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We examine the n -point matrix probability functions S, (which give the probability of finding n points in the 
matrix phase of a two-phase random medium), for a model in which the included material consists of fully 
penetrable spheres of equal diameter (i.e., a system of identical spheres such that their centers are randomly 
distributed in the matrix). Exploiting the special simplicity of the model we give an explicit closed-form 
expression for S 3 as well as sharp bounds on S] and S 4' Our best lower bound on S] and our corresponding 
upper bound on S 4 satisfy certain asymptotic forms (for both small and large separation of points) that are 
satisfied by the exact S 3 and S 4 for impenetrable as well as penetrable spheres, even though the bounding 
properties of our expressions can only be guaranteed for penetrable spheres. These expressions (and the 
resulting approximation for S 4 in terms of S I and S 2 obtained from them) are thus highly appropriate 
approximants for both systems to be used in composite-media transport-coefficient expressions that involve 
integrals over the S,. The S 3 expression has in fact been suggested some time ago by Weissberg and Prager; 
our methods here provide further justification for this expression as well as one means of systematically 
generalizing it to S, for higher n . 

I. INTRODUCTION 

This is the third of a series of papers on the micro­
structure of two-phase random media. In the first two 
papers of this series, 1,2 we examined the microstructure 
of media composed of spheres in a uniform matrix. 
We related n-point matrix probability functions, Sn 
(which give the probability of finding n points in the 
matrix phase), to n-body distribution functions (which 
describe spatial correlations between n sphere cen-
ters) for any n, we showed how the Mayer-Montroll 
and Kirkwood-Salsburg hierarchies of statistical me­
chanics, for a certain binary mixture, become equations 
for the 5n , and we obtained rigorous upper and lower 
bounds on the 5n • The aforementioned work was formal 
in nature to the extent that the results were not used 
to calculate the 5n for particular interparticle potentials. 
The object of this study is to further examine the 5n 

for a system of fully penetrable spheres (Le., a system 
of spheres such that the particle centers are com­
pletely uncorrelated), exploiting the special simplicity 
of the model in order to obtain sharper results than those 
that come out of a general analysis. Such a model might 
be used in instances in which the actual two-phase ma­
terial possesses included regions of nearly random 
shape and size3- 5; it has been employed, with success, 
by Weissberg, 6 Weissberg and Prager, 7,8 DeVera and 
Strieder, 9 and Torquato and Stell10 for the purpose of 
predicting various bulk properties of two-phase random 
media. 

In what follows, we give an explicit expression for 
53 in terms of 51> 52 (which are elementary6 for this 
model) and the intersection volume of three spheres 
(apparently for the first time, although the various in-

gredients for such an expression have long been known). 
We also give the expression for the four-point matrix 
probability function in terms of 51> 52, 53, and the inter­
section volume of four spheres. We then obtain rigorous 
upper and lower bounds on both 53 and 54 uSing simple 
geometrical arguments. Such bounds appear good 
enough to be used as approximations for these lower­
order ~-point matrix functions when they appear in the 
rather complicated integrals that must be used in 
evaluating certain transport properties 10 of the model. 

We use the phrase "fully penetrable spheres" fre­
quently in this paper, in describing the model we study, 
rather than just penetrable spheres or "overlapping 
spheres." This is because it is easy to define models 
of included particles that are mutually penetrable only 
upon the expenditure of some energy, and, further, to 
parametrize the interaction potential associated with 
pairs of such particles so that the model includes im­
penetrable spheres at one end of the range of para­
metrization and fully penetrable spheres at the other. 
One of us has already considered such a model-the 
"permeable sphere" model-in another context,l1 and 
we utilize it in a subsequent study of two-phase media 
as well. 10 

For the reasons discussed in Sec. IV we expect both 
our lower bound on 53 and our approximant for 54 in 
terms of 51 and 52 to represent useful approximations 
for impenetrable spheres (and for the permeable-sphere 
model) as well as for fully penetrable spheres. The ex­
pression for 53 has already been suggested on essentially 
the same grounds for impenetrable spheres by Weissberg 
and Prager. 13 Our bounds on 53 and 54 and the latter's 
approximant in terms of 51 and 52 are new. 
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I 
FIG. 1. Realizable configuration for two-phase random medium 
in which particles are fully penetrable spheres. 

