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The problem of the slow viscous flow of a fluid through a random porous medium is 
considered. The macroscopic Darcy’s law, which defines the fluid permeability k, is 
first derived in an ensemble-average formulation using the method of homogeniz- 
ation. The fluid permeability is given explicitly in terms of a random boundary-value 
problem. General variational principles, different to  ones suggested earlier, are then 
formulated in order to  obtain rigorous upper and lower bounds on k. These 
variational principles are applied by evaluating them for four different types of 
admissible fields. Each bound is generally given in terms of various kinds of 
correlation functions which statistically characterize the microstructure of the 
medium. The upper and lower bounds are computed for flow interior and exterior to  
distributions of spheres. 

1. Introduction 

described by Darcy’s law (Scheidegger 1960 ; Dullien 1979) : 
The slow flow of an incompressible, viscous fluid through porous media is often 

k 
P 

u = - - vpo ,  

where Uis the average velocity, V p ,  is the applied pressure gradient driving the flow, 
,u is the fluid viscosity, and k is the fluid permeability which depends upon the 
random microstructure. There have been numerous attempts to rigorously derive 
(1 .1) .  While the case of periodic geometry is now well understood (Tartar 1980; 
Keller 1980), little is known about flow in random geometries. Indeed, a rigorous 
derivation of (1.1) for flow through a highly dilute random array of fixed obstacles 
was given only recently by Rubinstein (1987). Simultaneously, many authors have 
attempted to compute k assuming that (1.1) is valid. The permeability, in general, 
depends upon an infinite set of correlation functions which statistically characterize 
the medium, however ; and except for specially prepared artificial media, this set of 
functions is never known. Again, in the periodic case, there are detailed results: both 
analytical (Hasimoto 1959) and numerical (Zick & Homsy 1982; Sangani & Acrivos 
1982) ; whereas only dilute systems were studied for random microstructures using 
various effective-medium approximations whose validity is not yet clear (Brinkman 
1947 ; Lundgren 1972 ; Childress 1972 ; Hinch 1977). 
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Another approach concentrated on obtaining rigorous bounds for the permeability 
k .  Bounds on effective parameters of random media are useful since : (i) they may be 
used to test the merits of a theory or computer-simulation experiment, (ii) as 
successively more microstructural information is included, the bounds (generally) 
become progressively narrower, and (iii) one of the bounds can typically provide a 
good estimate of the effective property, for a wide range of volume fractions, even 
when the reciprocal bound diverges from it (Torquato & Lado 1986). There are three 
basic steps involved in obtaining variational bounds on effective parameters of 
disordered media : 

(1) defining the effective parameter in terms of some functional; 
(2) formulating an appropriate variational (extremum) principle for this 

functional ; 
(3) and constructing trial fields which conform with the variational principle (i.e. 

admissible fields). 
Prager (1961) and Weissberg & Prager (1970) were the first to  derive upper bounds 

on k. These bounds are referred to  as ' three-point ' bounds since they involve up to 
three-point correlation function information. It should be noted that their 
derivations were formulated through physical reasoning and that the Prager and 
Weissberg-Prager variational principles (and their respective admissible fields) were 
different, Berryman & Milton (1985) subsequently, using a volume-average approach, 
corrected a normalization constraint in the Prager variational principle. 

The main goal of this paper is to develop rigorous variational principles for flow in 
disordered porous media, and thus obtain rigorous upper and lower bounds on k. 
Both ensemble-average and volume-average formulations to the problem shall be 
presented. The ensemble-average approach is particularly useful in obtaining upper 
bounds on the permeability ; this avoids the difficulties encountered by Berryman & 
Milton (1985), Berryman (1986), and Caflisch & Rubinstein (1986) in handling 
boundary conditions for admissible fields in volume-average formulations. Torquato 
& Beasley (1987) recently reformulated the Weissberg-Prager variational upper 
bound on k in terms of ensemble averages. The Weissberg-Prager variational 
principle for the upper bound, however, is different to the corresponding principle 
derived in the present work. 

In  $2 we derive the Darcy formula (1 .1)  for random porous media using the method 
of homogenization in an ensemble-average formulation. We then rewrite k in terms 
of an energy functional. In  $ 3  we employ this functional to derive new variational 
principles for upper and lower bounds on the permeability. In  $4 we apply these 
variational principles by explicitly evaluating the averages involved for four 
different types of admissible fields. The bounds so obtained are shown to depend 
upon various kinds of n-point correlation functions. In $5 we review a formalism 
to represent and compute the different types of correlation functions which arise in 
the bounds. The bounds are computed for media composed of random assemblages 
of spheres in $6. This is followed by a discussion in $ 7 .  

2. Mathematical formulation 
2.1. Derivation of the Darcy equation 

There are several derivations of (1 .1)  (Neumann 1977; Keller 1980; Tartar 1980; 
Whitaker 1986 among others). We give here another derivation based on an 
ensemble-averaging approach. This will turn out to be useful in obtaining variational 
principles for the permeability. 
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The random medium is ti domain of space V(o) E R3 (where the realization a is 
taken from some probability space 0)  which is partitioned into two regions : the void 
(pore) region Vl(o), through which fluid flows, of volume fraction (porosity) q51 and 
a solid-phase region V 2 ( w )  of volume fraction q52. Let a V ( w )  denote the surface 
between Vl and V2. The characteristic function of the pore region is defined by 

1,  rE.%(m) 

0, rE"lrz(w) 
I ( r , o )  = 

The fluid motion satisfies the Stokes equations: 

pV2u = V p  in Vl, 

Veu = 0 in Vl, 

u = O  o n a Y .  (2.4) 

Here u and p are, respectively, the local velocity and pressure fields, and p is the fluid 
viscosity. 

