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We present a new simulation technique to "exactly" yield effective transport properties of 
disordered heterogeneous media in which the transport process is governed by a steady-state 
diffusion equation. Hence, the algorithm, which is based upon simulating the Brownian motion 
of a diffusing particle, can be applied to determine the effective electrical and thermal 
conductivity, dielectric constant, magnetic permeability, diffusion coefficient associated with 
flow past fixed obstacles, and the trapping rate associated with diffusion-controlled reactions 
among sinks. The simulation method is shown to have a very fast execution time. The 
technique is illustrated by computing the trapping rate associated with diffusion-controlled 
reactions; it is demonstrated to have an execution time that is at least an order of magnitude 
faster than previous simulation methodoLogies. 

The problem of determining the effective properties 
(e.g., transport, electromagnetic, mechanical, etc.) of disor­
dered heterogeneous media, such as composites, suspen­
sions, and porous media, is an outstanding one in science and 
engineering. In recent years, considerable theoretical prog­
ress has been made in this classical research area (sec the 
reviews of Batchelor, I Hashin,2 Calef and Deutch, -' Milton,4 
and Torquato;5 and references therein). Con versc1y, there is, 
relatively, a dearth of work on "exact" simulations of the 
effective property of interest, especially for "continuum" 
models. Such "computer experiments" could provide unam­
biguous tests on theories for weH-ddined continuum model 
microstructures. Computer simulations could also yield in­
formation on quantities of theoretical importance that arc 
not readily measurable in the laboratory. 

Unfortunately, most computer simulation studies car­
ried out in the past have attempted to solve the local govern­
ing differential equations for the fields (e.g., electric, tem­
perature, concentration, etc.), subject to the appropriate 
boundary conditions at the multiphase interface of the com­
puter-generated heterogeneous system, using some numeri­
cal technique such as finite differences or finite elements. 
This is repeated for all possible configurations and then the 
fields are configurationally averaged since the effective prop­
erties depend upon ensemble averages of the fields. 1-5 This is 
a very inefficient and wasteful way of getting the average 
behavior since there is a significant amount of information 
lost in going from the local to the average fields. According­
ly, such calculations become computationally exorbitant, 
even when performed on a supercomputer. 

In this letter we describe a new algorithm to compute 
effective transport properties associated with processes gov­
erned by a steady-state diffusion equation, e.g., electrical and 
thermal conductivity, dielectric constant, magnetic penne­
ability, diffusion coefficient, and the rate constant (trapping 
rate) associated with diffusion-controlled reactions. The al­
gorithm is based upon simulating the Brownian motion of a 

diffusing particle in the random medium and rdating an ap­
propriate mean square displacement of the particle trajec­
tory to the effective property. This procedure provides a di­
rect and efficient means of obtaining the average behavior. 

In order to illustrate the present simulation method, we 
compute the trapping rate associated with diffusion-con­
trolled reactions among static spherical traps. Our algo­
rithm is shown to have an execution time that is at least an 
order of magnitUde faster than two recently employed algor­
ithms that also simulate Brownian motion.6

-
8 It should be 

noted that the present method may be applied to compute 
the effective properties of general continuum modd micro­
structures, e.g., distributions of inclusions of arbitrary 
shape, which, may or may not overlap one another, have 
some specified orientation, etc. 

We first describe the recent work of Zheng and Chiew6 

and Lee et al. 7 who independently computed the steady-state 
trapping rate k associated with diffusion-controlled reac­
tions among static, spherical traps of variable penetrability. 
The reactant (in the trap-free region) diffuses but is instant­
ly absorbed on contact with any trap. At steady state, the 
rate of production is exactly compensated by its removal by 
the traps. 

Consider first the algorithm of Lee et al. 7 which we refer 
to as "method A." Method A is based upon the use of a 
Pearson ("continuum") random walk in which the step size 
a is fixed and successive directions are random and uncorre­
latcd. The trapping rate is simply the inverse of the average 
survival time 1 for the random walkers. Now if Ii denotes the 
mean number of steps taken by the random walkers and 
Ii» 1, then the random walk becomes simple Brownian mo­
tion and one has 

(I) 

or, equivalently, since the mean square displacement 

12 = na2
, one also has 
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FIG. 1. Two-dimensional schematic representation of the new simulation 
method employed in this study. The zig-zag motion of the random walker 
need not be simulated step by step. Instead Ont.' constructs the largest con­
centric sphere of radius r, which does not overlap any trap; the next position 
of the walker is taken (0 be on the concentric sphere surface. This process is 
repeated until the random walker gets trapped (i.e., comes within a distm,ce 
o of a trap). The sum over all the 1~ (equal to r') is related to thl' trapping 
rate through Eq. (2). In order to signilicantly reduce c()mputer time to 
check for trapping, our algorithm makes lISC of the Grid method as de­
scribed in Ref. 9. 

k= 6DI,2, (2) 

where D is the diffusion coefficient. Since n must be large, 
then the step size (l must be small compared to the trap radi­
us R in the simulations. As a result, the trapping rate is deter­
mined by extrapolating data for a number of different step 
sizes to the aiR ---> 0 limit. An important feature of method A 
is the use of the so-called "Grid method" which significantly 
reduces the computer time required to check if the random 
walker has been trapped. Essentially the Grid method" en­
ables one to check for traps in the immediate neighborhood 
of the random walker instead of checking each trap. We note 
that method A has recently been used to determine k for 
cases in which the traps have a polydispersivity in size. 10 

The algorithm of Zheng and Chiew/' which we term 
"method B," is based upon the use of the first passage time 
probability distribution \ \: 

'" ( Dm
2r?t) P(t;r) = 1 + 2 I ( - l)tn exp - .2 . 

m-- 1 r 
(3) 

