New bounds on the permeability of a random array of spheres
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The recently derived variational principle of Rubinstein and Torquato (J. Fluid Mech., in
press) is applied to obtain new rigorous two- and three-point upper bounds on the fluid
permeability k for slow viscous flow around a random array of identical spheres which may
penetrate one another in varying degrees. The n-point bounds involve up to n-point correlation
function information. Both bounds are simplified and computed for the special case of
mutually impenetrable spheres for a wide range of sphere volume fractions. The three-point
bound is sharp and provides significant improvement over the two-point bound, especially at
high sphere volume fractions (low porosities). It is the sharpest upper bound on & for a
random array of impenetrable spheres developed to date and begins to approach the Kozeny-

Carman empirical relation at low porosities.

I. INTRODUCTION

The slow flow of viscous fluids through microscopically
disordered porous media is a subject of importance in a va-
riety of technological areas including hydrology, oil recov-
ery, and filtration, to mention but a few examples. In order to
model such problems, it is often necessary to determine the
macroscopic or effective properties of the porous medium.
The effective parameters depend upon the details of the mi-
crostructure in a nontrivial manner; in general, they depend
upon an infinite set of correlation functions which statistical-
ly characterize the medium. However, except for specially
prepared artificial media, this set of functions is never known
and hence an exact theoretical determination of the effective
property is generally unobtainable.

A primary effective property of interest for describing
flow through porous media is the fluid permeability & de-
fined through Darcy’s law [cf. Eq. (1)]. Various theoretical
approaches have been taken to predict k. One approach
seeks to idealize the geometry by considering spheres to be
centered on the points of a periodic lattice.' Effective-me-
dium approximations* have been used to study dilute sys-
tems of randomly arranged spheres.>” More recently, effec-
tive-medium theories have been extended to treat nondilute
random arrays of spheres.®>'' The effective-medium ap-
proximations of Chang and Acrivos'! yield permeabilities in
good agreement with the well-known empirical Kozeny-
Carman relation.

Another approach focuses on obtaining rigorous
bounds on k. Bounds on effective parameters of random me-
dia are useful since (i) they may be used to test the merits of a
theory or computer simulation experiment; (ii) as succes-
sively more microstructural information is included, the
bounds (generally) become progressively narrower; and
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(iii) one of the bounds can typically provide a good estimate
of the property, for a wide range of volume fractions, even
when the reciprocal bound diverges from it.?

Prager'® and Weissberg and Prager’* were the first to
derive upper bounds on k. These bounds are referred to as
“three-point” bounds since they involve up to three-point
corr=lation function information. The Prager and Weiss-
berg—Prager variational principles were different, however.
Doi,"® claiming to have used a “new” variational principle,
derived a two-point upper bound on k. Subsequently, Berry-
man and Milton,'® using a volume-average approach, cor-
rected a normalization constraint in the Prager variational
principle. Torquato and Beasley'” recently reformulated the
Weissberg—Prager volume-averaged upper bound in terms
of ensemble averages. The ensemble-average approach
avoids the difficulties encountered by Berryman and Mil-
ton'® in handling boundary conditions for admissible fields
in the volume-average formulations. All the upper bounds
described thus far involve a stochastic normalization factor
which is an integral over the random stress field.

Very recently, Rubinstein and Torquato'® derived a
new, rigorous variational principle for upper bounds on &
using an ensemble-average formulation. This variational
principle is free of the aforementioned difficulties encoun-
tered in the past and provides a unified framework from
which one may derive any of the bounds obtained previous-
ly. For example, the normalization factor that arises in the
Rubinstein—-Torquato bound is a given deterministic quanti-
ty, in contrast to previous formulations in which it is a sto-
chastic integral that must be explicitly computed. Among:
other results, it is shown that the Doi bound corresponds toa
special choice of the set of admissible fields given in Ref. 18
and not to a new variational principle, as Doi stated. It
should also be noted that Rubinstein and Torquato'® derived
a new variational principle for lower bounds on the perme-
ability.
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In this paper we shall apply the variational principle of
Rubinstein and Torquato’® to obtain new two- and three-
point upper bounds on k for flow around a random array of
identical spheres. The spheres are allowed, in general, to
penetrate one another in varying degrees. Both the two- and
three-point bounds are then simplified and evaluated for the
special case of a distribution of totally impenetrable spheres
for a wide range of sphere volume fractions. The three-point
bound on £ is calculated exactly through fourth order in the
sphere volume fraction. For arbitrary density, we must re-
sort to the use of the superposition approximation to com-
pute the three-point bound. It is rigorously shown that
through fourth order in the sphere volume fraction, the su-
perposition approximation leads to negligibly small errors in
the three-point bound on the permeability. The three-point
bound is shown to provide significant improvement over the
two-point bound, especially at high sphere volume fractions
(low porosities). The three-point bound is the sharpest cur-
rently available upper bound on & for a random distribution
of impenetrable spheres and is relatively close to the well-
known Kozeny-Carman empirical formula at low porosities
(high sphere volume fractions), the range over which the
empirical relation is applicable.