We assume that the random medium has a microscopic lengthscale 1 (e.g. the scale 
on which I ( r , w )  varies) which is small compared with a typical macroscopic 
lengthscale L (e.g. the scale on which the applied pressure gradient varies). Therefore, 
there is a small parameter e = 1/L associated with rapid fluctuations in the structure 
of Vl(o), and we assume that the velocity u and the pressure p depend on two scales : 
a slow scale x and a fast scale y = x / e ,  i.e. 

p V 2 v ( x , y , 0 )  = V P ( X , Y , 0 )  in Y , " ( W ) ,  (2.5) 

V . u ( x , y , o )  = 0 in V;(UJ), (2.6) 

u ( x , y ,  w )  = 0 on aV. (2.7) 

We shall derive the global (macroscopic) equations governing the flow using a two- 
scale expansion : 

u ( x , y ,  0)  = e2uo(x,y, 0 )  +s3u,(x,y, w )  + ..., 
P(U>Y,  w )  = P , ( X )  + ePl(u,Y, 0)  + * * * ,  

(2.8) 

(2.9) 

(2.10) 
1 v = v,+-v,. 
e 

The particular form of our expansion is motivated by the analysis of Sanchez- 
Palencia (1980) for periodic structures. Note that the first non-trivial term in the 
expansion for u is of O(e2) (in contrast to the expansion for the pressure). Physically, 
this is a consequence of the small pore size [O(e)] and the no-slip boundary condition. 
Substituting (2.8)-(2.10) into (2.5) and (2.6) and collecting powers of e yields the 
leading-order equations 

p v ; ~ o ( x > Y , o )  = V , P l ( X ~ Y , ~ ) + V , P O ( ~ ) ,  (2.11) 

V , % ( X , Y , 4  = 0, (2.12) 

2 

~ z ~ ~ o ~ x , y , ~ ) + v ~ ' u l ( x , y , w )  = 0. (2.13) 
FLM 208 
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We now add the assumption that the medium is locally (i.e. on the y-scale) 
stationary. Ensemble averaging (2.13) gives 

v,' u(x)+(v~'u1(x>y7w)) = O, (2.14) 

where W )  = ( U O )  (4. (2.15) 

Here (.) denotes an ensemble average. The second term of (2.14) is now shown to 
be zero. Let VR be a large sphere of radius R centred a t  the origin. Then 

where aV, is the surface of the large sphere. Using the boundary condition u1 = 0 on 
a V ,  we have 

and letting R+ 03, we finally arrive at 

v,. V ( x )  = 0. (2.16) 

I n  order to analyse (2.11) and (2.12), we introduce the stationary random functions 
w(y,w) = [wij] and 7t(y,w) = [nil which are the solutions of 

Vi w = V, R- E in Vl(o), (2.17) 

V,. w = 0 in Vl(o), 
w=O onaV(w). 

(2.18) 

(2.19) 

Here E is the unit dyadic. We extend the quantities w a n d p  in the solid region V 2 ( w )  
to be zero. It is easy to verify that uo(x, y, o) and p l ( x ,  y,  o) can be written as 

1 

P 
v,(x , Y, 0 )  = - - VPO(4 - W(Y 9 a), (2.20) 

P,(x,Y,o) = VPo(x).4Y,o). 

W )  = --(W(Y,o)).VPo(x). 

Averaging (2.20), we obtain 
1 

P 
The permeability tensor is then defined by 

k = (W(Y, w)>.  

Therefore, (2.16) and (2.22) are rewritten as 

k 
P 

V ( x )  = --.Vpo(x), 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

v. U(x)  = 0, (2.25) 

which are the desired macroscopic equations : (2.24) being Darcy's law. Note that k 
is given explicitly in terms of the random boundary-value problem (2.17)-(2.19). 
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Henceforth, we assume the medium to be macroscopically isotropic, thus k = kE, 
where k = :( w: E) .  

2.2. Energy characterization of the Permeability 
We now express the permeability k in terms of an energy functional. 

Proposition 1 k = (Vw:VwI), (2.26) 

where w is defined by (2.28)-(2.30). 

vector equations ; the permeability is then redefined as 
Proof. For isotropic media, the auxiliary tensor equations (2.17)-(2.19) become 

k = (Wae"), (2.27) 

where e" is a unit vector and wCy, w )  solves 

V2w = Vx-e" in V l ( w ) ,  (2.28) 

V.w = 0 in Vl (w) ,  (2.29) 

w = 0 on aVl(o). (2.30) 

(Note that subscript y has been dropped from the gradient and Laplacian operators.) 
Multiplying (2.28) by w and averaging yields 

k = (w-2) = (w.Vn)-(w.V~w}. (2.31) 

We now integrate the right-hand side of (2.31) by parts and proceed aa in the 
derivation of (2.15). Boundary terms vanish identically because of the stationarity 
of w and n, and by (2.30). Thus, we obtain 

k = -(TV.W)+(VW:VW). 

The proposition follows from the incompressibility condition (2.29) and the extension 
of w into Vz. 

3. Variational principles and bounds 
We consider deriving reciprocal variational principles for the boundary-value 

problem described by (2.28)-(2.30). From these principles we then deduce upper and 
lower bounds on the permeability. 

First we modify (2.28)-(2.30) slightly by introducing the functions q = yw and 
5 = yn, where y is some positive constant. Then q and C solve 

V2q(y, 0) = v a y ,  w )  -ye" in <(a), 
V.q(y,w) = 0 in <(a), 

q@, 0) = 0 on aV(o), 

k = - ( q - e )  = -(q-e"I).  

and k satisfies 
1 1 

Y Y 
Proposition 2 -upper bound 

Let A be the class of vector fields u defined by the set 

A = {smooth, stationary functions u(y, w )  such that 
V x (V2u+ye") = 0 in "y;}. (3.5) 

2-2 
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Then k is bounded from above by 
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, V U E A .  
( Vu : V U I )  

Y 2  
k <  

Proof. From Proposition 1 it  follows that 

(4 : QqO 
Y2 

k =  

Let now U E A .  Then there exists a function p"(y ,w)  such that 

v2u = Vp"- ye .̂ (3.7) 

Writing u = q + g ,  pu = <+ h, we get 

( VU: V U I )  = ( V q :  V q I )  + ( V g  : V g I )  + 2(Vq:  V g I ) .  

