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The two-point cluster function C,(r,,r,) is determined for a D-dimensional interpenetrable-
sphere continuum model from Monte Carlo simulations. C,(r,,r,) gives the probability of
finding two points, at positions r, and r,, in the same cluster of particles, and thus provides a
measure of clustering in continuum-percolation systems. A pair of particles are said to be
“connected” when they overlap. Results are reported for D = 1,2, and 3 at selected values of
the sphere number density p and of the impenetrability index A, 0<A<1. The extreme limits
A =0and 1 correspond, respectively, to the cases of fully penetrable spheres (““Swiss-cheese”

model) and totally impenetrable spheres.

1. INTRODUCTION

As is well known, the overall (or effective) transport,
mechanical, and electromagnetic properties of a disordered
heterogeneous medium, such as a composite, porous materi-
al, micellar dispersion and colloidal suspension, depend in a
complex fashion upon the morphology ' of the medium. In
particular, it is important to ascertain morphological infor-
mation regarding the degree of clustering in the heterogen-
eous material since it can dramatically influence the effective
property; the most notable state being when an infinite clus-
ter forms, i.e., at the percolation transition. Some examples
of problems in which clustering plays a major role is the
conduction of electricity or heat through a composite, chem-
ical reactions among reactive sinks, flow in porous media,
breakdown phenomena (e.g., dielectric, mechanical
strength), particle aggregation in microemulsions and col-
loids, and conductor-insulator transition in liquid metals.

Rigorous relations for effective properties'™ are ex-
pressible in terms of various types of correlation functions.*
A commonly employed correlation function is the so-called
n-point probability function S, (r,,...,r, ), which gives the
probability of finding » points at positions r,,...,r, all in one
of the phases.* Unfortunately, only the lower-order correla-
tion functions can be determined in practice and these quan-
tities do not contain information about clustering in the ran-
dom medium. Recently, Torquato et al’> introduced a
correlation function, referred to as the two-point cluster
function C,(r,,r,), that reflects information about cluster-
ing in general continuum-percolation models. Specifically,
for any two-phase random medium, C,(r,r,) gives the
probability of finding two points, at positions r, and r,, in the
same cluster of one of the phases. Unlike other commonly
employed lower-order correlation functions, such as the
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two-point probability functions S,(r,,r,),* the two-point
cluster function becomes long ranged as the percolation
threshold is approached from below, thus providing a better
signature of the microstructure. Moreover, incorporation of
such information in rigorous theories for effective properties
of continuum systems, could lead to sharp estimates of the
properties even near the percolation point.

Torquato et al.” also obtained an integral representation
of C, for the continuum model of a distribution of inclusions.
Using this series representation, they were able to study
some general asymptotic properties of C,. For example, it is
rigorously shown that C,(7) becomes long ranged for large
r. In the case of impenetrable particles which form clusters
only as the result of interparticle contacts, it is shown that
the second derivative of C,(r) with respect to r is related to
the average coordination number (i.e., average number of
particles touching each particle). They then evaluated C, for
a continuum model of a distribution of “sticky” spheres in
the Percus-Yevick approximation.

In this paper, we shall obtain the two-point cluster func-
tion from computer simulations for isotropic distributions of
D-dimensional spheres in the penetrable concentric-shell
(PCS)® model. This is a useful and versatile model for which
to study clustering in continuum systems.” In this model,
each D-dimensional sphere of diameter o is composed of an
impenetrable core of diameter A¢, encompassed by a perfect-
ly penetrable shell of thickness (1 — A)o/2 (cf. Fig. 1). The
extreme limits A = 0 and 1 correspond, respectively, to the
cases of fully penetrable (i.e., randomly centered) and total-
ly impenetrable spheres. (The instance of fully penetrable
spheres is sometimes referred to as the “Swiss-cheese’ mod-
el.) A pair of particles are said to be “‘connected” when they
overlap.

In Sec. II we shall briefly describe the integral represen-
tation of C, and analytically evaluate it for D = 1 up to two-
body graphs. In Sec. III we discuss our simulation proce-
dure. In Sec. IV we present and discuss computer-simulation
results for C, for D = 1,2, and 3 in the PCS model for various
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FIG. 1. A computer-generated realization of a distribution of disks of radius
0/2 (shaded region) in the PCS model. The disks have an inner hard core of
diameter Ao indicated by the smaller, black circular region. Here A = 0.5
and the volume fraction of disks is approximately 0.3.

values of the impenetrability parameter A and sphere volume
fractions. Finally, in Sec. V we give our conclusions.