il. VARIATIONAL PRINCIPLE OF RUBINSTEIN AND
TORQUATO

By homogenizing the microscopic Stokes equations,
Rubinstein and Torquato'® obtained the desired macroscop-
ic equations in an ensemble-average formulation for statisti-
cally isotropic media:

U= — (k/u)Vp,, (D

VU=0. (2)
Equation (1) is Darcy’s law, which defines the permeability
k. Here U is the ensemble-average velocity, Vp, is the applied
pressure gradient, and g is the fluid viscosity, which hence-

forth is taken to be unity. The permeability k can be ex-
pressed in terms of an energy functional'®:

k= (o(x):0(x)I(x)) /27, (3)
where
a(x) = Vu(x) + [Vu(x)]” (4)

is the deviatoric stress tensor and u(x) is the velocity field
which satisfies the Stokes equations

Viu(x) = Vp(x) — y8, xeV,, (5)
Veu(x) =0, xeV, (6a)
u(x) =0, xedV. (6b)
Here the characteristic function of the fluid region ¥ is
1, xeV,,
I(x) = [ ’ ! 7
(x) 0, otherwise; ™

p(x) is the pressure field, y is a constant, & is a unit vector, 3V
denotes the solid—fluid interface, and the angular brackets
denote an ensemble average. Moreover, we extend u(x) and
p(x) into the solid region to be zero. For arbitrary, random
microstructures, the calculation of the rhs of (3) is generally
mathematically intractable. Note that relation (3) was
proved in Ref. 18 using the definition of the permeability (in
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terms of the average velocity in the direction of &) derived by
employing the method of homogenization.

Rubinstein and Torquato'® have very recently obtained
the following variational bound on &. Let 6*(x) be the class
of trial stress fields that are smooth, stationary functions and
that satisfy'®?°

VX[V-a*(x) + 18] =0, xeV, (8)
o*(x) = [o*(x)]7, xeV,, €D
o*(x):E=0, xeV,. (10)

Then the permeability is bounded from above by'®
k<{o* (x):0* (x)I(x))/272. (11)

Here E is the unit dyadic. Note that (8) implies the existence
of a trial pressure field p*(x). We emphasize that (11) is
completely general in that we have placed no restrictions on
the microstructure.

In some cases it may be advantageous to use bounds that
are weaker than (11), namely,

k<{o*(x):0*(x)) /277
Inequality (12) is obtained by simply noting that
(o*(x):0*(x)) > (o* (x):0* (x)I(x)).

Relation (12) will be easier to compute than (11) since the
former involves less microstructural information (i.e., low-
er-order correlation functions) than the latter.

. NEW BOUNDS ON ¥ FOR A RANDOM ARRAY OF
PENETRABLE SPHERES

In order to apply (11) or (12) we must choose admissi-
ble fields as specified by (8)-(10). Here we consider obtain-
ing bounds on % for an isotropic distribution of N identical,
penetrable spheres of radius R centered at the positions
rV =r,,..,ry with number density p. Let Py (r") be the
probability density function associated with the event of
finding particles 1,...,N with configuration r", respectively.
Then

(12)

1

is the probability density function associated with finding
any subset of n( < N) particles with configuration r”. The
spheres may in general penetrate one another. Examples of

interpenetrable-sphere models are described in Refs. 17 and

21.
A simple choice for the trial stress deviation is to assume

that it is the sum of contributions from N spheres:

pa(r") = (13)

1 N
a*(x) =~p— Z e(y,)v(y;) —f dr,e(y)7(y:), (14)
e 14
wherey;, = x —r;, and
0, y<R,
e(y) = [1, PSR, (15)

is the characteristic function of the exterior of a single
sphere. Finally, 7 is a general symmetric and traceless tensor
[and thus satisfies (9) and (10)] and

VX [V1(x)] =0. (16)

Now the general form of the tensor that satisfies (9) and
(10) is
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r(r) = [a(r)/r][ry + yr — 3(ry)E]

+ [6(r)/P][ (ry)rr — P (ry)E], (1n

where a(r) and b(r) are scalar functions of the magnitude of
r and y = yé. Equation (17) satisfies condition (16) if

dfa(r) c
b(ry="r —(—) + —.
(r) dr\ r 4
Since (14) must satisfy (8), we have that ¢ = 3/(47) and
hence

dfa(r) 31

b(r)_rzdr( r )+ ar P’
Note that the integral of (14) is included in order to ensure
the absolute convergence of the integrals which result from
taking the ensemble averages (11) or (12)."