P(t;r) is the cumulative distribution function associated 
with the time taken t for a random walker initially at the 
origin to reach the surface of a sphere of radius r. The basie 
idea is that the zig-zag random motion of the diffusing parti­
cle need not be simulated in detail; instead it is taken into 
account in a single simulation step using (3) (see Fig. 1). 
First one constructs the largest possible concentric sphere of 
radius r about the walker which does not overlap any trap 
particles, and then a point on the sphere surface of radius r is 
chosen randomly. The time required to move from the 
sphere center to the surface is determined by selecting a ran-
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dom number in the interval [0,1], inserting it into (3), and 
finding the corresponding time t;. This process is repeated 
until the random walker is trapped and the survival time is 
obtained by summing over all the tic In practice, this can 
never be achieved in the course of the simulation. Zheng and 
Chiew assume the solute is trapped if it lies within a small 
distance 8 from the trap surface (see Fig. 1). The average 
survival time 7 depends upon the shell thickness but they 
claim to obtain accurate results if /5/R < 0.0001. It is impor­
tant to note that the algorithm of method B does not make 
use of the Grid method to check for trapping. 

Let us compare methods A and B. We have computed 
the scaled trapping rate k Ik, (where k, = 3D¢zIR 2 is the 
dilute-limit Smoluchowski result) for fully penetrable traps 
(see Fig. 2)at two reduced density 1] values (0.3 and 0.5) 
using both method A and method B. (Here, 1] = p41iR 3/3, 
whcre p is the trap number density.) It should be noted that 
this model, in general, is actually more computationally in· 
tensive than the case of the opposite extreme of totally im­
penetrable sinks (see Ref. 7 for further details). In each of 
the cases, we considered 490 spherical traps in a central cubi­
cal cell and employed periodic boundary conditions. The 
configurations of traps were generated using a standard Me­
tropolis algorithm. We carried out 1000 random waiks per 
configuration and considered a total of 50 configurations. 
The shell thickness ratio 81R was taken to be 0.0001. In 
Table I we summarize these results along with the CPU 
times required for the calculations on a VAXstation 3200. 
For 77 = 0.3, method A is about 1.2 times faster than method 
B. For Yj = 0.5, method A is almost twice as fast as method 
B. Thus, even though method B avoids the need to exercise 
the zig-zag motion of method A, method A is faster because 
of its use of the Grid method to check for trapping. 

A new algorithm to compute effective properties of con­
tinuum models of heterogeneous media which has a substan­
tially faster execution time than either method A or B is now 
described. The new procedure combines certain aspects of 
methods A and B. For the purposes of this letter, we ilIus­
traie the new method by computing the trapping rate k. 

As noted above, the zig-zag motion of the diffusing par-

FIG. 2. Computer-generated realization of a distribution of fully penetrable 
traps in two dimensions. Here the trap volume fraction is about 0.40 
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TABLE I. Comparison of the computing time required by the three differ­
cnt algorithms (method A," method B," and our new method) to obtain the 
scaled trapping rate k I k, for a system of equisized fully penetrable traps at 

the reduced densities 7/ = 0.3 and 11 = 0.5. Simulations were performed on a 
V AXstation 3200 using 490 traps, SO configurations, and 1000 random 
walkers per configuration. Here 01 R = 0.0001. 

Algorithm 

Method A 
Method B 
New method 

" Reference 7, 
"Refercnce 6. 

11 C~ 0.3 

CPU timc 
(h) 

12,08 
14,68 
0.77 

rt = 0.5 

klk, CPU time k Ik, 
(h) 

2.476 6.85 :3.301 
2.431 13.75 3.3.10 
2.469 0.72 3.330 

tick does not have to be simulated in detail; one can (as is 
done in method E) construct the largest possible concentric 
sphere of radius r about the solute which does not overlap 
any trap particles, choose a point on the surface, and com­
pute the time taken using the first passage probability distri­
bution, Eq. (3). However, calculation of the time using (3) 
is unnecessary since the mean square displacement yz is al­
ready known and can itself be related to the trapping rate [cf. 
Eq. (2 )). To prove this last point, consider obtaining the 
average time 7 required for a random walker to first strike 
the surface of the largest concentric sphere: 

1'° ap 
7= I-dt 

o at 
, 

r 
(4) 

6D 

N ow the total of the average times for each concentric sphere 
up to trapping, t, is simply 

1 = I 7, = I r; 6D, 
i-~ 1 i-! 

= ?/6D, (5) 

1849 Appl. Phys. Lett., Vol. 55, No. 18,30 October 1989 

which is the same as the inverse of (2), i.e., the expression 
used in method A. Hence, in the new algorithm we keep 
track of ,2 rather than t. We also assume that a solute is 
trapped if it lies within a distance {j from a trap surface. 
Moreover, as was done in method A, we employ the Grid 
method to dramatically reduce the computing time to check 
for trapping. In Table I we include corresponding calcula­
tions using the new simulation method. For a reduced den­
sitY'7 = 0.3, the new method is about 16 and 19 times faster 
than methods A and B, respectively. For 11 = 0,5, the new 
algorithm is about 10 and 19 times faster than methods A 
and E, respectively. Thus, the new simulation method is ex­
tremely fast and accurate, requiring less than a CPU hour for 
each of the densities reported. 

We are currently in the process of employing this new 
algorithm to compute the electrical (or thermal) conductiv­
ity of continuum models of multiphase media. For reasons of 
mathematical analogy, the results of such a study translate 
immediately into equivalent results for the dielectric con­
stant, magnetic permeability, and the diffusion coefficient. 
Such simulations involves two new features: (1) different 
walking speeds in each phase and (2) a nonzero probability 
of reflection at the interface between the different materials. 
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