Il. INTEGRAL REPRESENTATION OF C,

Torquato et al.’ derived an exact integral representation
of the two-point cluster function for the special case of a two-
phase random medium composed of a distribution of identi-
cal inclusions whose coordinates are fully specified by a cen-
ter-of-mass position r;(e.g., spheres, oriented squares,
cubes, ellipses or ellipsoids). In diagrammatic notation,® we
shall only present their results up to two-body graphs:

Cror) =/ N\ 41  §-1,
g D0 00
1 2 1 2 1

RN ,:*'\ i + higher-order graphs, (1

S DT d graphs, (1)

1 2 1 2
where — — — is an m bond andwris a P, bond, where P, is the
pair-connectedness function. The quantity p* P, (r,,r,) is the
probability density associated with finding two particles cen-
tered at r, and r, which are connected, i.e., which are
members of the same cluster of size at least two. Here p is the
particle number density and m is the particle indicator func-
tion defined by
1, xis interior to the inclusion,

m(x) = {0, otherwise. 2)

For a D-dimensional sphere of diameter ¢ the indicator func-
tion is simply
1, x<o/2,
m(x) = { (3)

0, otherwise.

An exact evaluation of the two-point cluster function for
the D-dimensional PCS model at arbitrary density p and for

‘A <1 is an intractable problem since the graphs associated

with the n-body terms of Eq. (1) involve the unknown »-
body connectedness functions.’ For the special case of totally
impenetrable spheres and provided that the system density is
below the random-close-packing limit, calculation of Eq.
(1) is trivial since only monomers can form (i.e., clusters of
size two or more do not exist); this means that the only
nonzero term of Eq. (1) is the first graph. For a statistically
homogeneous medium, one has

7
/

\
O \b =pfm(|r,—r3|)m(]r2—r3|)dr3=pVi2“‘(r) s
1 2 (4)

where ViM(r) is the intersection volume of two D-dimen-
sional spheres of diameter ¢ separated by a distance
r=lr, —r,:

Vi) =(o—nb(o—r) (for D=1), (5)
" 1 .
Vit =§[—2—7r—sm '(—r-)

g

—5(1 ——:—2)1/2]0(0—r) (for D=2),
(6)
Vint =103[1_i(_r_)
2 (1) 6 2\o
1/r\?
+—(——) ]6’(a~r) (for D=3). (7)
2\0o

Here 6(r) is the Heaviside step function. It is important to
note that since the one-body graph is independent of the
structure of the system, result (4) applies as well to penetra-
ble particles. For finite penetrability (1 < 1), evaluation of
the n-body integrals of Eq. (1) for arbitrary p is nontrivial
and can only be accomplished using some approximation
scheme. To be sure, even the low density expansion of Eq.
(1) through order p? cannot be obtained analytically for
D22 because of the complexity of the last two-body graph as
shown.

Low-density expansion in one dimension. For D = 1, e-
valuation of Eq. (1) for the statistically homogeneous PCS
model through second order in p is relatively straightfor-
ward. As the result of Eq. (5), we need only evaluate the
two-body graphs of Eq. (1) (to lowest order) which requires
the zero-density limit of the pair-connectedness function:

0, O<«r<io,
Pz(r) = 1’
0, r>o0.

Ao<r<o, (8)

After substituting Egs. (3) and (8) into the two-body
graphs of Eq. (1), we find that the two-point cluster function
through order p? is exactly given by
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( o?

p(o—4) +p2[a'r(1 —A) -
&

2 A-1 —
p[ar( )+2

Cz(r) ={

\ 0, r>20.

Note that C,(#) =0 for r> 20 since clusters of size three
(trimers) or more are being ignored in the calculation. We
shall use result (9) to test our computer simulation results
given in Sec. IV.

1Il. SIMULATION DETAILS

We consider obtaining from computer simulations the
two-point cluster function C,(r) for the model of an isotrop-
ic distribution of D-dimensional spheres in the PCS model;
each sphere of diameter o possesses an inner impenetrable
core of diameter Ao, 0<A< 1. This task involves: (1) generat-
ing configurations of the random medium, and (2) sampling
for C,.

