3) to write out the first few n-point microstructural parameters
W= for statistically anisotropic but homogeneous media'’
§
Ag);-*:“j;——fdx Hx)[S7(x) — 471, (3
2a{d — 1) Js
) “‘(X 7)S (Xza)
Al = (—-——————=) jdﬁg dx, t(x,,) t(x, (S X 5K 3) — 272 . 6)
Zﬁ(d—ml) 3 12 3) ( 12 13 ¢! (
; SU)(XP’XH)S;)(XMJ
R P r— d%, dx; dx, 1% )Xo, )1 (X5,) (S (X 20X 5K ) — — 2713 ;
4 (27(‘1“ 1)) f 2 3 4 ( 23 ( 34 iz 13 14 ¢’.
_ S§"’(x23,x24)5§“(xm) i Sé”(xlz)Sé")(X%)Sé”(x%) ) 7)
b o
i
where A}? = (for macroscopically isctropic media. Second, unlike
" the other parameters, Al = A{?, and thus we shall hence-
t(x) = _‘{’_EX_;_%‘_}_{ , (8y  forth denote A{” by A,. Third, A, is traceless. Fourth, the
"

X

and U is the unit dyadic. The subscript & on the integral of
(5) (which is to be integrated over the sample volume ¥)
indicates that it is to be carried out with the exclusion of an
infinitesimally small ¢-dimensional sphere centered at x.'?
Tensor properties of the AL” were studied in Ref. 12. We
shall not repeat these here but shall briefly describe some
fmportant ones for the two-point parameter AL in particu-
lar since we will use them in Sec. IV. First we note that
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following bounds on A, (and related parameters) are satis-
fied:

— (d — 1), <{Ay) 1 <19, (9a)
0<{4 ) <, {(9b)
= ¢ $r< (85" 14 <O, (S¢c)

where (B),, (k= 1,...,d) denotes the diagonal elements of

-the diagonalized form of a tensor B, A¥ is the depolarization

tensor'? (with unit trace) simply related to A, by
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i 1
A*zn—(Ua A), (10)
AN

and a{" is the tensor (with trace equal to — ¢,64,) defined by
Eg. (12) below.

Sen and Torquato!? used relation (3) to obtain an ex-
pansion of the effective conductivity tensor in powers of §,,
= (g, — 0;}/0;. (Note that 5ij is not the Kronecker delta.)
Employing Eq. (3) we found through fourth order that

o /0, =U+ a8, +al’s;, + al’s}

+ a8t + O(8}), i), (11)
where

ai’ =¢,U, (12)

8’ = — $,6.A%, (13)

a{" = (1/d?) (dg,¢}As + A{), (4
and

ay’ = (1/d7)[ — d ¢4} (A ~ dip, AT-AS

— dg A AF — AL - ALY . (133

The n-point microstructural parameters a.” will be of use in
expressing rigorous bounds on .

B. Rigorous bounds

Until recently, knowledge of lower-order n-point proba-
bility functions (ie., 57, §L7, §L°, and 57 even for ma-
croscopically isofropic media has been viturally nonexistent,
either theoreticaily or experimentally.’ In the last several
years, considerable advances have been made along these
lines both theoretically'®'” and experimentally,'® and as a
resull, effective isotropic property relations which depend
upon such information have been computed. ' It appears,
however, that the determination of the § (¥ for #2 5 of arbi-
trary media is beyond presently available technology. Thus,
series representations of o, such as (3) and (11) cannot be
exactly summed. Rigorous metheds to estimate &, must nec-
essarily involve limited microstructural information.

If we accept our inability to obtain exact solutions for o,
for arbitrary topologies, then any rigorous statement about
o, must be in the form of an inequality, i.e., a rigorous
bound. Bounds on effective properties are useful since: (i)
they may be used to test the merits of a theory or computer
experiment; (ii) as successfully more microstructural infor-
mation is inciuded, the bounds become progressively nar-
rower; and (iii) one of the bounds can typically provide a
good estimate of the effective property, for a wide range of
volum:e fractions, even when the reciprocal bound diverges
from it.”

Sen and Torquato'” have derived nth-order bounds on
o, that depend upon the x-point microstructural parameters
AP or equivalent &', for n = 1, 2, 3, and 4. The results for
n =2, 3, and 4 are new. nifi-order bounds are exact through
order 8§, (c; — 0,)/0;.