We must now choose the functions a(r) and &(#) which
satisfy (19). One could opt for functions that give the exact
dilute-limit Stokes result, i.e.,

(18)

(19)

a(r) = (1/4m) (R*/r*) (20)
and
31 5 R?
= 21
b(r) 47 ¥ 47 @b

Previous investigators'”'8 have, in fact, used such functions.
Trial fields based on the exact single-sphere boundary-value
problem cannot be expected to be the best choice at nondi-
lute concentrations of spheres. We therefore introduce the
more general functions containing the dimensionless param-
eters a and B as follows:

_al B R? 2

alr) = 47 ¥ 4z P (22)
and X

3 q_pLl_BBR? 23

br)y = 417'(l a)rz ar A (23)

The parameters a and 3 are to be optimized and generally
should be functions of density. In the limit ¢,—0, a and £
should become 0 and 1, respectively [cf. (20) and (21)].

To summarize, we employ the trial field (14) in con-
junction with (17), (22), and (23). We now substitute this
trial field into both inequalities (12) and (11) to obtain two-
and three-point upper bounds, respectively.

A. Unoptimized two-point upper bound
The ensemble averaging of (12) yields

1/1
k<-27(; J- drye(y)r(y)(y,)
+ f f dl'l dl'z h(rlz)e(yl)

Xe(yz)‘r()ﬁ):‘r()'z)), (24)

where A(r) = [p,(r)/p*] — 1 is the total correlation func-
tion and ry, = |r, —r,|. We refer to (24) as a two-point
bound since it involves one- and two-point correlation func-
tion information. Bound (24) is unoptimized since the rhs
has yet to be optimized with respect to the parameters a and
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B defined through (22) and (23). Again, we remark that the
integrals are absolutely convergent.

B. Unoptimized three-point upper bound

Substitution of our trial fields into inequality (11) gives
the sharper bound

1/1
k<ﬁ(;? f dr; Gy(y)7(y,):7(y,)

+,%ffdr1 dr, Q3(y|9Y2)T(Y1):T(Y2)) , (25)
where
0:(¥1,¥2) = G3(¥1.¥2) — pGa(yy) — pGy(y2) + P76,
G, (x;ry,....r, ;) (26)

= probability of finding void at x, the center of one
(unspecified) particle in volume dr; about r,, the
center of another (unspecified) particle in volume
dr, about r,, etc.

n—1

oo _1 k
= H e(yi)kz ( ) fpn+k_| (Tppeeesly k1)
=0

i=1 k'
n+k-—1
X [ m)dr, (27)
Jj=n
1, y<R,
m(y)—l—e(y)—{o’ y>R. (28)

The series representation of the n-point distribution function
G, was originally derived elsewhere.?!??

C. Discussion

It is useful to comment on the relationship of our new
bounds (24) and (25) to previous work. First, trial fields of
the type (14) were first employed in the related problem of
determining bounds on the effective conductivity.?! They
have been subsequently used in bounds on the fluid perme-
ability'”'® and the rate of diffusion-controlled reactions.?®
Torquato and Beasley'” and Rubinstein and Torquato'®
both employ (in the language of the present paper) a trial
field of the form (14), but with the functions a(r) and b(r)
equal to (20) and (21), respectively, i.e., the exact single-
sphere solution. We employ (22) and (23), which, when
optimized with respect to @ and S, will yield bounds [cf.
(24) and (25)] which improve upon those given in Refs. 16
and 18. Following Rubinstein and Torquato,'® we refer to
the trial field (14) and the resulting bounds (24) and (25) as
“multiple-scattering” trial fields and bounds, respectively.

Before proceeding to compute optimized bounds, it is
important to make remarks regarding the behavior of the
bounds for high and low porosities. For dilute conditions
(high porosities) such that interparticle interactions can be
neglected, bounds (24) and (25) (optimized or not) give
the correct Stokes dilute-limit permeability, which we de-
note by k. For a class of random arrays of spheres (such as
an equilibrium distribution or random sequential addition),
the bounds give an O(¢,) correction to the scaled inverse
permeability ks/k [cf. (54), (55), (88), and (90)]. For
dilute conditions, Brinkman-like effective medium theo-

ries*!! predict an O(¢}’?) correction to k s /k. This nonana-
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lytic dependence on ¢, is a direct consequence of hydrody-
namic screening effects. As noted in Refs. 17 and 18, it is
difficult to construct trial fields that incorporate screening
and simultaneously satisfy the admissibility conditions (8)—
(10). From a fundamental viewpoint, it is desirable to derive
such analytic behavior from bounds under dilute conditions.
On the other hand, from a practical point of view, real po-
rous media are not characterized by such high porosities.
For real materials with small to moderate porosities (i.e.,
when the average size of the obstacles becomes comparable
to the average interparticle distance), Brinkman-type equa-
tions go to the Darcy-law limit. In such instances, bounds
provide the only rigorous means of estimating the perme-
ability. It will be shown that the optimized three-point
bound yields permeabilities which approach the well-known
Kozeny-Carman empirical relation at high sphere volume
fractions (low porosities).