II. THE S IN THE FULLY PENETRABLE·SPHERE 
n 

CASE 

For any homogeneous sphere system of volume V we 
have shown that the Mayer-Montroll representation 
of the Sn is given by 

~ s 

= l+L (-l)Se, f··· fr( gs(rn+l,rn+2, ... ,r".s) 
s=1 s. ) 

x Xl {l-g [l-m(rij )l}dr j , (1) 

where 

m(r) = {
I, 

0, r>R' 

r<R 

g., is the s -body distribution function, p is the number 
density of spheres equal to N/V, N is the number of par­
ticles in the system, and R is the radius of a spher~. 1,2 

In the case of fully penetrable (overlapping) spheres 
of equal radius, the probability of observing a particle 
at particular locations in space is independent of the 
location of the other particles in the system (Fig. 1). 
Under such conditions, we have for a statistically homo­
geneous system 

g1S )(r 1,r2, ... ,rs)=g11>(r1)g12 )(r2)"'g1s )(r s ) = 1, (2) 

i. e., there exists no spatial correlation between par­
ticle centers. Substituting Eq. (2) into Eq. (1) gives 

Sn(rI2, rI3"'" rln) = 1 + t (- l)S P~ 
s:l S. 

,.... 
x J ... f II m(n)(rli' r2j, ••• , rnj)dr j (3) 

1,,...1 

Recall 1 that the volume integral of m(n)(rlj, r2j, ••• , r nj ) 

over r j is equal to the union volume of n spheres of unit 
radius Vn with sphere centers at r 1, r2, ... , r n' There-

fore, Eq. (3) becomes 

(4) 

Equation (4) states that the probability of finding II 

points separated by the relative distances r12, Y13, ••• , Yin 
in the matrix phase of a two-phase system having a par­
ticle phase consisting of fully penetrable spheres, is 
simply the exponential of minus the density times the 
union volume of n spheres Vn • Although trivial, the 
ensemble method of deriving the general result for fully 
penetrable spheres given by Eq. (4) is new. 

One may also obtain Eq. (4) using simple probability 
arguments, and the interpretation that Sn, for any par­
ticle geometry, is the probability that a region which is 
the union volume of n spheres of radius R contain no 
sphere centers. 1 Consider Sn, the probability of setting 
N sphere centers at random in large finite volume V in 
such a way that a smaller volume Vn is empty of sphere 
centers. Since each random placement is independent 
of the location of the other particle centers, we have 
that the probability is 

Sn = [V ~Vnr 

=[I-P~nr (5) 

In the limit N - 00, holding p and Vn fixed, Eq. (5) be­
comes Eq. (4). This method of derivation was put forth 
by Weissberg. 6 

III. EXPLICIT REPRESENTATION OF SOME LOWER 
ORDER Sn 

Given the union volume of n spheres Vn , we may cal­
culate Sn through Eq. (4). In the case of the one-point 
matrix function (the volume fraction of matrix phase cp), 
we have 

(6) 

where VI is the union volume of one sphere or, Simply, 
the volume of one sphere 4rrR3 /3. The volume fraction 
of matrix phase for fully penetrable spheres is always 
greater than the corresponding volume fraction for im­
penetrable spheres, at the same denSity, since 
exp[- pvtl> 1- pVt. 

The union volume of two spheres of unit radius sepa­
rated by distance x may be written in terms of the 
volume common to two such spheres. The union volume 
of two spheres of unit radius whose centers are sepa­
rated by a distance x is given by 

x < 2, 

(7) 

x> 2. 
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Substituting Eq. (7) into Eq. (4) gives the two-point 
matrix function for fully penetrable spheres first given 
by Weissberg6 

1 
exp { - p 4; [ 1 + ~ x - ~; ]}, x < 2 , 

52(x) = { B1T} 
exp -p 3' x>2. (B) 

Note that as x - 0, 52 = exp( - pV1) = <p and as x- "", 52 
= exp( - p2 V I) = ¢2, as expected. I 

For fully penetrable spheres the three-point function 
is given by 

53(rI2,r I3)= exp[-pV3(rI2,r I3»), (9) 

and has already been stated by Strieder and Aris. 12 
[To our knowledge, however, no one has ever ex­
plicitly substituted the expression for the union volume 
of three spheres into Eq. (9) for purposes of calcula­
tion.) The beauty of Eq. (9) is that it provides an exact 
expression for the three-point matrix function for a use­
ful particle-phase geometry. When dealing with impene­
trable lo ,I3 (or partially penetrable 10) spheres, the three­
point function can only be known approximately. 