But from (3.7), i t  follows that Vzg = V h  and hence 

Thus, 

and Proposition 2 follows. 
The upper bound (3.6) that we derived here is different from the one proposed by 

other investigators (Weissberg & Prager 1970 ; Berryman & Milton 1985 ; Berryman 
1986). The normalization factor y2 in (3.6) is deterministic, in contrast to the 
normalization factor used in the aforementioned works, which is an integral over the 
random stress field. A formulation in which y is deterministic rather than stochastic 
is clearly preferred. 

Proposition 3 -lower bound 

( V q : V g I )  = ( V q : V g )  = - ( q * V h )  = ( h V - q )  = O .  

(Vu:  VUI) 2 ( V q :  V q l )  

Let B be the class of vector fields u defined by the set 

smooth, stationary functions u(y, o) such that u = 0 017 3.v; 

V - u  = 0 
B ={ 

in "y;, and (us&) = ( 4 - & I ) .  

Then k is bounded from below by 

Proof. Let U E B  and define u = q + g .  Then 

(VU:VUI)  = (Vq:VqI )+(Vg:QgI )+2(Vq:  VgI ) .  (3.10) 

Integrating the last term by parts and using V - g  = 0, we find 

( V q : V g I )  = y(g.c?I) = y ( ( u . i I ) - ( q . i I ) )  = 0. (3.11) 

Now eliminating y from (3.1) and (3.4), and applying Proposition 1,  we obtain 

(q.2I)2 
( V q  : V q l )  . k =  (3.12) 

Equation (3.12) together with (3.10) and (3.11) proves Proposition 3, i.e. lower bound 
(3.9), which is new. 
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Remark. In  certain instances it may be advantageous to use bounds that are 
cruder than (3.6) and (3.9), namely 

(3.13) 

(3.14) 

The reason for this is that computation of ( V u : V u )  involves less detailed 
microstructural information (i.e. lower-order correlation functions) than the 
evaluation of ( V u : V u l ) .  

Until now we have used an ensemble-average approach. An alternative derivation 
is possible by considering averages over a large but finite volume and then allowing 
the volume to expand to infinity. Let V be a large domain (in which we ultimately 
take the limit V + R3), a V  be the surface of the domain, and consider 

V2v = V p -  ye" in Vl, (3.15) 

W . v = O  inVl ,  (3.16) 

v = O  onCIV, (3.17) 

[~(vi,i+v,,()+psi,lni = 0 on CIV. (3.18) 

Here vi,* = V V ,  ni is a unit normal, and 8, is the Kronecker delta. Next we define the 
volume average 

(3.19) 
1 g = -  gdV. 
vsy 

Then the permeability k is given by 

(3.20) 
1 k = lim -=. 

v*w3 Y 
It is now possible to derive upper and lower bounds on k using volume averages 

that are analogous to the ensemble-averaged bounds (3.6) and (3.9). We shall just 
give the volume-averaged lower bound since this is the only one we apply. 

Proposition 4 
(3.21) 

(3.22) 

The proof of lower bound (3.21) is similar to the proof of Proposition 3 and hence 
will not be presented here. 

Our lower bounds (3.9) or (3.21) are different from the lower bounds of Rubinstein 
&, Keller (1987). In  fact, the Rubinstein-Keller bounds are lower bounds on the 
inverse of the effective drag coefficient of the medium, while (3.9) or (3.21) are lower 
bounds on the geometrical factor k in Darcy's equation. 

iz k 2 lim VUEB,,  

B , = ( u ;  W . u = O  inVl,  u = O  oni3V, u . e I = v . S I ) .  

v+Rs ut, j Ut , j I ' 
F -  

4. Examples of trial fields and bounds 
In  order to obtain explicit rigorous bounds on k for models of random porous 

media, we must construct admissible trial fields which are contained in the sets (3.5), 
(3.8), or (3.22), substitute such trial fields into the respective variational bound, and 
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finally perform the necessary averaging. In what follows, we derive four different 
types of bounds. 

4.1. Interfucial-surface upper bounds 

We rederive an upper bound on k first obtained by Doi (1976) using Proposition 2. 
Our derivation is different to his, and in fact we show that his bound corresponds to 
a special choice of a trial field in the set A ,  (3.5), and not to a new variational principle 
as Doi stated. Specifically, we choose 

u, (Y ,o )  = Y W(Y-x).[eI(x)-9(X)M(x)ldx, (4.1) s 
where y~ is the Stokeslet given by 

and M ( x )  = IVI(X)l. (4.3) 

The vector field < ( x )  defined on the interfacial surface i3-Y- is arbitrary. Accordingly, 
we refer to this construction as the ' interfacial-surface ' approach. 

We now substitute (4.1) into (3.13) and compute the ensemble average (Vu,: Vu,). 
In so doing, we make use of the following two-point correlation functions: 

Fvv(r) = ( I ( y ) I ( y + r ) ) ,  (4.4) 

These functions are called void-void, surface-void, and surface-surface correlation 
functions, respectively. Such correlation functions and their generalizations (e.g. Fssv, 
Fsss, etc.) have been extensively studied by Torquato (1986b). We are free to choose 
c ( x )  subject to the constraint that (Vu, : Vu,) is finite. For simplicity we choose C ( X )  
to be a constant vector 5,. Then (3.13) yields 

The asymptotic behaviour of the correlation functions in (4.7) as Irl --t co is given by 

Fss(r) Q2, %(r) - s91, Fvv(r) 91, (4.8) 

where 4, = ( I @ ) )  is the expected volume fraction of the pore region V,, i.e. the 
porosity, and s = ( M ( y ) )  is the expected area of the interface 3-Y- per unit volume, 
i.e. the specific surface. Hence, the only choice of to for which the integral exists is 

Therefore, substitution of (4.9) into (4.6) yields 

(4.10) 

For statistically isotropic media, the correlation functions depend only on the 
magnitude r = Irl and we have 

(4.11) 
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The two-point upper bound (4.1 1) was first derived by Doi (1976). The derivation 
of (4.11) presented here, however, is new. The trial field (4.1) actually corresponds to 
a special choice of admissible fields in the set A .  We further remark that Doi made 
the choice (4.9) after ‘optimizing’ over all possible to. However, as we have argued, 
any other choice for 5, provides the trivial bound k Q 00, so there is actually no room 
for optimization. Note that (4.1 1) is valid for any microgeometry that is statistically 
isotropic. 