In what follows, we shall compute the optimized ver-
sions of (24) and (25) for cases in which the spheres are
mutually impenetrable.

IV. SIMPLIFICATION AND EVALUATION OF THE
OPTIMIZED TWO-POINT BOUND

We now simplify and evaluate the weaker two-point
bound (24) for a distribution of totally impenetrable
spheres, i.e., 2(r) = — 1 for »<2R. This is accomplished
using the spherical-harmonics methodology developed else-
where.?*?

A. Simplification

Employing the results of the Appendix enables us to
write the two-point lower bound on the inverse permeability
as

ks/k> (o, + Bdy) "), (29)
where
ks =2R?*/9¢, (30)
is the exact Stokes dilute-limit result,
o = 4;¢:pfdre(r)A(r), 31
and
1
B = TE JJ.dr, dr, e(r))e(ry)h(r;)
2 noa 3 a n
X(‘S— B(r,r,) Py(fi1h;) + ? b(rl)b(rz)Ps(nl‘nz)) .

(32)
Here the sphere volume fraction ¢, = 47R p/3. We see that
B(r,r,) is given by (A11).
Substituting Eq. (A14) for A(7) into (31) gives
dr=3—~a—B+af+ia’+1B% (33)
Integrating over all of the angles of (32) except
cos~!(fi,*A,) yields

RB = —;ﬂj fw dr, rie(r)) fw dr, e(ry)
0 (4]
+1

X d(fi,,)h(r;,)
1
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x(% B(r,r,)P,(fih,) + —2— b(rl)b(rz)Ps(ﬁl-ﬁz)) .
(34)

After changing the variable of integration from (fi,*i,) to 7,
and performing the integrals over dr, and dr, first, we find

B =J2dxh(x)53*(x)+(3+2a2)10, (35)

where ’
B* = (3" — 3x*) (3 + 2a)?

+ (3 -5 -+ — (1 —a)?

+ (=32 + 3+ P+ 3N (1 —a)B

+ (3 — 9 + x° — 3x7)B7, (36)
Io='r'a dx xh(x), 37
and x2= ri»/R. The first integral of (35) can be evaluated

explicitly since A(xR) = — 1 for x <2, with the result
B=Roo+ B2+ BB + BaB + B’ + BB,
(38)
where
Boo= —% + 3, (39)
'%IO=§! (40)
RBor=13% (41)
By= —~3% (42)
%20-_— ‘%’4‘210, (43)
B o, =0. (44)

Note that the original sixfold integral (32) has been reduced
to a one-dimensional quadrature involving A(x).

Maximizing (o + #¢,) ' with respect to a and 8
gives the optimum values

a*= — A [1-(5-30)p,— 2 ¢3]" (45)
and

B*=(1-1%,)(1—-a*). (46)
It is seen that in the limit ¢, -0, a* -0, and f*— 1, as ex-
pected.

It is useful to compare our two-point bound with an-
other two-point bound first derived by Doi'’® and later rede-
rived by Rubinstein and Torquato.'® Following Rubinstein
and Torquato, we refer to the latter as an “‘interfacial-sur-
face” bound. The interfacial-surface bound involves the vol-
ume fraction ¢,, the specific surface s, and the three two-
point correlation functions—a void—void correlation F,, , a
surface—void correlation F,,, and a surface—surface correla-
tion F:

2 o0
ks E—U dxx[Fw(x)—zﬁFsv(x)
k 3¢2 (1] S
¢ 2 -1
+(&)ra]] (47)
N

Using the representations of the correlation functions for
totally impenetrable spheres given by Torquato and Stell*®
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and Torquato,?”?® it is straightforward to express the inter-

facial-surface bound as
ks/k>[1~— (5—3IO)¢2—3'¢§]“. (48)

Although the interfacial-surface bound has been previously
computed for totally impenetrable spheres,”’ it has not been
previously simplified to the form given, which is particularly
easy to evaluate and useful for comparison. We observe that
for the unoptimized case of @ = Oand 8 =1 (i.e., the single-
sphere solution) our two-point bound is given by the similar
expression

ks/k>[1 — (5 —31)¢,]1 " (49)

It is clear that the unoptimized bound (49) will always be
weaker than the interfacial-surface bound (48).