The first step of this process for fixed impenetrability
parameter A and reduced number density 7( = p¥,, where
V, = g, md*/4, and 70°/6 are the volumes of a 1D, 2D, and
3D sphere, respectively) is carried out using a standard Me-
tropolis algorithm.® A total of N particles are initially
placed, with no inner hard core overlaps, in a cubical cell of
volume L? on the sites of a regular lattice (square and sim-
ple cubic lattice for D = 2 and 3, respectively). Each particle
is then randomly moved by a small distance to some new
position which is accepted or rejected according to whether
or not the inner hard cores overlap. This process is repeated
until equilibrium is achieved. Each of our simulations con-
sist of 2400 moves, the first 400 of which are discarded before
sampling for equilibrium properties. C,(r) is sampled at in-
tervals of 20 moves per particle.

Sampling for C,(r) is equivalent to sampling for the
two-point probability function S,(r),* with the important
additional feature of having to check whether the two points
are connected to each other (i.e., whether they are in the
same cluster of one of the phases). Here we shall consider
clustering among the penetrable particles. C,(r) may be
found by tossing a large number of line segments of length »
at random orientations onto the penetrable images genera-
ted for a large number of representative configurations and
measuring what fraction of time both ends of the line seg-
ments fall in the inclusion phase and are connected to each
other. A faster way of obtaining C,(r) is to employ a “sam-
pling template” technique developed by Smith and Tor-
quato'® to sample for S,(r). Each D-dimensional template
(for D>»2) contains 36 points (76 points for 3D) arranged
uniformly on a ring (a spherical surface is used in 3D) at a
distance r from a central point, with a radial increment of
Ar = og/n (where n = 15 was used both for two and three
dimensions). A large number of sampling templates are used
to test each configuration.

(3—2/1—42)], o<r<(l—A4)o,

2
%—(r—Za)z, (1—-ADo<r<2o,

(1—1)2]’ 0<r<a’

(9

=

In order to check whether a point falls in the inclusion
phase, one could in principle check whether each D-dimen-
sional sphere in the system is within a distance 0/2 of the
point. This, however, is computationally too time consum-
ing. We instead use the “digitized GRID” method'' em-
ployed by us to measure the porosity; this technique was
used here to significantly reduce the computing time re-
quired to check whether a point lies in the included phase.
This method essentially involves subdividing the system into
square (cubical) pixels which have sides of length much
smaller than a particle diameter. One determines the pixels
which lie entirely in the included phase, those which lie en-
tirely outside the included phase, and those which lie in both
phases. One then need only check the neighboring pixels
about the random point of interest.

Checking connectivity. An important aspect of the simu-
lation procedure is the determination of whether the pair of
points in the included phase lie in the same cluster. Before
computing C,(r) one must first identify the clusters in the
system. In order to accomplish this we employ a modified
Hoshen—Kopelman'? cluster labeling algorithm. In order to
check the connectivity of the pair of points we employ so-
called “free boundary” conditions over the central and repli-
cated cells (i.e., periodic images). This algorithm was suc-
cessfully employed by us elsewhere'* to sample for the
pair-connectedness function and the results obtained were
found to approach infinite-system behavior much more rap-
idly than algorithms which used “standard” periodic bound-
ary conditions over the central cell, even near the percolation
transition. (For further details we refer the reader to Ref.
13.)

The central points of the templates are always randomly
chosen to be in the central cell. When the central point falls
near the central cell boundaries, some of the points on the
rings will lie in the nearest replicated cells. Checking to see
whether such points fall within the included phase can be
determined from the image points in the central cell, while
the connectedness algorithm is applied to the central point of
the template and those in the replicated cell (i.e., the original
points of the ring) for reasons mentioned above.

IV. RESULTS AND DISCUSSION
A. Simulations of C,(r) in one dimension

We have carried out Monte Carlo simulations of C,(r)
for the 1D PCS model under very dilute conditions in order
to test our algorithm. Specifically, we only considered real-
izations consisting of clusters of at most size two (i.e.,
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dimers). Hence, we attempted to choose 7 small enough
(77 = 0.001) so that no clusters of more than two particles
can appear. For 17 = 0.001, however, it is still possible to
have “unwanted” realizations with small probability. When
such clusters appeared, we simply discarded that realization
and attempted to generate a new one. Since the probability of
having such unwanted clusters is expected to be small at very
low densities, we believe that elimination of such realizations
does not affect the statistics of C,(7).