Phase-interchanged interfacial-surface bound . 

Consider obtaining the phase-interchanged version of (4.1 l),  i.e. consider deriving 
an interfacial-surface bound for flow occurring in phase 2 instead of phase 1.  Before 
doing so, it is useful to rewrite (4.11) in a more general notation: 

(4.12) 

In  (4.12), the superscript 1 emphasizes the fact that phase 1 is taken to be the void 
phase, i.e. the phase through which the fluid flows. 

Let us now return to the problem of obtaining interfacial-surface bounds when 
phase 2 is taken to be the void or pore phase. The equation V x (V2u+yk) = 0 of (3.5) 
must now be satisfied in “tr,. The admissible field we must use is then the phase- 
interchanged counterpart of (4.1), i.e. 

(4.13) 

where J ( x ,  0) = 1 -I(& 0) (4.14) 

is the characteristic function of phase 2. Therefore, use of (3.13) gives the upper 
bound 

where 

(4.15) 

is just the right-hand side of (4.12) and we have used the relations 

Equation (4.15) is the analogue of a phase-interchanged bound for the rate constant 
of diffusion-controlled reactions (Torquato & Rubinstein 1988). 

4.2. Void upper bounds 
Consider the following admissible field in the set A ,  (3.5) : 

(4.16) 

This is to be contrasted with the interfacial-surface trial field (4.1) with = (q4/s) 6, 
i.e. 

(4.17) 



34 J .  Rubinstein and S.  Torquato 

Recall that (4.17) leads to  the two-point bound (4.10) or, equivalently, (4.11). 
Consider the terms within the brackets of (4.16) and (4.17). Although the first terms 
are the same to within a factor of $ 2 ,  the second term of (4.16), unlike (4.17), does 
not involve interfacial information. As we shall discuss in $6, the surface integration 
of (4.17) is required in order to obtain the correct dilute-limit result for spheres. 
Substitution of (4.16) into (3.13) yields for general statistically isotropic media : 

n Pm 

(4.18) 

The two-point void bound (4.18) is equal to an upper bound obtained by Berryman 
& Milton (1985) using a different approach. First, Berryman & Milton use a different 
variational principle in which the normalization factor y is a stochastic rather than 
a deterministic quantity as in the present work. Second, they use a volume-average 
formulation for the variational upper bound. Unfortunately, it is difficult to 
construct admissible fields that satisfy the required boundary conditions in the 
volume-average approach. Nonetheless, our derivation demonstrates that (4.18) is a 
rigorous upper bound on k .  

Phase-interchanged void bound 
Consider obtaining the phase-interchanged counterpart of (4.18), i.e. consider flow 

occurring in phase 2 instead of phase 1.  The admissible field for the phase- 
interchanged principle (3.13) is then 

and hence we find the upper bound 

n Pm 

(4.19) 

(4.20) 

where we have employed the relation 

F:: - 4; = FkV - &. 
Finally, we point out that the void bounds given here are the analogues of bounds 
Torquato & Rubinstein (1988) derived on the rate of diffusion-controlled reactions. 

4.3. Multiple-Scattering Upper Bounds 
If the medium is composed of a distribution of inclusions and flow is considered to 
occur in the region exterior to the inclusions (phase l) ,  we can construct trial fields 
which are based on the solutions for scattering from a single inclusion, pairs of 
inclusions, etc. Accordingly, we refer to bounds so obtained as multiple-scattering 
bounds. For simplicity we shall consider here the case of a distribution of identical 
spheres with radius a. The single-sphere scattering function S(x, y )  is given by 

S ( x , y )  = [1 + W A I W ( X , Y ) .  (4.21) 

Note that the velocity field outside a single sphere moving with velocity U in an 
otherwise viscous, quiescent fluid is S -  U. We also define 

0, r < a  
1 ,  r > a  

(4.22) 
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to be the characteristic function of the exterior of a single sphere. Then we can 
construct the following single-scatterer trial field : 

(4.23) 

where ri denotes the position of the ith sphere and a is a parameter to  be optimized. 
It turns out that  the only choice for which the energy (Vu,: Vu, I )  is finite is a = l /p, 
where p is the number density of spheres. Trial fields of this type have been employed 
in the problems of conduction in composite media (Torquato 1986a), viscous flow in 
porous materials (Torquato & Beasley 1987), and in diffusion-controlled reactions in 
heterogeneous media (Rubinstein & Torquato 1988). Next we define the tensor z 
through 

z = V ( S . i ) + V ( S . l ) T ,  (4.24) 

where the second term of the right-hand side of (4.24) is the transpose of the first 
term. 