The union volume of three spheres of unit radius 
separated by the distances x, v, and z may be expressed 
as 

(10) 
where V~ is the intersection volume of three spheres. 
An expression for the volume common to three spheres 
has been obtained by van der Waals, by Weissberg and 
Prager, by Rawlinson, by Powell, and by Ree et al. 14 

Powell's form is 

4! 4 -I{ Q·xyz } V1(x v z) = - xvz + - tan 2 2 2 . 
" 6 3 x+y+z-B 

- v 1 - ~ tan- 2 2 2 ( 
V2 ) 1 \ 2Q. xz } 
12 x - v + z 

O::stan- I :S1T , 

where 

~ 
Q=-­

L 

and where 

xvz 

L = -j (x + V + zj( - x + v + z)(x - v + z)(x + v - Zi 

(11) 

is the circumradius of the triangle formed by x, v, and 
z. The expression (11) is valid only if L < 1, that is, if 
a common volume exists. If L> 1, then either there is 
no volume common to three spheres or else the common 
volume is expressible in terms of the intersection volume 
of two spheres. The latter case is illustrated in Fig. 2. 
Substituting Eq. (10) in conjunction with Eqs. (7) and (11), 
into Eq. (9) gives the three-point matrix function in the 

FIG. 2. Volume common to three spheres of unit radius when 
L > 1 represented by shaded region. 

fully penetrable-sphere case: 

53(rI2, r 13) = 52h2)52~~13)52(r23) exp[ - pVI(r I2 , r13)]. (12) 

Note that Eq. (12) meets all the proper limiting values 
of 53, i. e., it meets the following conditions under all 
permutations of the labels 1, 2, and 3. 

lim 53(rI2, rt3) = P , 
all TIrO 

2O'jO'3 

lim5 3(rI2, r 13) = 52(rd , 
"23- 0 

lim 5 3(rI2, rd = ¢ 52(r13) , 
T124 QO 

"13 fixed 

lim 5 3(r I2 , rd = ¢3 . 
all 'l'ij-ao 

l"i(j""3 

(13a) 

(13b) 

(13c) 

(13d) 

We recall t that these conditions are met by the exact 53 
(again under all permutations of the labels 1, 2, and 3) 
for both penetrable and impenetrable spheres. Else­
where, we shall use Eq. (13) to determine the effective 
properties of two-phase random media whose particle 
phase is modeled to be fully penetrable spheres. 10 

That both the two- and three-point matrix probability 
functions for fully penetrable spheres should prove use­
ful in predicting bulk properties of real two-phase sys­
tems is supported by other work. Corson has examined 
the microstructure of random two-phase solid mixtures 
having regions of matrix of random shape and size. 3 

He has fitted the two- and three-point matrix functions, 
which are represented by sums of exponentials, to ex­
perimental data associated with random two-phase solid 
mixtures. These empirical functions were then used, 
with success, to predict various properties of hetero­
geneous materials. Debye et al. have shown the two-
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point matrix function to be proportional to an exponential 
in the case of a distribution of "holes" of random shape 
and size in a solid. 5 In light of the aforementioned 
studies, it is not surprising to obtain exponential func­
tions for the two-point and three-point functions in the 
case of spheres which are spatially uncorrelated. 

The four-point matrix probability function for a sys­
tem of fully penetrable spheres is equal to 

(14) 

It is clear that the union volume of four spheres may be 
expressed as 

V4(rI2, r1 3, r14) = 4VI - V2(rd - V2(rI3) - V2(rI4) - V2(r23) 

- V2(r24) - V2(r 34) + V3(rI2, r13) 

+ V3(rI2, r14) + V3(r I3 , r 14) + V3(r23, r24) 

(15) 

where vl is the intersection volume of four spheres of 
equal radius. Substituting Eq. (15) into Eq. (14) gives 

S4(rI2, r13, r14) 