Simulations were carried out for A = 0and A = 0.5. For
each realization, C,(r) was calculated for 200 000 templates
(each of which contains 2 points for each r) and results were
averaged over 3000 realizations. Simulation results for 4 =0
are compared in Fig. 2 with the exact low-density calcula-
tion given in Eq. (9). Monte Carlo data are seen to be in
excellent agreement with the theory over the range of r,
0 <r<20. This validates our sampling method for C,(r).
We also performed simulations for A = 0.5 and for the same
7, and results were found to be in good agreement with the
exact relation (9) (not shown).

B. Simulations of Cx(r) in two and three dimensions

Following the procedure described in Sec. III we have
carried out simulations of C, (r) for the PCS model at select-
ed values of the reduced number density 7( = pmo?/4 for
D =2 and pma’/6 for D = 3) and impenetrability index A.
Figure 3 shows the two-point cluster function for fully pene-
trable disks (4 = 0) at n = 0.7, 1.0, and 1.125. (Note that
this system percolates at the critical value of 7. = 1.128; see
Ref. 13 and references therein. Thus, the value 7 = 1.125
reported here is very close to 7..) In order to study how
C,(r) converges to the infinite-system limit as the system
size increases, we have selected system sizes, for 7 = 1.0 and

x1073
1.0 T T T

0.8

Cy(r)

0.4
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0.0 L - o
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FIG. 2. The two-point cluster function C,(r) of the 1D PCS model for
A = 0 (fully penetrable rods) and % = 0.001. Points are computer-simula-
tion results with the number of particles N = 100, and solid line is obtained
from the exact low-density relation (9).
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FIG. 3. The two-point cluster function C,(7) from computer simulations of
the 2D PCS model for A = 0 (fully penetrable disks) and » = 0.7, 1.0, and
1.125 for various system sizes. Here the critical reduced density 5, =~1.128.

1.125, in which the number of particles N = 225, 400, and
625. Simulation results are generally insensitive to the size of
the system. Data for N = 225 are slightly smaller than those
for N = 400 and 625, indicating that finite-size effects result
in a slight underestimation of C,(r), similar to what was
found in our study of the pair-connectedness function and
mean cluster size.'® Results for N = 400 are not appreciably
different from those of the 625 particle system. For n = 1.0,
the differences essentially disappear (not shown), indicating
that finite-size effects are negligible for 7 below 7.

C,(r) at » =0 is generally the inclusion volume frac-
tion, ¢,, which in the case A = 0 is equal to 1 — exp( — 7).
(For 0 <A <1, the relationship between ¢, and 7 is nontri-
vial.'*'*) As rincreases, C,(r) generally monotonically de-
creases for all 77 and goes to zero for large  (evenat = 7. ).
As 7 increases and approaches 7., C,(r) becomes progres-
sively longer ranged, as expected. For 7 = 1.125, C,(r) at
r = 50 is about 41% of ¢, [i.e., C,(r) at r = 0], indicating
the presence of clusters which are substantially larger than
for the case of 7 = 0.7.

Simulation data for A = 0.7 and 0.9 are shown in Figs. 4
and 5, respectively. Although in these instances C,(r) de-
cays to zero as 7 increases (as for the case A = 0), the two-
point cluster function exhibits damped-oscillatory behavior
[as does S,(7), the two-point probability function studied by
Torquato and Stell and by Torquato and Lado*] due to ex-
clusion-volume effects associated with the nonzero hard
core radii (4 >0). This behavior is apparent already for
A =0.7 and 7 = 0.65 and becomes more pronounced for
higher 77 and A, as it does in the case of S,(7).'® This is
expected since for higher densities, more particles are con-
nected to one another than at lower densities and thus C,(r)
becomes closer to .S, (7).

Simulation results for the 3D case are plotted in Figs. 6~
8. Figure 6 shows C,(r) for fully penetrable spheres. For
77 =0.34, a value near the percolation-threshold value
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FIG. 4. The two-point cluster function C, () from computer simulations of
the 2D PCS model for A = 0.7 and 5 = 0.65, 0.74, 0.77. Here N = 625.