1. First-order bounds

The first-order lower and upper bounds are, respective-
ly, given by
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0410,
08, + 0,0,
ol = (0,6, + 0,6,) U. (1n

Equations {16) and {17), which represent the harmonic and
arithmetic means of the local conductivity, respectively,
were first derived by Wiener®® in the isotropic context. They
are exactly attained for paralle! slab geometries: (16) being
the case in which the applied field is directed perpendicular
to the slabs—the law of “series resistances”—and (17) be-
ing the case in which the applied field is directed along the
slabs—the law of “*parallel resistances.”

(IL)
. =

(16}

2 Second-order bounds

Second-order bounds are found to be'?

() 1 .

G

-~ 1
x(u mgl,ag“a,.j) . (18)

Here al” is given by Eq. (13). Equation (18) for o,>0, (as
described below) gives a lower bound o/™™ for j=1 and
i = 2 and an upper bound oY for j = 2and i = 1. It should
be noted that these bounds for macroscopically isotropic me-
dia reduce to the well-known Hashin-Shirikman (d = 3)
and Hashin (d = 2) isotropic bounds.”! For a distribution of
inclusions of arbitrary shape and size (phase 2), the bounds
(18} are exact to first order in the inclusion volume fraction
&,. Note that if the upper bound of al” for ene of its principal
directions is achieved, ie., if (ai”),, = 0 or, equivalently,
(Ay) e = dyhy of (A%) . =0 [cf. Eg. (9)], then the sec-
ond-order bounds on {(o,},, coincide and equal ¢,
+ o, which is exactly the first-order upper bound (17).
This corresponds to the conductivity for parallel slabs or
infinitely long, parallel needles (rods}) in the parallel direc-
tion. Furthermore, if the reciprocal bounds of (9} are
achieved [ie., if (a”)y = — b1y (A ¥ = 1 or (4) 4
= — (d — 1)¢,4$,], then the second-order bounds on
(0, )« coincide and equal 0,0,/ (0,4, + o,¢,) which, not
surprisingly, is exactly the first-order lower bound (16).

3. Third-order bounds
The third-order lower bound is given by'?
(el /) = (1 4 &,8,,1U
+ 85,601 — é,8,1)¢,

+ (by + 4,0,)8,,1 7 ¢y, (1%}
where
b, =¢,U +aj", (20)
C,=¢iU b, (21}
and
by= — (¢,U + 2a" + a&i). (22}
The third-order upper bound is'?
eV /0, = (14 $,8,,)U
+ 6%, a57:(85% — afP8,,) ~ hal, 23)
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where a{” and a5” are given by Eqgs. (13) and (14), respec-
tively. We note that for isotropic media, these bounds reduce
to the well-known Beran?? and Silnutzer™ bounds ford = 3
and 2, respectively.

4. Fourth-order bounds

The fourth-order bounds are given by!?

o./0; =1AB~ " + I(AB™H T (24)
where
A=U -+, +Pps8}, (25)
= (U+ {8, +qi"82) ", (26)
s” ~a +qf’, 27)
by = af — g, a;" o G R
af” = [afay” - 4,80
[a“' ol au) am} {(29)
and
= — g7 Yal? 4 aldql). (30)

Eguation (24} for 0,>0c, gives an upper bound &'*" for
i=1,j=2and ¢* for i = 2, j = 1. In the isotropic limit,
these bounds reduce to the fourth-order bounds derived by
Milton.™* For anisotropic media in which the microstruc-
tural tensors possess common principal axes (i.e., when they
commute}, relation (24) has been shown to be a rigorous
bound. Such symmetric media include random, oriented in-
clusions of arbitrary shape and size as a special case. In light
of the above arguments, Sen and Torquato'? conjectured
that (24) represents rigorous fourth-order bounds for gen-
eral (asymmetric) anisctropic media.

5. Utitity of lower-order bounds

It isinstructive to comment on the practical use of rigor-
ous lower-order bounds (such as second-, third-, and fourth-
order bounds) in predicting the conductivity tensor when
one of the phases (say phase 7} is much more conducting
than the other phase (phase /), i.e,, f &, > g}, i#/. In such
situations, upper bounds on (o, ). /o; (for ¢, > 0) become
very large and in the limit 0, /¢; - oo become infinite in order
to take into account the possibility of a realization in which
the conducting phase is percolating in the x, direction
(i =1, 2, or 3). In contrast, for most geometries, the lower
bounds on (o, ), /0; remain finite for 0 < ¢, < I even when
0:/0;— w. For geometries in which the lower bounds on
(c, )u/ o, become infinite int the limit o,/0; - «, the lower
bounds are obviously exac? since they coincide with the up-
per bounds. (Examples of geometries for which the bounds
coincide have already been described in Sec. II B 2.} Note
that if the bounds on (o, ), are scaled by o, instead of o, in
these instances, then (for most geometries) the upper
bounds remain finite and the lower bounds become small,
approaching zero in the limit ,/6; - .