_ ¢4S3(rI2, rI3)S3(r I2 , r I4)S3(rI3, r14)S3(r23, r24) 
- S2(rI2)S2(rI3)S2(r14)S2(rzalS2(r24)S2 (r34) 

xexp[pV/(rI2, r13' r I4 )] (16) 

which is a new result. For any particle geometry, S4 
gives the probability of finding the vertices of a tetra­
hedron of variable geometry in the matrix and, as such, 
is more difficult to evaluate (experimentally or theore­
tically) than the quantities S2 or 53 which are defined in a 
plane. To our knowledge, the four-point matrix function 
has never been evaluated for any geometry by either ex­
perimental or theoretical means. Note that Eq. (16) 
properly meets the following conditions I under all per­
mutations of the labels 1, 2, 3, and 4: 

lim 54(rI2, r 13, r 14) = ¢ , 
all rlj-O 

2"'1"'4 

lim S4(r I2 , r13' rj4) = S2(rI3) , 
r 12 - 0 

'3r O 

limS4 (rI2, r13, r 14) = S3(r I3 , r14) 
'12- 0 

lim S4(r I2, r13, r 14 ) = ¢S3(rI2' r1 3) , 
714-0:;) 

Tj2"13l!xed 

lim S4 (r12, r13' r 14) = S2(rI2)52(r34) , 
r13- 00 

724 _00 

r12,r34 !ixed 

lim 54(r I2 , r13' r 14 ) = ¢2S2 (r14) 
TU"'<O, i=2,3 

'14 !ixed 

lim S4(rI2' r13, r14) = ¢4 
all Y ij-OO 

1"';"'1"'4 

(17a) 

(17b) 

(17c) 

(17d) 

(17e) 

(17f) 

(17g) 

In addition to presenting the new result given by Eq. 

(16), we shall obtain rigorous upper and lower bounds 
on S1> 52, S3' and S4 (for fully penetrable spheres) by em­
ploying simple geometrical arguments. 

IV. BOUNDS ON THE 5n IN THE FULLY 
PENETRABLE-SPHERE CASE 

A. General bounds on lower-order 5 
n 

In this section, we obtain some useful bounds on lower­
order Sn for the fully penetrable-sphere model from 
purely geometrical considerations. It is clear that the 
union volume of three spheres V3Cx-, v, z) is greater 
than or equal to the union volume of two spheres 
V2(r) (the argument r being x or y or z) which in turn is 
greater than or equal to VI: 

(18) 

and, therefore, 

exp[- pV3]:S exp[ - pV2]:S exp[ - pVI ] , 

(19) 

using Eq. (4). Since NVI/V:::::O we have that 5 1 :S 1 and, 
therefore, 

(20) 

which is intuitively obvious from the definition of the 
Sn. The bounds expressed by Eq. (20) are, in fact, 
valid for any particle geometry. 1 

Since Vz(x):S 2VI , we have that 

exp[-pVz(x)]:::::exp[-p2VI]= ¢2, 

S2(X) ::::: q} . (21) 

We see that the bound given by Eq. (21) is also valid for 
any particle geometry. I 

B. Upper and lower bounds on 53 

We should like to obtain bounds on 53 in terms of S 1 

and S2 for the fully penetrable-sphere model. We may 
do so by first noting that 

and 

vI:s V{(z) 

where 

z being r12, r13, or r23 , 

V{(z) = 2VI - V2(z) 

(22) 

(23) 

Here V{ is the intersection volume of two spheres whose 
centers are separated by distance z. Equation (12) in 
conjunction with bounds (22) and (23) give 

:> 52(rI2)52(rta!5 2(rzs} 
5 3(rI2 , r1 3) -- <j)2 (24) 

and 

(25) 

respectively. Here x and v are the remaining pair of 
Yij after z is chosen. Clearly, the lower bound given 
by expression (25) is the most stringent of the two since 
the upper bound on V {, given by Eq. (23), is better than 
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the one given by Eq. (22). It is important to note that 
the right-hand side of Eq. (25) satisfies condition (13a) 
exactly. Moreover, it also satisfies condition (13b) 
exactly except when z is chosen to be r23 in Eq. (13b), in 
which case 

(26) 

Condition (13c) is always satisfied exactly by the right­
hand side of Eq. (25) except when z remains finite, in 
which case 

S2(X)S2(V) _ Fh3 

<P 'T" 
(27) 

Inequality (25) always satisfies condition (13d). 