B. Evaluation

The rhs of our optimized two-point multiple-scattering
bound (29) and the rhs of the interfacial-surface bound (48)
can be evaluated exactly through order ¢3, i.e., terms which
account for four-body effects. For an equilibrium distribu-
tion of spheres, the total correlation function has the density
expansion

h(x) = z h, (x)p", (50)
n=0
where the lowest-order terms are?*-*°
0, x>2,
= 51
ho(x) [-— 1, otherwise (1)
and
(327/3) (1 — 3x + deX’),  2<x<4,
hy(x) =[ ¥ : (52)
X otherwise.

The second-order term A,(x) was evaluated by Nijboer and
Van Hove.*® Simple integration leads to the expansion

I, = 3¢, — 8.6244¢% + O(43). (53)

Thus when a* and S * are used in our two-point bound, we
find

ks/k>1+ 56, + (297/25)¢2 + 19.67345 + O(4%).
(54)
Similarly, substitution of (53) into (48) yields

ks/k>1 + 56, + 1283 + 20.873¢3 + O(4%), (55)

which gives an identical first-order coefficient as (54), but
gives a second-order coefficient that is slightly better than
7. All but the coefficient of ¢; were obtained analytically;
the coefficient — 8.6244 was obtained using a Gaussian
quadrature procedure. In Table I we give the two-point
bounds (54) and (55) as a function of ¢, up to ¢, = 0.5.

V. SIMPLIFICATION AND EVALUATION OF THE
OPTIMIZED THREE-POINT BOUND

We now turn to the simplification and evaluation of the
three-point bound (25) for totally impenetrable spheres.

A. Simplification

For such a distribution, Torquato?"*? has shown that
the infinite series (27) for the n-point distribution function

203 Phys. Fluids A, Vol. 1, No. 2, February 1989

TABLEL Thelower bounds on &, /k for impenetrable spheres as a function
of the sphere volume fraction ¢,. The columns correspond to the expansion
of the two-point multiple-scattering bound, Eq. (54); the expansion of the
two-point interfacial-surface bound, Eq. (55); the expansion of the three-
point multiple-scattering bound under the KSA, Eq. (88); the exact expan-
sion of the three-point multiple-scattering bound, Eq. (90); and the three-
point multiple-scattering bound under the KSA toall ordersin ¢,, Eq. (56).

k,/k
Two-point Two-point Three-point Three-point Three-point
expansion  expansion expansion expansion KSA toall
&, (54) (55) (88), KSA (90), exact ordersin ¢,

001 105121 1.05122 1.058 37 1.058 37 1.058 37
0.05 128216 1.282 61 1.326 41 1.326 39 1.326 5
0.10 1.6385 1.6409 1.752 4 1.7523 1.756
0.15 2.0837 2.0904 22997 22992 2.322
020 26326 2.6470 2.990 4 2.9892 3.070
025 3.2999 3.326 1 3.8462 3.8439 4.056
0.30 4.1004 4.143 6 4.8890 4.8850 5.348
035 5.0488 5.1149 6.1472 6.140 8 7.043
040 6.1599 6.2559 7.642 4 7.6233 9.357
045 74484 7.5820 9.358 4 9.343 8 13.20
050 89291 9.109 1 11.386 11.368 27.66

G, truncates after the second term for any n. Therefore, G, is
a functional of p,(r) or the radial distribution function
8:(r) = p,(r)/p* and G, is a functional of g, and the triplet
distribution function g, = p,/p’. Again, using the results of
the Appendix enables us to express the three-point lower
bound on the inverse permeability as

k/k>(l 3+ B+ €43) 7, (56)
where
3
o =l — 4;:22 der, drye(r))m(ry)g,(r)A(r))
(57)
and
E = — 2sz¢2 ijdrl dr, drye(r,)e(r,)m(rs)

X [83(ry,Tprs) — &2(r13)82(723) + A(r3)h(r2s)]

% (% B(ryr,)P,(ihy) + % b(rl)b(rz)P3(ﬁ,'ﬁ2)) :
(58)
Here o7, and & are the same as for the two-point bound.
The six-dimensional integral contributing to &/, is eval-
uated in the same manner as % ; expanding g,(r,) in Le-
gendre polynomials, integrating over the angles, and chang-
ing the variable of integration from (fi,*i,) to r,, gives