Some investigators have dismissed bounds as impracti-
cal because of the divergence in the bounds when g, >¢;.
However, as noted at the beginning of this subsection, one of
the bounds can typically provide a good estimate of the effec-
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tive conductivity in such instances. For o¢,>0¢; and
0 <&, < 1, the lower bound (o!'”),, will vield a reasonable
estimate of (o, },, provided that the conducting phase, in
general, does not possess large connected substructures in
the x, direction. { As noted above, however, there are cases in
which the bounds ceincide for geometries in which the con-
ducting phase is continucusly connected. ) If the conducting
phase is continuously connected, then the upper bound
(¢t} . will provide a good estimate of (o, ) ,,.

0. 7-POINT PROBABILITY FUNCTIONS
A, Series representation for oriented inclusions

The effective conductivity tensor &, is seen to depend
upon the infinite set of #-point probability functions, i.e.,
Si7,...8” {n- ). Observe that the n-point probability
function for phase 1, S\, is simply related to the phase 2
counterpart, S .2.'° Here we shall consider the determina-
tion of this set of functions for anisotropic media composed
of identical, oriented inclusions of arbitrary shape (phase 2)
distributed throughout some other material that we generi-
cally refer to as matrix (phase 1). (Note that the matrix need
not be continuously connected.) Recall that for this large
class of materials the n-point microstructural tensors, Al” or
al”, commute.

Torguato and Steil'® were actually the first to represent
S 9 {for any n) for the nontrivial microgeometry of a statis-
tically inhomogeneous distributicn of & d-dimensional
spheres in terms of the n-particle probability density func-
tons py,...,p,,. Lhe quantity p, (#") characterizes the proba-
bility of finding a configuration of i spheres with positions "
={r,,...r, }. Using these general results, lower-order § ¢
for distributions of overlapping as well as nonoverlapping
spheres and disks were computed.'”'? It is important to note
that their general results are actually not only applicable to
spheres but (after an appropriate generalization of the inclu-
sion indicator function) to any microgeomeiry composed of
identical inclusions in which each configurational coordi-
nate r; is fully specified by its center-of-mass position. This
class of materials includes oriented rectangles, ellipses, etc.,
in two dimensions and oriented rectangular parallelpipeds,
ellipsoids, cylinders, etc., in three dimensions.

For this class of microstructures, the results of Torquato
and Stell'® together with the aforementioned observations
lead to the explicit representation

S (x") =1 N__J—L. 0, (2
S, +Z ()

K1

XH(I—H [1—mx, — rj)j)dr (31)
j=1
for the matrix phase, where
R et (32)
= iO, otherwise

is the inclusion indicator function, 2, the inclusion region,
and x a position vector measured with respect to the inclu-
sion centroid. For a disk or sphere of radius 4, the particle
indicator function is particularly simple:
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I, x>a

m{x} ={ (33}

3 x>a,
where x==x|.

For nonspherical shapes, m(x) is more complicated.
For example, for a rectangle having sides of lengths 2a and
26 {as indicated in Fig. 1),

I, lx|<a and x,]<b

0, otherwise. (34

m{x} :[

For an ellipse with axes of lengths 2¢ and 25, respectively
(see Fig. 1),
2 2
x3 x;
, —+-—5<l
a b’

0, otherwise.

m(x) = (35)

The inclusion indicator function for a rectangular parallel-
piped having sides of length 2¢, 25, and 2¢ is given by

L, |x<a and |x,/<b and |x;
0 otherwise.

m(x) = { <€ 36
For an ellipscidal inclusion with axes of lengths @, b, and ¢
{see Fig. 2),

2 2 2
x? x X
I, —+—=+—

@ b* e’

0, otherwise.

<1

m(x) = (37

Finally, as a last example, the inclusion indicator function
for a circular cylinder of diameter 2a and length 25 (see Fig.
2} 1is

1, x7 4+x3<a® and |x3]<b

mix) :{ (38)

0, otherwise.

Tosummarize, Eq. (31) is valid for general inhomogen-
eous arrays of identical, oriented inclusions of arbitrary
shape distributed throughout a matrix with an arbitrary de-
gree of mutual penetrability. Information about interparticle
interactions (mutual attraction and repulsion} enters
though the #-particle probability density functions py,...,g,,.