The fact that the right-hand side of Eq. (25) does not 
satisfy Eqs. (13b) and (13c) for certain conditions can be 
remedied by specifying that x and yare the smallest and 
next-to-smallest of the three lengths r12, r13, and r23' 

Thus, 

(28) 

In light of the fact that the right-hand side of Eq. (28) 
becomes exact under all the limits outlined above, it 
seems reasonable to use it as an approximation for the 
exact 53, especially for other particle geometries (e. g. , 
impenetrable spheres) for which exact expressions for 
the 53 do not exist, and, in fact, Weissberg and Prager13 

have already used this bound as an approximation to 53 
for mutually impenetrable spheres. Their justification 
was similar but they did not conSider the questions of 
whether the approximation is a bound on 53 for fully 
penetrable spheres or what its quantitative accuracy is 
in that case. 

We may also obtain two upper-bound expressions for 
53 by noting that 

(29) 

and 

(30) 

The lower boundS (29) and (30) together with Eq. (12) 
give the upper bounds 

(31) 

and 

(32) 

respectively. Here x and y stand for any pair of the 
three rij' The bound given by Eq. (32) is seen to be a 
better upper bound on S3 than Eq. (31) since the bound 
(30) is a better lower bound on vi than Eq. (29). Note 
that the right-hand side of (32) satisfies conditions (13c) 
and (13d) but does not satisfy conditions (13a) and (13b) 
which give S3 for cases in which its arguments vanish. 
Combining inequalities (25) and (32), we have, in the 
case of fully penetrable spheres, 

52(x)S2(Y) <: S (r ) <:: S2(rI2)SZ(r13)S2(r23) 
<p 3 12, r13 - <p3 (33) 

'·0...---,.---..,----.---,.--,-.,.--,,--,----, 

5 F--
3 

05 

OO~_L-_-'--j_..1.--_....Ll_--.1. _ __'l_~~__' 

0·0 0·5 ,,0 'S 2·0 

FIG. 3. Comparison of the exact Sa for fully penetrable spheres 
(dotted line) to the upper and lower bounds of expression (33) 
for <p = O. 8 and <p = 0.5. Here r12 = ria = 1. 

In Fig. 3 we compare the exact three-point function for 
fully penetrable spheres with the upper and lower bounds 
given by Eq. (33) for r12'" rl3 = 1 and with <p = 0.8 and 
<p = 0.5. The upper and lower bounds (33) are seen to 
bound the exact S3 quite closely. Note that S3 for the 
equilateral configuration is almost exactly midway be­
tween the bounds. 

C. Upper and lower bounds on S4 

We may obtain upper and lower bounds on 54 in the 
case of fully penetrable spheres by noting that 

(34) 

and 

(35) 

Here rij and r'k are largest and second largest lengths, 
respectively, of all the possible relative distances ob­
tainable between r l, r z, r3, and r4' Note that both ro 
and r'k are measured from the same point. Substituting 
Eqs. (34) and (35) into Eq. (16) gives 

<p4Sa(rI2, rdSa(r I2, r14)Sa(rI3' rI4)Sa(r23, r 24) 
52( rI2)52( r 13)52( r I4 )52( r23)S2( r24)S2(r34) 

s54(r I2 , ria, ra) 

<: <PS3(rjl, r lk)S3(rjl> r/i)S3(rW rjl) 
- S2(ril)S2(r'k)52(rl j ) 

(36) 

where r" is the shortest of the three lengths rill r lj , 

and r'k' 

It is clear that the lower bound on S4 satisfies con­
ditions (17d), (17e), and (17f) but it does not satisfy 
conditions (17a), (l7b), and (17c). The upper bound on 
54, on the other hand, satisfies all the limiting condi­
tions of Eq. (17). Accordingly, it is reasonable to use 
the upper bound (36) as an approximation to S4 for arbi­
trary particle geometry: 

S (r r r) "" r:p5 3(rjl> rtJSa(ril, rjJ)S3(rik> rjl) 
4 12, 13, 14 - 5 ( )S ( ) ( ) 2 r tZ 2 r tk S2 rl j 

(37) 

To our knowledge Sa is available exactly for spheres 
only in the fully penetrable case. For arbitrary pene­
trability we would have to approximate S3 with, for ex­
ample, the right-hand side of Eq. (28) to yield: 

S ( ) 
~ S2(Xl)S2(yl)S2(X2)S2(y2)S2(.~)52(y3) 

4 r 12, r13, rl4 = :r (38) 
<P S2( r'Z)S2( r ik)S2( rlj) 

J. Chern. Phys., Vol. 79, No.3, 1 August 1983 
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TABLE 1. The integrall(J>z) of Eq. (39) for fully 
penetrable spheres compared with its approxi­
mant j(J>2) obtained by approximating 53 (rI2' r1 3, r23) 
by the right-hand-side of Eq. (41). Here dJ is the 
volume fraction of matrix phase. 