Substitution of (4.23) into (3.13) then yields the two-point upper bound 

where (4.26) 

is the total correlation function, pn(r l ,  . .., r,) is the probability density associated 
with finding n spheres with configuration rl ,  ..., r,, as defined by (5.1), y ,  = 
y - r i ,  y1 = JyJ, and rif = rj -r i .  For statistically homogeneous media, pl(r l )  = p. 
Note that the integrals of (4.25) are absolutely convergent; the second one is 
convergent since h(r)  tends to zero much more rapidly than r-3 as r+  co. Since the 
first integral in (4.25) can be computed explicitly, we have 

(4.27) 

The first term of (4.27) is the exact Stokes dilute-limit result. 
If we substitute (4.23) in (3.6), we obtain the following three-point upper bound: 

and G,(x; rQ) (n = 1 +q) is the point/q-particle distribution function (Torquato 
1986a) which gives the correlation associated with finding a point with position x in 
Vl and q spheres with configuration rQ = {rl, . . . , r,}. It is clear that G,(x; 6) = 0 if 
Ix-rJ < a, i = 1, ..., q. For stationary media, the G, depend only upon relative 
displacements, i.e. G,(x; ra) = G n ( x - r l ,  ..., x-rQ) .  The asymptotic behaviour of Q3 

for large separation of the points ensures the absolute convergence of the second 
integral of (4.28). An explicit representation of the G, is given in $ 5 .  

It must be noted that the multiple-scattering upper bound on k derived by 
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Torquato & Beasley (1987) using a probabilistic formulation of the Weissberg-Prager 
(1970) variational principle is very similar to (4.28). It was found that 

SC,lv1)r(y,):r(Y,)dr,t &,(Yl,Y,)~(Yl):~(r2)dr,dr, 
kd ss A2 > (4.30) 

where A is a multidimensional integral over the trial stress field acting over the 
random interface As noted earlier, the advantage of the present formulation is 
that the normalization factor is deterministic and does not have to be explicitly 
evaluated. 

4.4, Security-spheres lower bound 

We shall employ the security-spheres method to construct trial fields in the set B, 
(cf. (3.22)). This method goes back to Keller, Rubenfeld & Molyneux (1967) who used i t  
to  estimate the effective viscosity of suspensions. It has been used recently by 
Rubinstein & Keller (1987) to derive upper bounds on the effective drag coefficient, 
and by Rubinstein & Torquato (1988) to  study the reaction rate constant in 
diffusion-controlled reactions. 

Consider a distribution of N identical spheres with radius u. Let the distance 
between the ith sphere and its nearest neighbour be denoted by 2bi. For every 
sphere d we consider the domain defined by itself and a concentric ‘security’ sphere 
of radius bi. In that domain we solve 

V2ui = Vpi  in a < Ix-rJ < b,, (4.31) 

V . u i  = 0 in a < Ix-rJ < b,, (4.32) 

ui = 0 on Ix-ril = a, (4.33) 

ui = U on Ix-rJ = bi, (4.34) 

where U is an arbitrary constant vector. Now a trial field w(x) in B, (cf. (3.22)) is 
defined to be equal to ui for a < Ix-rJ < b, and equal to U when x is outside all the 
security spheres. Without loss of generality, we choose 6 (and U) in the positive 
x-direction. The incompressibility of the flow implies 

u,e^dx = $xb3U. (4.35) s a<Ix-rtl<bt 

Thus the numerator in (3.21) is identically V. The only contributions to the rate 
of energy dissipation are from the security spheres. I n  the kth 
(Happel & Brenner 1983): 

~ ~ ~ u ~ , ~ d x = 6 n a V f  s a < /x-rk/ < bk 

where 
9a 5a3 9a5 

f ( a )  = (1-a5) ( 4 2 4  1 - - + - - - + ~ 6  

Hence we obtain from (3.21) 

where a, = a /bk  

security shell we find 

(4.36) 

(4.37) 

(4.38) 

(4.39) 
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and p is the sphere number density. Scaling k with the Stokes permeability 
ks = (6nap)-l, and using the law of large numbers we have 

(4.40) 

Here H ( b )  is the probability density of spheres with nearest neighbour at distance 
2b. The bound (4.40) coincides with the Rubinstein-Keller bound on the effective 
drag coefficient. This is, however, merely a coincidence and results from our 
particular choice of u' ((4.31)-(4.34)), and the identity (4.35). Other trial fields (e.g. 
in the spirit of Torquato & Rubinstein 1989) would yield improved bounds. We 
believe, though, that before searching for better trial fields, one should first calculate 
H(b)  for realistic geometries. We are currently working on that problem. 

5. Statistical characterization of the microstructure 
In  order to compute the aforementioned bound, one must be able to determine the 

correlation functions that are involved. Torquato (1986b) has recently developed a 
general framework from which one may derive and calculate all of the various kinds 
of correlation functions that have arisen in expressions for transport, mechanical, 
and electromagnetic properties of two-phase disordered media composed of random 
distributions of inclusions. This is accomplished by introducing a general n-point 
distribution function H ,  for such a medium. 

Consider a random distribution of N identical spheres of radius a with positions 
rN E { r l ,  .. . , r,}. Let PN(rN)  be the probability density function associated with the 
event of finding particles 1, . . . , N with configuration r N ,  respectively. Then 

n -- N !  k N ( r N )  drn+l . . . dr, 
p n ( r  I - (N-n) ! 

is the probability density function associated with finding any subset of n( < N )  
particles with configuration r". Let phase 1 and phase 2 be the space exterior and 
interior to the spheres, respectively. Among other quantities, Torquato (1986 b )  
defines and obtains a series representation of the following general n-point 
distribution for such a system of particles: 

where 

; x P - ~  ; rq) = Correlation associated with finding a point with position x, on 
i3.v; ..., and a point with position x, on ac and a point with 
position x,+~ in "y;, ..., and a point with position x p  in Yl, 
and of finding any q spheres with configuration r"l, where 
XP-m (x,+~, ..., x,} and n = p + q  
m 

= (-  l)iH',Z)(xm ; xP-, ; rg), (5 .2)  
i-0 
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P 
m(P) = 1- n [l-m(yij;Ri)], 

i-1 

(5.7) 

and yij = Ixi - r J .  Note that the H ,  are quite general and contain, as special cases, all 
of the aforementioned statistical quantities [e.g. s = H,(x ,  ; 0 ; a), = H , ( @ ;  x ,  ; 

O;rn),  S,(xn) = H , ( @ ; x " ; f a ) ,  and Gn(x , ; rq )  = H , ( @ ; x , ; r q ) ,  whcrc 0 denotes 
the empty set] and their generalizations [e.g. Fssv(xl ,xz ,x3)  = H3(x1,x2 ; x,; @), ctc.]. 
Here S,(xn)  is the probability of finding n points in phase 1 (e.g. AS, = 9, and 
S,  = Fvv) : quantities first studied by Torquato & Stell (1982). The derivatives of (5.3) 
serve to bring out information about the interface. It is important to emphasize that 
the H ,  are given in terms of the probability density functions that characterize the 
configuration of the inclusions, i.e. the p,. Given the p n  for the ensemble, one may now 
compute the H ,  using (5.2)-(5.7). Finally, we remark that Torquato (19863) actually 
studied n,-point distribution functions that characterize media that are more general 
than the class of models considered here. 