A=A, — 1272;’52 f dr, rie(r))A(r)
R o
© r, 47
xf dr, r,m(r,) dry; r1.8,(r2) (59)
(J {ry—
=g+ & 102+ LB + #1108
+ A 300* + A B, (60)
where
A oo=1— 1361 (61)
J. D. Beasley and S. Torquato 203
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'9/10 = -1+ %¢211’ (62)

o= — 14 38,15 (63)
J?{n =1- 3¢2I3’ (64)
o o=} — 1.1, (65)
M02=%+¢2(§I4+215)’ (66)
11=31n3—1+f dx xh(x)
4 3
x 1 (x+l)]

———1 , 67)
><[(::2—1) 7 \x—1 (
I—i——ln3+f dxxh(x)(——x—) (68)

36 16 -1/
1
- dx xh(x)|—2— 69
L=gind- 648 +f e (x)(( 1)4) (69
and
43 5 x
= ———1In3 dx xh(x (———-)
T1728 256 +f N1y

(70)

Here for numerical purposes we have replaced g,(x) with
h(x) + 1 and integrated the second term (involving unity)
exactly. Note that we have again reduced a sixfold integral
(57) to a one-dimensional quadrature (60).

The simplification of ¥ is much more difficult. Inte-
grals of this type have appeared in conductivity and elastic-
moduli bounds in Refs. 24 and 25 and have been consider-
ably simplified there by exploiting the freedom, afforded by
the homogeneity and isotropy of the system, to change as
convenience dictates the origin and orientation of the coordi-
nate frame. Therefore, the complicated details of this proce-
dure shall be omitted here.

Generalizing the arguments given in Refs. 20, 24, and
25, the key simplified integrals that arise are given by

J‘ dry, dri;[85(712713:723)

P,(cos 0,,5)
Praris
1

j—l
12

Rj+k—6

l, =—
shn 87

— 8,(r12)82(r13)]

=R/t k—ﬁj dr]2

* 1
X dr

X [83(r125713:723)

712+ T3
dry; ry

7z = risl

— 82(712)82(713) 1P, (08 63)3). (71)
Summarizing, we find
C = Cgt()g) + Cg((xb)) + €@+ Coilb + €108
+ ngoaz + Cgozﬁz, (72)
where
%(a)=—_ZN1 n+ Ln+ Lns (73)
=—2(N2 n—ln—ln
+In—l,n+1,n +In+1,n—l,n)
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—%N31n+l,n+1,n)’ (74)
%10=§(g((x‘;) —2%(()8), (75)
C o1 =%ZN4(In—1,n+1,n

+In+1,n—l,n _21n+1,n+l,n)’ (76)
(gu= "(gon amn
Cr=38F% + ¢, (78)
%02': _%2N51n+l,n+l,n’ (79)
N, =n/2n+1), (80)
No=n(n—1)(n—=2)/2n—1), (81)

Ny=n(n—1)(10n* + 50— 14)/[(2n + 1) (2n + 3) ],

(82)
N,=n(n—1)(n-2), (83)
and
Ny=n(n—-1)(n—2)(2n—-1). (84)

Optimizing the three-point bound with respect to a and £
gives

a* = (2@ 10‘@02 - 911901)/(9%1 - 4920902)
(85)
and
B*= (2920901 - 6@10@11)/(9%1 - 4920902)’
(86)

where 7, = o ; + & ;¢, + € ;45 Note that we have re-
duced a mnefold integral (58) to a manageable threefold
integral.

B. Evaluation

To summarize, the three-point multiple-scattering
bound (56) depends on the radial distribution function
g,(r) and the triplet distribution function g;(7,;,713,723)-
The first of these [which also arises in the two-point bound
(29)] is easily obtainable from the accurate fit of Verlet and
Weis.?! The calculation of the triplet distribution function,
as is well known in the statistical mechanics of the liquid
state, is more problematical. We shall evaluate the three-
point bound on the inverse permeability k ~', Eq. (56), ex-
actly through fourth order in ¢, (or, equivalently, the scaled
permeability k. /k through third orderin ¢,) using the exact
low-density expansion of g,. For arbitrary density, lacking
any more fundamental alternative, we have resorted to the
Kirkwood superposition approximation (KSA)?*°

&3(r12:713:723) = 82(712)82(713)8>(723) (87)

to evaluate this quantity. The KSA (87) is exact in the zero-
density limit for all particle configurations and for cases in
which one particle is distant from the other two, regardless
of the density. It is also accurate for equilateral-triangle con-
figurations, especially at low densities; the approximation is
not as accurate at high densities and for less symmetric trip-
let configurations.