If the medium is statistically homogeneous but aniso-

X2

%2

v &)

FIG. 1. Examples of two-dimensional inclusions: (i) Rectangle with slides
of lengths 2a and 2b; (ii) ellipse with axes of lengths 2a and 2b.
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tropic, then the x-particle probability density and s-point
probability function are translationally invariant and hence
just depend upon the relative displacements, ie,
0, (Fign¥y,) and SO =859(x5..,%,) where 1
=71, —r, and X = X, — %,. Statistical homogeneity im-
plies that the thermodynamic limit has been taken ie,
N— o, ¥—> o such that p = N/V=p,(r,} is some finite
constant { p being the number density). For such media,
547 is simply equal to the volume fraction ¢, of the /th phase.

For homogeneous distributions of oriented inclusions
which are allowed to overlap or fully penetrate one another,
the n-particle probability densities are especially simple, i.e.,
g, {F"} = p" since the positions of the inclusion centroids are
spatiaily uncorreiated (they are Poisson distributed). As de-
scribed below, for such models, the integrals of Eq. (31) are
straightforward to evaluate. On the other hand, if the inclu-
sions are mutually impenetrable (and possess interparticle
attraction), the p, are generally very complex, especially for
n>3.

Given the theoretical framework to represent the §¢”
described above, one can now, in principle, compute the per-
turbation expansions and the bounds described in Sec. 11 for
distributions of oriented, identical inclusions of arbitrary
shape. We now derive and discuss some specific results for
the § 7,

B. Dilute distributions of oriented inclusions

For a dilute, homogeneous distribution of oriented in-
clusions which interact with an arbitrary interparticle poten-
tial, one can evaluate Eq. {31) for the matrix n-point proba-
bility function for any ». Through order p, we have exactly
from Eq. (31) that

o
S (K seX )

zi—pJ‘<1—= ﬁ] [lam(xi-—r})})drl,

=1 —pV, (%;5...%; ). (3%
Theintegral of Eq. (39) is recognized to be the union volume
of n regions {each of which have precisely the same shape,
size, and orientation of an inclusion) whose centroids are
separated by the displacements x,,,...,X,,,. We shall denote
this union volume by ¥, (x,5,...,%,,, }. 1t must be emphasized
that the origin of ¥, has nothing whatsoever to do with the
penetrability of inclusions but rather arises because of voi-
ume excluded to “point” particles by the inclusions. For
n == 1, ¥, is simply the volume of an inclusion. In the case of
r == 2, for example, the union volumes of two inclusion re-
gions for rectangular and circular cylindrical inciusions (cf.
Figs. 1 and 2) are given, respeciively, by

Vo(x) = 4’8 — (2a — x) (2b — p)

XH(2a - xYH(26 — v), (40)
Vix) = 4ma’h > — (26 — |x cos 6| )A(|xsin 6)
XH(2a — |xsin 8| )H2b — |x cos 6), (41)

where
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Xy "3

FIG. 2. Examples of three-dimensional inclusions: (i)
Ellipsoid with axes of lengths 2a, 2b, and 2c; (ii) circu-

*3

o 4)

P
Alr =22(os“—f———r— )B’Za—r
) A8 Za 2a 4q? ( )

(42}
is the intersection area of two circles of radius ¢ whose
centers are separated by the distance »and H{7) is the Heavi-
side step function. In Eq. (40}, x and y are the distances
between the centroids of two rectangular regions in the x|
and x, directions, respectively. In Eq. (41), x is the magni-
tude of x and 8 is the polar angle that x makes with the x,
axis.

C. Overlapping oriented inclusions

E3

As noted earlier, for overiapping inclusions g, (¢"} = p
and Eq. (31) exactly yields

(U(Xl” ,X1n)“1+ E H
k
X(I — H {1~m(x,~nj,)])dr

i1

(43)
Now the result of the previous subsection gives
S,(t”(xlz,..n,xm)
=14 2 p ¥, (Xy20Kyn )
k=1
= expf —»an(xlz,...,xm)], (44)

where, as before, ¥, is the union volume of 7 inclusion re-
gions. Note that Eq. (44) is exact and has an especially sim-
ple function form. Nonetheless, overlapping distributions of
inclusions are quite complicated topologically, e.g., thereis a
critical inclusion volume fraction at which the included
phase becomes connected (i.e., the percolation transition).
This critical volume fraction occurs at a value well below the
maximum (i.e., ¢, = 1). This is to be contrasted with distri-
butions of impenetrable inclusions in which the critical point
coincides with the maximum, random close-packing volume
fraction.
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X2 lar cylinder of diameter 2a and length 2b.