1. =0.35 (see Refs. 7 and references therein), simulations
were performed for systems in which N = 125, 216, and
512). As for fully penetrable disks, data are again relatively
insensitive to the system size. As in the 2D case, C,(r) for
fully penetrable spheres monotonically decreases with in-
creasing r. However, for large r there is an important distinc-
tion between the 2D and 3D instances. This point shall be
touched upon shortly.

For A = 0.8 (cf. Fig. 7), results for C,(r) are not differ-
ent from A = 0, except for small oscillations. The two-point
cluster function at fixed 7 decreases more rapidly for 4 = 0.9
(cf. Fig. 8) than for A = 0.8, except near the percolation
point (7. = 0.41, see Sevick et al.”). For example, for
17 =0.3, C,(r) for A =0.9 is negligibly small at » = 2.5¢,
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FIG. 5. As in Fig. 4 for A = 0.9 and = 0.65, 0.74, 0.77.
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FIG. 6. The two-point cluster function C,(7) from computer simulations of
the 3D PCS model for A = 0 (fully penetrable spheres). Data are from bot-
tom to top for n = 0.20, 0.30, and 0.34, respectively. Here the critical re-
duced density 7, =0.35.

whereas for 4 = 0and A = 0.8, C,(r) is not negligibly small.
This can be understood by examining the extreme case of
totally impenetrable spheres (1 = 1): a system for which
C,(r) = 0forall r>a, for any 7 < 17.. As A approaches unity,
clustering becomes increasingly inhibited, thus explaining
the observation noted immediately above. Of course, at the
percolation point, C,(7) will be long ranged, even when
A=1.

We now return to the consideration of the large » behav-
ior of C,(r) for the 2D and 3D cases when 7 is near 7.
Under such conditions, C,(r) for 3D systems decreases
more rapidly with increasing r than does C,(r) for 2D sys-
tems. (This is most easily seen by appealing to Figs. 3 and 6

0.4 T T f
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s n=0.30 i
0.3 a n=0.20
)
&
0
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0 1 2 3 4
r/o

FIG. 7. The two-point cluster function C, (r) from computer simulations of
the 3D PCS model for A = 0.8 and % = 0.20, 0.30, and 0.34. Here N = 512.
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FIG. 8. Asin Fig. 7 for 4 = 0.9 and 7 = 0.30, 0.38, and 0.41.

which describe fully penetrable particle systems.) The rea-
son for this involves the critical behavior of percolation clus-
ters. As 7—-17,., the major contribution to the long-range
behavior of C,(r) is from the infinite cluster (or the largest
cluster). Now if r» o, C,(r) will be proportional to the vol-
ume fraction of inclusions (which is part of the infinite clus-
ter) in the concentric D-dimensional spherical shell of radius
r and thickness A7 which is centered on the infinite cluster.
We denote this D-dimensional volume fraction, in the limit
Ar—0, by ¢i*(r). The infinite cluster is a fractal object and
possesses a volume in the D-dimensional sphere which obeys
the equation

V(ry~r", (10)

where D, is the fractal dimension. Hence, the D-dimensional
volume fraction ¢\* decreases as r increases in the following
manner:

AV(r) =P
rP-Ar
where AV (r) is the volume of the inclusions in the shell of

radius r and thickness Ar. Thus, with D, known for lattice
percolation,'® we find

#3(r) ~ , (1)

Cy(r)~r=9%3, (12)
in 3D, and
Cy(r)y~r=°%', (13)

S.B. Lee and S. Torquato: Continuum percolation

in 2D. Hence, this shows that C,(r) for the 3D case decays
more rapidly than the corresponding 2D counterpart.

V. CONCLUSIONS

We have derived an efficient algorithm to obtain, for the
first time, the two-point cluster function C,(r) of continuum
models of random media from computer simulations. In par-
ticular, we consider the D-dimensional PCS model for var-
ious values of the impenetrability index A. It is shown that
C,(r) becomes long ranged at the percolation transition,
thus confirming the theoretical results of Torquato e al.® As
7-1,, it is demonstrated that C,(r), for large r, decays
more rapidly in three than in two dimensions.
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