Before presenting our evaluation of the three-point
bound (56) for arbitrary ¢, using the KSA, we first obtain
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exact volume fraction expansions of (56). Such expansions
are useful since we can exactly study the errors introduced
by using the KSA at low to moderate volume fractions. Spe-
cifically, upon use of (50), (56), (60), and (85)-(87), we
find the optimized three-point bound in the KSA to have the
exact expansion

k,/k>1+ (193/81 +31n3)¢,

+ 15.5351¢2 + 29.3143 + O(¢%). (88)
The first-order coefficient of ¢, was obtained analytically;
the remaining coefficients were computed numerically using
standard quadrature techniques for integrals of the type
(71).242532 First, note the significant improvement in the
coefficients of ¢,, #3, and ¢3 over the two-point bounds (54)
and (55). Second, since the KSA is exact through zeroth
order in the density, Eq. (88) for the scaled inverse perme-
ability is exact through second order in ¢,. Therefore, the
coefficient of ¢#3 in (88) is the first term to contain errors
because of the use of the KSA.

Now the triplet distribution function can be written ex-
actly as the KSA multiplied by unity plus a functional
IT'[A(r)] over the total correlation function A(r) [defined
under (24)1,3 i.e.,

83(riari3r23) =gz("12)gz("13)g2(’23){1 + T[A(N1}.
(89)

The functional I" has the property that I' =0 in the limit
p—0. Hence g; can be exactly evaluated through first order
in density. Using this exact expansion for g, and the same
methods outlined by Beasley and Torquato®? in the related
conduction problem, we find the optimized three-point
bound to be given exactly by

k,/k>1+ (193/81 + 31n 3)4,

+ 15.5351¢2 + 29.16¢3 + O(43). (90)

Again, we emphasize that (90) involves no approximation;
it is an exact relation. Comparing the coefficients of ¢; in
(88) and (90) reveals that the KSA very slightly overesti-
mates the bound through this order in ¢,. Therefore, up to
moderate volume fractions, the error in using the KSA is
negligibly small. As described below, this error is amplified
at higher volume fractions. In Table I we include a tabula-
tion of the three-point expansions (88) and (90). The three-
point bound is seen to be sharper than either two-point
bound.

For arbitrary density, we must resort to the use of the
KSA. The integral (71) in conjunction with (87) and the
Verlet-Weis®' fit of g,(7) is numerically evaluated using
standard techniques.?®?*2532 We tabulate this evaluation in
Table I up to ¢, =0.5. Comparing the tabulation of the
three-point expansion in the KSA (88) with the three-point
bound to all orders in ¢, reveals that the former is useful up
to ¢, = 0.3, where the error is about 9%. In Fig. 1 we plot
these results for the three-point bound (56), along with the
analogous results for the optimized two-point bound (29),
versus the sphere volume fraction ¢,. For the former bound,
we present results up to ¢, = 0.5, the point at which we be-
lieve errors due to the KSA are still tolerable. Results for the
optimized two-point bound (to all orders in ¢,) are accurate
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FIG. 1. The optimized two- and three-point (under KSA ) multiple-scatter-
ing lower bounds, Eqgs. (29) and (56), respectively, on k, /k for a dispersion
of impenetrable spheres compared with the empirical Kozeny—Carman
expression, Eq. (91).

up to ¢, = 0.6. [ Note that evaluation of the two-point inter-
facial-surface bound (48) to all orders in ¢, has already been
given elsewhere.?’] The three-point bound is seen to signifi-
cantly improve upon the corresponding two-point bound.
The sudden rise in the three-point bound near ¢, = 0.5 indi-
cates that the KSA overestimates the bound at high volume
fractions. This is contrary to our findings with analogous
three-point conductivity bounds,? e.g., the use of the KSA
underestimates the lower bound on the effective conductiv-
ity. Included in Fig. 1 is the well-known Kozeny—Carman
empirical relation

ks/k =10¢,/(1 — ¢,)°. 1)

The three-point bound shown is the closest that any bound
has come to the Kozeny—Carman formula.

VI. CONCLUSIONS

We have derived new two- and three-point multiple-
scattering upper bounds on the permeability k for (possibly
overlapping) spheres using the Rubinstein-Torquato'® vari-
ational principle. For the special case of totally impenetrable
spheres, we simplified and evaluated optimized forms of
these bounds [Eqs. (29) and (56)] for a wide range of
sphere volume fraction ¢,. The three-point bound provides
significant improvement over any of the two-point bounds
described in this study, especially at high ¢,. Moreover, the
three-point bound is relatively close to the empirical Ko-
zeny—Carman relation, especially at low porosities, the
range over which the empirical relation is applicable. This
represents the closest that any bound has come to this em-
pirical formula. These results are encouraging since they in-
dicate that improved three-point bounds have the potential
for providing reasonable estimates of the permeability for a
wide range of porosities.
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The interfacial-surface two-point bound (47) is slightly
sharper than our optimized two-point multiple-scattering
bound (29). The reason for this is that interfacial-surface
trial fields capture the local geometry better than muitiple-
scattering trial fields.’® Work is currently underway to de-
rive and compute a three-point interfacial-surface bound on
k.
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APPENDI!X: SIMPLIFICATION OF THE INTEGRALS
OVER TENSOR PRODUCTS