D. Monoveriapping oriented inclusions

For nonoverlapping inclusions, the p, are generally
very complicated. Here we shall state some general results
for such models. First we note, as in the case of d-dimension-
al impenetrable spheres,'® the infinite series (31) for non-
overlapping oriented inclusions truncates after the nth term
in the sum because of the impenetrability condition, i.e., any
term in the sum of series (31) for which k > # is identically
Zero.

It is instructive to write the S { for impenetrable inclu-
sions explicitly for # = 1 and 2. Eqguation (31) yields the
matrix one-point probability function 1o be given exactly by

SPE)=1— {‘ip,(rl)m(x1 — 1, )dr,. (45)
For homogeneous distributions, this becomes
SiV=¢,=1-pW, (46)

where it is to be recalled that ¥V, is the volume of an inclusion.
In contrast, Eq. (44) yields

SV =g, =exp( —p¥,) (47)
for overlapping inclusions. To order p, the previous two rela-
tions are identical. For nondilute distributions, the higher-
order terms in Eq. (44) account for corrections due to over-
lap, i.e., overlapping inclusions, at the same number density
o, will always occupy less space than nonoverlapping inclu-
sions at nondilute conditions. In other words, the matrix
volume fraction ¢, for overlapping inclusions is always
greater than or equal to ¢, for nonoverlapping inclusions at
fixed p.

The two-point probability function for such anisotropic
but homogeneous models is exactly given by

Sél)(xlz) =1—pVy(x;3)

+p? fp2<r12>m(x1 1)

Xm(x; — r,)dr, dr,. (48}
The two-body integrals appearing in (31} butnotin (48) are
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identically zero for the same reasons why the infinite series is
truncated for impenetrable particles. In order to compute
(48) one must Know the two-particle probability density
function: a quantity that has been studied extensively in lig-
uid-state theory.”® Thus, the theoretical machinery exists to
compute S'i for nontrivial models involving distributions

of impenetrable, oriented inclusions.

V. APPLICATIONS FOR DISTRIBUTIONS OF
ORIENTED, OVERLAPPING CYLINDERS

A, Evaluation of the two-point microstructural
parameters

We now consider computing the two-point microstruc-
tural parameter 4, or, equivalently, al” (henceforth de-
noted by &,) for three-dimensional distributions of identical,
oriented overlapping circular cylinders of finite aspect ratio
b /a. Such a calculation enables us to compute expansion (3)
through order # ?j, expansion { 11) through order 87, and the
second-order bounds as expressed by relation (18). It is im-
portant to emphasize that the twe-point tensors are the low-
est-crder parameters that reflect anisotropic or directional
information about the composite. Recall that for macrosco-
pically isotropic media,

A, =0, a,=[{(—¢$,)/d1U, Af=(I/DU. (49)

For any three-dimensional distribution of inclusions
aligned in the x, direction which possesses transverse iso-

tropy and azimuthal symmetry (e.g., circular cylinders,
spheroids, etc.), we find from Egs. (5), (10), and (13) that

g 0o 0
8= —$Af= —¢6,{ 0 @ G , (30}
0 ¢ 1-20

o=L _fim—L f iij d6 sin (1 — 3 cos® 6)
3 & X Jo

X[SiP(x)y —41]. (51)
Here we have used spherical polar coordinates: x being the
magnitude of x and & being the polar angle measured with
respect to the x, axis. The azimuthal angle is integrated out
by virtue of the azimutha! symmetry possessed by 5 (x)
for such models. The diagonal elements {(a,),, and (a,),,
are equal because of isotropy in the x,x, plane. Moreover,
cbserve that the depolarization tensor appearing in {50) sat-
isfies the general requirement that its trace be equal to unity;
its diagonal components must also satisfy inequality (Sb).
Note that the integral of (51) gives the deviation from the
isctropic result [ef. Eq. (49)].

For the specific case of overlapping cylinders, we have
from (44), (47), and (51) that

xm:xx 1
Q:—L—limﬁ—f g—{f du(l — 3u%)
3 €0 2¢2 € X 1]

XexpfpV i (xu)], (52)
Vi xu) = (26 — ) A(x0)H(2a — x0) H(2b — xu), (53)
©“=cos g, v=sind, (54
and
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Xpax = 2B + & (55)
is the distance beyond which the function S goes to its
asymptotic value of ¢?. Here V'¥(x) is the intersection vol-
ume of two cylinders whose centroids are separated by x [as
obtained from (41)] for the specified range of angles indi-
cated in Eq. {52).