Models of random media composed of identical spheres are not as restrictive as one 
might initially surmise. For example, the spheres can be distributed with an 
arbitrary degree of impenetrability A. One can construct. models in which the 
impenetrability parameter h varies continuously between zero (in the case where 
the sphere centres are randomly centred, i.e. 'fully penetrable ' spheres) and unity 
(in the instance of totally impenetrable spheres). The topological property of 
'connectedness' of the sphere phase is clearly dependent upon the degree of 
impenetrability A, e.g. for fully penetrable spheres ( A  = 0) and an equilibrium 
distribution of totally impenetrable spheres ( A  = l ) ,  the sphere phase percolates (i.e. 
a sample-spanning cluster appears) a t  a sphere volume fraction q52 of about 0.3 (Haan 
& Zwanzig 1977) and 0.64 (Berryman 1983), respectively: the latter value 
corresponding to the random-close-packing limit. (It is noteworthy that a fully 
penetrable-sphere system is bicontinuous for 0.3 < $2 < 0.97, where $, x 0.97 
corresponds to the point a t  which the space exterior to the spheres first become 
disconnected (Elam, Kerstein & Rehr 1984).) Therefore, interpenetrable-sphere 
models can be used to study fluid transport in both unconsolidated media (e.g. beds 
of discrete particles) by setting h = 1 and consolidated media (e.g. sandstones, 
sintered materials, etc.) by considering h < 1. For h < 1, fluid can flow in the 
connected region exterior or interior to the sphere phase (e.g. for h = 0, fluid can flow 
in the space exterior to the spheres for 0 < $, < 0.97 or inside the sphere phase for 
0.3 Q $2 < 1). Note that information about the impenetrability of the spheres 
in equation (5 .2 )  for the H ,  enters through the p n  defined by (5.1).  

An example of an interpenetrable-sphere distribution is the permeable-sphere (PS) 
model (Salacuse & Stell 1982). I n  the PS model, the spheres are assumed to be 
(structurally) non-interacting when non-intersecting, with a probability of inter- 
section given by a radial distribution function g(r )  = 1 -h[g(r )  = p, ( r ) /p2 ] ,  
independent of the interparticle separation distance r when r < 2a. Another example 
of an interpenetrable-sphere distribution is the penetrable-concentric-shell (PCS) 
model (Torquato 1984). In  the PCS model, spherical particles of radius a are 
randomly distributed subject to the condition of a mutually impenetrable core region 
of radius ha, 0 < h < 1. Each sphere may be thought of as being composed of an 

0), J'sv(xl3~2) = HZ(x1; x2 ; fa), F s s ( ~ 1 , ~ 2 )  = H,(x , ,x , ;  0 ; 0 ) 3  pn(r")  = H n ( 0  ; 
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FIGURE 1. A computer-generated realization of a distribution of disks of radius a = tu (shaded 
region) in the PCS model (Torquato 1984). The disks have an impenetrable core of diameter hu 
indicated by the smaller, black circular region. Here A = 0.5 and q52 = 0.3. 

impenetrable core of radius ha,  encompassed by a perfectly penetrable concentric 
shell of thickness (1 - A )  a (cf. figure 1). I n  the PS model, two particle centres may 
lie arbitrarily close to  one another such that the probability of overlap is 1 - h ; in the 
PCS model no two particle centres may lie closer than the distance 2ah. Moreover, 
although the PS model assumes a condition of thermal equilibrium, along with the 
constraints explicitly stated above, the PCS model is not restricted to  an equilibrium 
ensemble of particles. The impenetrability condition of the internal hard core of 
radius Aa does not uniquely determine the distribution in the latter model. Hence, 
in the PCS model, one may assume an equilibrium or some non-equilibrium 
distribution, such as random sequential addition (Widom 1966). I n  the following 
section, we shall report, among other results, bounds on the permeability for 
distributions of spheres in both the PS and PCS models. 

6. Evaluation of bounds 
6.1 Evaluation of the interfacial-surface upper bounds for distributions of spheres 

Flow around spheres 
Employing the series representation o€ the general n-point distribution function 

H , ,  (5.2)-(5.7), Torquato & Beasley (1987) computed the interfacial-surface upper 
bound (4.12) for flow around identical spheres of radius a in both the PS and PCS 
models : 

k(1) 

- < 1 -&42 + O(&), (6.1) 
ks 

where k, = 2a2/9$, (6.2) 

is the exact Stokes dilute-limit result, and where 
K ==+?A 

2 8  
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is the scaled second-order coefficient in the PS model. K ,  accounts for interactions 
between pairs of spheres. As the impenetrability parameter h increases, the 
coefficient K,  increases (since the surface area of the obstacles increases) ; thus the 
upper bound on k(l)  decreases with increasing h for fixed but small $z.  Torquato & 
Beasley computed K ,  numerically in the PCS model and found that for h = 0.2, 0.4, 
0.6, and 0.8, K ,  = 1.88, 1.96, 2.30, and 2.36, respectively. Note that for the extreme 
limits h = 0 and h = 1, the PS and PCS models are the same for any sphere 
concentration, assuming an equilibrium distribution. Moreover, although an 
equilibrium ensemble of spheres in the PCS model is generally different to the 
corresponding model in the non-equilibrium random-sequential ensemble (Widom 
1966), they are the same up to the level of the third virial coefficient and hence the 
Torquato-Beasley results for the PCS model apply as well to this non-equilibrium 
distribution. 