<P l(J>z) i(J>2) 

1.0 O. 0 O. 0 
0.9 0.0189 0.0188 
0.8 O. 0315 0.0313 
0.7 0.0387 0.0382 
0.6 0.0411 0.0406 
0.5 O. 0395 0.0389 
0.4 0.0346 0.0343 
0.3 0.0273 0.0273 
0.2 0.0184 0.0188 
0.1 0.00883 0.00949 
0.0 O. 0 0.0 

Here XI and VI are the shortest and second shortest of the 
lengths ri/> r/ k , and r Zk ; X2 and 1'2 are the shortest and 
second shortest of the lengths r n , Yij' and r1j; and x3 

and 1'3 are the shortest and second shortest of the lengths 
Y ik , y ii , and y kj • 

Because Eq. (38) is derived from approximations for 
54 and 53 that satisfy Eqs. (17) and (13), respectively, 
it has the optimal asymptotic properties that one can 
hope to achieve in an expression for 54 that is wholly in 
terms of 5z and <p, not only for fully penetrable spheres 
but for impenetrable (and permeable) spheres as well, 
even though the bounding properties of the right-hand 
sides of Eqs. (28) and (37) can only be guaranteed for 
fully penetrable spheres, for which one can say a bit 
more. Since Eq. (37) can be expected to yield an ap­
proximant a little on the high side-it is an upper 
bound-and since the use of Eq. (28) can be expected 
to lower this somewhat-Eq. (28) is a lower bound-the 
resulting Eq. (38) may well prove just as quantitatively 
accurate, if not more accurate, than Eq. (37), as a 
result of the cancellation of errors. 

In bounding or approximating effective transport 
coefficients for a two-phase composite, knowledge of 
5n typically enters through a few key integrals. In the 
case of the dielectric constant15 or the thermal con­
ducti vity, 16 of an arbitrarily large (i. e., "macroscopic") 
sample, for instance, 53 appears via 

. 1 If A P 2(cOS(1) 
I(Pz ) '" hm n::'l8 5 3(rI2, r13' YZ3) 3 3 dr l2 drl3 ' 

y.", 7f Y Y Y1Z Y 13 
(39) 

where (1 is the angle opposite rZ3' P z is the Legendre 
polynomial, and 

S3(rI2, 1'13' 1'23) '" 5 3(rI2, 1'13, I'd -52(rd5 2(YI3)<P-
1 

• (40) 

Equation (39) can in fact be Simplified somewhat. The 
form of 53 ensures that I(P2) is independent of sample 
shape, 15 and if one restricts oneself to a spherical sam­
ple of volume V in Eq. (39) as one lets V - 00, one can 

drop the 5 25 zo)-1 since its contribution to the integral 
then vanishes by symmetry for all V. It is clear from 
this that the simplest use of Eq. (25) as a approxima­
tion in Eq. (39) -setting ,\ = r12 and \' = l"1:l-will yield the 
trivial result J(P2) '" O. Perhaps the simplest nontrivial 
form of Eq. (25) to be used in connection with Eq. (39) 

is not Eq. (28) wi th its \':s \"S but 

S:l( 1'12, 1'13' rd cO 52( Y23) [5( 1"12) + 5( 1"13) i /20 . (41) 

We have tested the use of Eq. (41) in Eq. (39) in the 
case of fully penetrable spheres, for which S3 is known 
exactly as described in this article. The resulting ap­
proximant i (P2J is compared to J(P2) in Table I. 
[Plotted as functions of <:>, I(P2) and i(pzJ are indis­
tinguishable on the scale of a journal figure of typical 
size. J The result is very encouraging but in assessing 
its Significance two points must be kept in mind. First, 
additional transport coefficients in general involve related 
but different integrals that weigh 53 in somewhat dif­
ferent ways. For example, analogous estimates of 
elastic moduli 17 require not only J(P2), but also J(p 4), 

for which P 2(cose) is replaced by the Legendre poly­
nomial P 4(cose) in Eq. (39). Second, it is not im­
mediately clear if the closeness of approximation of 
[(P 2) can be expected to carryover from penetrable 
spheres to the case of impenetrable spheres. 
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