Before discussing the specific evaluation of the two-
point microstructural parameter Q given by Eq. (52), it is
first useful to make some general comments about it. First, it
is clear that the microstructural parameter 0 wili generally
depend upon the inclusion volume fraction 4, and the aspect
ratio 5 /a, i.e., @ = O(é, b /a). Second, for certain aspect
ratios, { must take on known values. For example, from the
discussion of Sec. I1 B, we know that for infinitely long cylin-
ders (b /a— w0 ), the depolarization vanishes in the x, direc-
tion’® and hence | — 2@ = O or @ = 1/2. In the x,x, plane,
the problem effectively becomes two-dimensional, i.e., an
isotropic distribution of overlapping disks, as can be seen by
comparison to Eq. (49). In other words, the second-order
bounds (18) in the x, and x, directions become the two-
dimensional Hashin bounds.”' On the other hand, we also
know that for nonoverlapping, disk-shaped, plates of infini-
tesimal thickness,” (4 #),, = (4 %),, = Cand (4 ¥),, = L.
Therefore, for our overlapping-cylinder model in the Limit
b /a0, §-0in the dilute limit. Strictly speaking, we must
specify the dilute limit since it is only under such conditions
that inclusion cverlap can be neglected, i.e., to order p, §§” is
the same for both overlapping and noncverlapping inclu-
sions [cf. Eq. {39)]. Finally, we note that when the aspect
ratio b /a is approximately unity, the microgeometry will be
approximately statistically isotropic and O=1/3.

The microstructural parameter € given by the integral
(52} is numerically computed for our model of overlapping
cylinders using a Gauss—Legendre quadrature. Our results
as summarized in Table I where we give { as a function of
the aspect ratio b /g for values of the inclusion volume frac-

TABLE L The microstructural parameter Q as a function of the aspect ratio
b /a computed from Eq. (52) for aligned, overlapping cviinders and for
aligned, nonoverlapping spheroids as obtained by Wilkis.®

Microstructural parameter 9

Overlapping MNonoverlapping

cylinders spheroids

b/a ¢, =01 ¢,=05 ¢ =09 For all ¢,
0.0 0.000 0.000 0.000 0.000
0.01 0.0171 0.0179 3.0199 0.009
Q.05 0.0617 0.0640 0.0693 0.037
0.10 0.102 0.105 8.111 0.07¢
0.20 0.160 0.163 0.169 0.125
0.50 0.263 0.264 0.266 0.236
1.00 0.344 0.343 0.340 0.333
2.00 (.409 0.407 0.402 0.413
5.00 0.460 0.438 0.454 0.472
10.00 0.480 0.478 0.475 0.450
20.0 0.490 (.489 0.487 0.497
100.00 0.498 0.498 0.498 0.500
£ 0.500 0.500 0.500 0.500

*See Ref. 10.
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FIG. 3. Two-point microstructural parameter ¢ as a function of the aspect
ratio b /a at ¢, = 0.5 for overlapping cylinders. Computed from Eg. {52).
&, is the cylinder volume fraction.

tion ¢, = 0.1, 0.5, and 0.9. Our numerical results for O are
seen to approach the aforementioned limiting values accu-
rately. Observe that for fixed & /a, ( is a weak function of the
volume fraction. Figure 3 depicts Q¢ vs b /a for ¢, = 0.5,

In Table I we also include @ for the special geometry of
nonoverlapping, spheroidal inclusions (aligned parallel to
the x, axis with length 26 and maximum diameter of 2a).
These results, independent of ¢, are obtained by comparing
the general result (30} to the results of Willis'® who specifi-
cally studied second-order bounds for this model. Note that
for b/a< 1, Q for overlapping cylinders is greater than the
corresponding quantity for nonoveriapping spheroids. For
b /a> 1, the converse is true. This has important physical
implications for the effective conductivity tenscr as will be
described below.

B. Perturbation expansion

Substitution of Eq. (50} intc (11} gives the conductiv-
ity tensor exactly through order 83, = (@ — 1)’ to be

UC’

=U+Ula - 1) — ¢4,

!

o © 0
xlo @ 0 |(@—1)? (56)
6 0 1-20

where o = 0,/ is the ratic of the conductivity of the inclu-
sions to that of the matrix. If @ = 1/2 and @ > 1, correspond-
ing to conducting, infinitely long needles which are parallel
to the x; direction, then from (56) it is clear that

(00)11: (00)22<(09)33‘ (57)

On the other hand, if @ = Oand o > 1, corresponding to con-
ducting, flat, disk-shaped plates oriented along the x, direc-
tion, then from (56} one has that

(58)

(O-e )ll = (O'-e )22>’(Ue )33-
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Similar results can be obtained for cases in which a < 1.