It is of interest to compare the low-density bound (6.1) to the low-density 
expansion of k( l )  obtained from effective-medium approximations (Brinkman 1947 ; 
Lundgren 1972 ; Childress 1972 ; Hinch 1977) for totally impenetrable spheres : 

The expansion (6.4) predicts an O($%) correction to the Stokes-law limit as opposed 
to an O(q5,) correction from the bound (6.1). The non-analytic dependence on q5z (cf. 
(6.4)) is a direct consequence of hydrodynamic screening effects. Clearly, for dilute 
conditions, the q5: term is the dominant one. It is difficult to construct trial fields 
which incorporate screening and simultaneously satisfy the conditions of the set A ,  
(3.5). On the other hand, it is difficult to treat flow around overlapping spheres using 
effective-medium approximations. Moreover, a t  small porosities, effective-medium 
theories are not accurate and hence, for high solid volume fractions, bounds provide 
the only rigorous means of estimating the permeability. 

Upper bound (4.12) has been computed to all orders in $, for flow around fully 
penetrable spheres (cf. figure 2) by Doi (1976) and totally impenetrable spheres by 
Torquato (19863). We refer to the former as the ‘Swiss-cheese’ model, i.e. the case 
in which transport occurs exterior to fully penetrable spheres. For subsequent 
discussion, we summarize these results in figure 3. It is noteworthy that the upper 
bound for A = 1 given in the figure is the closest that a rigorous bound has come to 
the empirical Kozeny-Carman relation. 

Flow inside spheres 
Here we shall compute the phase-interchanged interfacial-surface bound (4.15) for 

flow interior to fully penetrable spheres ( A  = 0) of radius a, i.e. the void phase (phase 
2) is the sphere phase. We term this the ‘inverted Swiss-cheese’ model. For fully 
penetrable spheres, the n-particle probability density pn is simply equal to p” and 
hence the two-point correlation functions that arise in (4.15) can be obtained 
analytically from (5.2)-(5.7). For example, the number density of spheres p is 
related to (the volume fraction of the solid region) by the simple expression 
$1 = exp ( - T ) ,  where 7 = 3 a 3 p  is a reduced density. (This is to be contrasted with 
the case of totally impenetrable spheres for which $1 = 1-7.) Furthermore, for 
h = 0, the specific surface s = 3174Ja (whereas for h = 1, s = 3$, /a) .  As noted 
earlier, for $, < 0.03, the solid region is disconnected and the obstacles are the oddly 
shaped ‘holes’ between the spheres (cf. figure 4). At q51 x 0.03, the space exterior to 
the spheres percolates. The permeability is expected to decrease as is increased. At  
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FIGURE 2. A computer-generated realization of fully penetrable (i.e. randomly centred) disks a t  
q52 x 0.5. Transport occurs outside the particles. We term this the ‘Swiss-cheese’ model. 

0.01 I I I I I 

0 0.2 0.4 0.6 0.8 1 
$2 

FIGURE 3. Upper bounds on the scaled permeability k ( l ) / k ,  versus the solid volume fraction 
q5z( k, = 2az/9q5,) : -, two-point interfacial-surface bound (4.12) for totally impenetrable spheres 
( A  = 1 )  computed by Torquato (1986b); ---, two-point interfacial-surface bound (4.12) for the 
Swiss-cheese model computed by Doi (1976) ; . . . . , three-point multiple-scattering bound (6.9) for 
the Swiss-cheese model. 
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I ‘  

I ‘  
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FIGURE 4. Distribution of fully penetrable disks at  a very high volume fraction of disks. The solid 
region (black area) is composed of the ‘holes ’ between the disks. Flow takes place in the disk region 
(white area). This is termed the ‘inverted Swiss-cheese’ model. 

dl x 0.7, the sphere phase (the region in which transport takes place) ceases to 
percolate ; and hence, a t  this transition, the permeability must vanish. 

It is of interest to study the behaviour of (4.15) for the inverted Swiss-cheese model 
in the limit $, < 1. Denoting the right-hand side of (4.15) by k z )  and carrying out the 
asymptotic expansion, we find 

Since the holes are not spherically symmetric, result (6.5) cannot be expected to be 
the exact dilute limit. This is in contrast to the other extreme case $z < 1 for the 
Swiss-cheese model (flow around fully penetrable spheres) where bound (4.11) 
captures the Stokes dilute limit. We do conjecture, however, that the dilute limit of 
k@) is of the form caz(lnq51)-2q51-1, with c d $. 

In figure 5 we plot the 
scaled permeability k ( 2 ) / k ,  (where k,  = 4a2/9(ln q51)2q51) as a function of the volume 
fraction of the solid region. Note that the spike which appears in the figure for small 
q51 has no physical significance ; it is the result of our use of the scaling factor k,. 

We compute (4.15) for the case h = 0 to all orders in 

6.2. Evaluation of the void upper bounds for distributions of spheres 
Flow around spheres 

Consider calculating the void upper bound (4.18) for flow around a dilute array of 
equisized spheres. Using the low-density expansion of F,, for a distribution of 
identical spheres of radius a (Torquato & Stell 1982), we find 

k(’) d a 2 [ z + O ( l ) ] .  W2 

Unlike the interfacial-surface upper bound (cf. (6.1)), the void upper bound does not 
give the exact Stokes result (6.2) in the limit q5z -+ 1.  
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6 

FIQURE 5. The scaled permeability k ( 2 ) / k ,  (where k, = 4~~/9(lng5,)~g5,) as & function of the solid 
volume fraction for the inverted Swiss-cheese model in which the spheres have radiue a. 