Here we will simplify the integrals over t(y, ):r(y,) and
7(y,):7(y,) [which appear in the two-point bound (24) and
the three-point bound (25) ] using the spherical-harmonics
methodology first employed in conductivity and bulk modu-
lus bounds® and subsequently in shear modulus bounds.?
We first express the tensor 7(r) in Cartesian components for
r>R in spherical coordinates (7,6,4):

T (1) = ¥[ —3a(r) + b(r) (sin® Gcos® ¢ —§) ]cos 6,

(A1)
7, (1) = y[ — 3a(r) + b(r) (sin’ G sin® § — §) Jcos 6,

(A2)
7. (r) = y[4a(r) 4 b(r)(cos® & —})]cos 6, (A3)
7, (r) =1, (r) = yb(r)cos & sin® 6 cos ¢ sin ¢, (Ad)
r,(r) =1, (r) = yla(r) + b(r)cos® 8 ]sin 6 cos &,

(AS)

and
7, (r) =1, (r) =yla(r) + b(r)cos? 8 sin 8 sin @,
(A6)

with a(7) and b(r) given by Egs. (22) and (23), respective-
ly. Taking the scalar product, we find

7(r )ir(ry)
= Y(2[ (i,*;) + }P,(cos 8;) P (cos 8,) |a(r))a(ry)
+ 3 (#,+h,) [ Py(cos 6,) + 2P,(cos 6,)]
— P(cos 8,)P,(cos 8,) }ya(r))b(r,)
+ #{(f,h,) [Py(cos 6,) + 2P,(cos 8,) ]
— P,(cos 8,)P,(cos 8,) Ya(r,)b(r,)
+ [(fif,)>P,(cos 6,)P,(cos 6,)
— P (cos 6,) P, (cos 6,) ] b(r)b(ry)). (A7)

Now consider some arbitrary function f (r,,r,) that can

be expanded in Legendre polynomials:

f(rurz) = z F[(rlyrz)Pl(ﬁl'ﬁz); (A8)
1=0

where r, = |r;| and A, = r,/r;, with expansion coefficients
given by
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2A+1 [T

-1

Fl(rl,rz) _= d(ﬁl'ﬁz)f(rl’r2)Pi (ﬁ"ﬁz).
(A9)

Here P, is the Legendre polynomial of order / and dfi denotes
an element of solid angle.

Combining expansion {A8) with (A7) and observing
that the statistical homogeneity of the system enables us to
replace y; with r; gives

ffdrl dr, f (r,r)7(r,)r(ry)
=7’2f d’x"%f dr,n} i Fy(ry,r;)
o 0 =0
Xffdﬁl dﬁz T(rl)ff(rz)Pl(ﬁl'ﬁz)
= (4m)%y? Jm dr, v on dr, r2
o o

4
X('B‘;Fl(rprz)B("nrz)

2 F3(r,,r2)b(r,)b(r2))

+ 105

= .3_. P f f dr, dr, f(!'nl'z)(—z‘ B(r,,r2) P (i)

+ —i—b(rl)b(rz)&(ﬁl-ﬁz)). (A10)

Here
B(ryr,) = [1/(4m)*1(3 + 2a) (1/77)(1/73). (A1D)
In obtaining (A10) we employed the addition theorem

o L (I —m)
P, (fifi,) = P;(cos 6,) P (cos 6;) +2 m; (I + m)!
X PP (cos 8,)P 7 (cos B,)cos{m(d, — ¢,)]
(A12)

and orthogonality properties of the Legendre polynomials.
Note that for the two- and three-point bounds
f(r,r) = e(r)e(r,)h(r,) and Q;(r,,r,)/p’, respectively.

The simplified integrals over =(r,):r(r,) can be ob-
tained from the results given above by setting r, = r,. We
find

J-dr; fr)r(r)ir(r) =‘ﬂ§1?’2f drtzf(r)A(r),
o

(A13)
where
1 2 1
A — Z(3 - 2 21>
" (4#[(3( @ +4a)r4
R gk
—[4(3—~a)B—8aB]r6+10[3 3
(Al4)

and f(7) is some arbitrary function of the scalar r. Note that
for the two- and three-point bounds f(r) =e(r)/p and
G,(r)/p?, respectively.
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