For b /a < 1, the resulis of Table I and Eq. (56) lead one
to conclude that (,),, | = (o,).] for nonoverlapping
spheroids is larger than the corresponding guantity for over-
lapping cylinders at the same volume fraction. This is true
despite the fact that in the latter case the inclusions can clus-
ter to form a more connected included phase than in the
former instance. However, for small aspect ratics, the effec-
tive areu fraction of the included phase in the x,x, plane in
the case of nonoverlapping spheroids is larger than for the
overiapping situation. For & /a < 1, this latter effect domi-
nates over the former effect and hence explains the behavior
of {¢,),; | = (0,),,] for these microgeometries. On the
other hand, for b /a> 1, the effective area fractions for the
two models tend to approach ¢, as & /a is made to increase.
Hence, the connectedness of the cylinders in the x,x, plane
becomes a dominating effect and one arrives at the more
obvious result, namely, that (o, )}, [ = {0, ),,] for overlap-
ping cylinders is greater than the corresponding conductiv-
ity for nonoveriapping spheroids.

It must be emphasized that the higher-order parameters
ALP, ALY ete., will be more sensitive to microstructural dif-
ferences (as described above) than the two-point param-
eters. The higher-order parameters of course become in-
creasingly important the more o differs from unity.

C. Second order bounds

Substitution of Eq. (50} into Eq. (18} leads to the sec-
ond-order bounds

(g‘(‘Z))“ _ (0-22))22 _ 1+ (ﬁ?&i + ¢jQ)5!§i , (59)
oy o; L+ 6,05,

((722))33 — 1"+' [¢. + ¢j(l - ZQ)]Sij . (60)
O-j 1+¢J(1““2Q)6U

For a = o,/0,> 1, (59) and (60) give lower bounds when
i=2andj=1and upper bounds when /=1 and j= 2.

As noted in Sec. II B 5, for cases in which one phase is
much more conducting than the other (ie,a>lora<l),
the bounds will diverge from one another. Again, we empha-
size that the bounds can still provide good estimates of the
effective conductivity in such instances, even when a = «
or & = 0. For example, in the limit of perfectly conducting
cylinders {& = )}, the upper bounds diverge to infinity and
the lower bounds,

0y, _ (05, _ # + ¢,@ (61)
g, oy $.Q ,
(o) 55 _ 1240 (62)

T ¢ {1 —20) ,
remain finite for O < ¢, < 1, provided that 0 < Q< 1/2. If
Q= 1/2, then (as noted in Sec. [l B 2) the second-order
bounds in the x, direction, for any a, coincide (i.e., they are
exact) and equal the first-order upper bound (17}, which in
the case & = oo becomes infinite itself. Recall that @ = 1/2
corresponds to paraliel slabs or infinitely long, cylinders in
the x, direction. If @ =0, corresponding to disk-shaped
plates of infinitesimal thickness (& /2 = 0), then the second-
order bounds in the x,- and x,-directions, for any a, coincide
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and again equal (17), which in the case o = « become infi-
nite. From earlier discussions, therefore, we conclude that
(61} and (62) will generally vield useful estimates of the
diagonal components of the conductivity tenser (o,),, pro-
vided that the conducting phase {phase 2) does not possess
large connected substructures in the x, direction. { As noted
above, this provision need not always hold for the lower
bound to be accurate.} A necessary but not sufficient condi-
tior: for the conducting phase, in general, not to have large
connected substructures is that it be below its percolation
transition. We know, for example, that infinitely long,
aligned cylinders percolate in the tramsverse plane at
#,=0.68.%" This, therefore, is a lower bound on the percola-
tion threshold in the fransverse plane of aligned cyiinders
with a finite aspect ratio.

In the opposite limit of perfectly, insulating cylinders
(@ = 0), the bounds again diverge. Let us scale the diagonal
components of the conductivity tensor by , in this case. In
the limit o -0, then the scaled lower bounds go to zero and
the scaled upper bounds

@) (08" )m g1 —@)

, {63
Ty 20 i (ﬁlQ
(69}, — 26,0 , (64)
a, ¢+ 20,0

remain finite. As before, the upper bounds generally wiil
provide a good estimate of the effective conductivity given
that the conducting phase {phase 1) is connected. Of course,
if the conducting phase is disconnected, then the scaled low-
er bounds {equal to zero) are exact.