Flow inside spheres 
Suppose we now consider evaluating the phase-interchanged void bound (4.20) for 

the inverted Swiss-cheese model (cf. figure 5). Then for small concentration of the 
trap phase < l),  bound (4.20) yields 

which is not as sharp as the interfacial-surface counterpart (6.5). 

6.3. Evaluation of the multiple-scattering upper bounds for distributions af spheres 
Here we calculate the multiple-scattering upper bounds (4.27) and (4.28) for flow 
around spheres. First consider the exact evaluation of the two- and three-point upper 
bounds to all orders in $2 for the case of fully penetrable spheres ( A  = 01, i.e. the 
Swiss-cheese model. For such distribution, h(r)  = 0 for all r ,  and the two-point upper 
bound (4.27) simply gives 

Comparing (6.8) to the interfacial-surface upper bound (4.12) for h = 0 reveals that 
the latter is the sharper of the two through all orders in q52, For this model, the G,, 
described by (5.2), are trivial (Torquato 1986a b ) ,  and the three-point bound (4.28) 
yields 

which is clearly a better upper bound than (6.8). Therefore, incorporation of 
additional statistical information in multiple-scattering-type bounds leads to 
progressively sharper bounds. In figure 3, we include lower bound (6.9). Although 
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(6.9) contains three-point information, i t  is seen (from figure 3) that for the Swiss- 
cheese model, it is inferior to the interfacial-surface upper bound (4.12) which 
contains only two-point information (see discussion in $ 7). 

This last statement will not be true for all A, however. For example, using the low- 
e- density expansion of (5.2) for the cases n = 2 and 3, the three-point multi] 

scattering bound yields an expansion of the form of (6.1) with 

K ,  = i+h(31n3++3 (6. 

in the PS model (Salacusc & Stcll 1982) and 

0) 

h(l+7h) h 
16(2h+1)2+16(2h+1)4 

K 2 2  = 3 - h 6 + ~ h 4 + ~ h 2 - ~ A  +2(1+ 3h2) In (2h + 1)- 
(6.11) 

in the PCS model (Torquato 1984). Comparing (6.10) and (6.11) to the corresponding 
results for the two-point interfacial-surface bounds (cf. $6.l), reveals that for a large 
range of h (for h > 0.356 in the PS model and for h > 0.520 in the PCS model), the 
three-point multiple-scattering bounds are sharper than the two-point interfacial- 
surface bounds. The reason why the former are superior to the latter for large h is 
discussed in $7. 

Finally, we compare our results on multiple-scattering bounds to previous results. 
Although the two-point bound (6.8) for the Swiss-cheese model is new, the 
corresponding three-point bound (6.9) was first obtained by Weissberg & Prager 
(1970). Moreover, the low-density results (6.10) and (6.11) for the PS and PCS 
models, respectively, were first obtained by Torquato & Beasley (1987) by evaluating 
the ensemble-averaged version of the Weissberg-Prager bound (4.30) for these 
models. It is conjectured that (4.29) and (4.30) are identical for equisized spheres for 
arbitrary h and Again, it must be emphasized that the variational principles 
leading to these results are different (cf. $3). 

7. Discussion 
The problem of characterizing the permeability of porous media, and deriving 

rigorous bounds for it, has been solved here. It was discovered recently by Berryman 
& Milton (1985) and by Caflisch & Rubinstein (1986) that  there are difficulties with 
the original works of Prager (1961) and Weissberg & Prager (1970). We have settled 
this controversy by deriving Darcy’s law from the microscopic equations using an 
ensemble-average formulation and the two-scale expansion. From this result we are 
able to obtain the correct energy representation of the permeability (2.26) and then 
use this definition to derive rigorous upper and lower bounds for it ((3.6) and (3.9), 
respectively). Having completed the theory in $3, we turned to the computation of 
particular bounds for certain models of random media. We have shown that some 
heuristic bounds suggested previously (Doi 1976 ; Berryman & Milton 1985 ; Torquato 
& Beasley 1987) are, in fact, rigorous. Since all the bounds are derived from a single 
theory, i t  is easy to compare them. 

Three types of upper bounds on the permeability have been derived : interfacial- 
surface, void, and multiple-scattering bounds. For a given level of microstructural 
information, the interfacial-surface bounds are the sharpest among the three bounds 
and the void bounds are the weakest. We conclude that, in general, the interfacial- 
surface bounds ($4.1) are preferred since they capture better the local geometry and 
are robust in thc sense that they can be applied to media of arbitrary geometry, and 
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hence to real materials. On the other hand, the multiple-scattering bounds developed 
in 54.3 are limited to flow around distributions of inclusions. The advantage of these 
bounds, however, is that one can systematically upgrade them by including 
sophisticated multiple-scattering solutions. 

It is interesting to observe that for dispersions of non-overlapping spheres ( A  = l) ,  
the interfacial-surface trial field (4.1) and the multiple-scattering (4.23) are very 
similar. This is the result of our choice for 6 in (4.9) and the mean-value theorem for 
biharmonic functions 

As in the analysis of the analogous bounds for the rate of diffusion-controlled 
reactions (Rubinstein & Torquato 1988), one can use result (7.1) to explain why the 
two-point interfacial-surface bound is weaker than the three-point multiple- 
scattering bound for sphere distributions characterized by a large degree of 
impenetrability h and why the converse is true for small A. 

We also derive a new lower bound on the fluid permeability. Lower bounds are 
much harder to obtain than upper bounds. In fact, it was conjectured in the past that 
it is not possible to write such bounds at  all. Using the security-spheres method, we 
derived the simple formula (4.40) in terms of the nearest-neighbour distribution 
function. We are currently in the process of evaluating this function for several 
models. Another direction we are taking is to find interfacial-surface bounds which 
use three-point (or more) correlation functions. 

Finally, we remark that while approximate theories exist to predict k, bounding 
methods provide the only rigorous means of obtaining reasonable estimates for 
effective parameters of real media for arbitrary porosities, and there lies their 
practical importance. 
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