Figures 4 and 5 show bounds on the diagonal compo-
nents of the scaled effective conductivity tensor (o,/o,
[e.=(0,)] for a distribution of conducting cylinders
(o = 10) with b/a = 10 (slender, conducting rods) and

10 T
L 71
a = 10 7
8 4 -
b/a = 10.0 72
7]
/ /
&1 Vs / b
g 7 /
€ s y;
0’1 pa y
s
3 R
. s
7 e
v // 1
e
-
A J
/","”
0 o e } I —
4] 0.5 1
¢2

FIG. 4. Second-order bounds on the scaled conductivity components ¢, /o,
[o.=(c.)] vs &, for a composite containing conducting (= 10),
slender (b /a = 10) cylindrical inclusions. The dashed lines (---) are
bounds {39) for (0,}, = (0,),, and solid lines (—) are bounds (60) for
(a,),,. Here ¢, is the cylinder volume fraction, b /a is the aspect ratio, and
o = @,/ is the conductivity ratio.
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FIG. 5. As in Fig. 4 for a composite containing conducting (a = 10), fiat
{b/a=0.1) disks.

b/a=0.1 (flat, conducting disks), respectively. For the
case @ = 10 and b /a = 10, we see that inequality (87) is
rigorously satisfied, i.e,, the conductivity in the x; direction
is always greater than the conductivity in the transverse
plane. Note that for reasons mentioned egrlier, the bounds
on {o,}a,; are very sharp. Similarly, for ¢ = 10 and 5/
a == 0.1, inequality (58) is rigorously satisfied. Figures 6 and
7 depict bounds on o,/0, for a distribution of insulating
cylinders (o =0.1) with §/¢ = 10 (slender, insulating
rods) and &/a = 0.1 (flat, insulating disks), respectively.
Figure 8 shows Jower bounds on the scaled conductivity
components ¢, /o, for a composite containing perfectly con-
ducting (¢ = o), very slender (b /g == 20) cylindrical in-

10 - oy

R J

LN a = 0.1
shy -

\ N b/a = 10.0
AN
L \
sk \\ \\ ]
S?; \ ~
T ~
2 \ “
3 AN N .
N ~
r ~ ~
~ ~
~
=
2k = . - -
A — R
0 e SRS | N
o} 0.3 ]
¢2

FIG. 6. Second-order bounds on the scaled conductivity components o,/0,
fe.=(0.)u] vs ¢, for a composite containing nonconducting (a = 0.1),
slender (b /a = 10) cylindrical cavities. The dashed lines (---) are bounds
(59) for (0,),, = (&,),, and solid lines (—) are bounds (60} for (0, );.
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FIG. 7. As in Fig. 6 for a composite containing nonconducting (a = (.1),
flat (& /a = 0.1) disk-shaped cavities.

clusions. Figure 9 depicts upper bounds on the scaled con-
ductivity components ¢,/¢, for a composite containing
perfectly insulating {a = 0), penny-shaped (b/a = 0.05)
cracks.

V. CONCLUSIONS

We have given a general series representation of the n-
point probability functions for statistically anisotropic me-
dia composed of identical, aligned inclusions of arbitrary
shape distributed throughout a matrix. This enables one in
principle to compute perturbation expansions and rigorous
nth-order bounds for the effective conductivity tensor @, of
such media. The formalism was applied by computing a sec-

FIG. 8. Second-order lower bounds on the scaled conductivity components
o,/0y [0,=(0a,),; ] vs ¢, for a composite containing perfectly conducting
(@ = o}, very slender (b /a = 20}, cylindrical inclusions. The dashed line
(---) is the lower bound (61) for (o, ),; = (0, },, and the solid line (—) is
the lower bound (62) for (o, )5,
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FIG. 9. Second-order upper bounds on the scaled conductivity components
o, /0y [0.={¢.) i} Vs &, for a composite containing perfectly insulating
{ax = 0), penny-shaped (b /a = 0.05) cracks. The dashed line (---} is the
upper bound (63) for (o,),; = (0,), and the solid line (—) is the upper
bound (64) for (7,) ;3.

ond-order perturbation expansion and bounds for the micro-
geometry of aligned, overlapping cylinders of finite aspect
ratio. We found that the two-point parameter involved @
[cf. Eq. (50)], which contains the simplest level of aniso-
tropic information, was sensitive to the details of the micro-
structure. The bounds were shown to yield useful estimates
of the effective conductivity tensor for a wide range of vol-
ume fractions, aspect ratios, and conductivity ratios, even
when the bounds diverge.
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