Diffusion-controlled reactions. Il. Further bounds on the rate constant
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We apply variational principles derived earlier by us to obtain rigorous upper and lower
bounds on the rate constant k associated with diffusion-controlled reactions among static,
reactive traps. We derive a phase-interchanged interfacial-surface lower bound on & and a new
type of lower bound which we term a “void” bound. Among other results, we compute the
phase-interchanged interfacial-surface bound on & for a distribution of fully penetrable (i.e.,
randomly centered) spheres in which the trap region is the space exterior to the spheres (the
“holes” between the spheres) and diffusion occurs in the sphere region. We also derive an
upper bound on & for identical spherical traps (randomly or periodically arranged), and

evaluate it for a simple cubic lattice.

I. INTRODUCTION

Recently we examined the problem of determining the
rate constant k associated with diffusion-controlled reac-
tions in two-phase random media composed of two regions:
a trap-free region 7, of volume fraction ¢, containing reac-
tive particles and a trap (or sink) region 7", of volume frac-
tion ¢,.! The reactant diffuses in the trap-free region but is
instantly absorbed on contact with any trap. At steady state,
the rate of production of the diffusing species is exactly com-
pensated by its removal by the traps. Using the method of
homogenization, we showed that the rate constant k was the
proportionality constant in the relation between the rate of
production of the diffusing species and the mean concentra-
tion field.! We derived rigorous variational upper and lower
bounds on k& using both ensemble-average and volume-aver-
age formulations. Using these general variational principles
we obtained three different types of bounds and evaluated
them for random and periodic arrays of identical spherical
traps.

In this note we shall further apply these variational prin-
ciples to derive and evaluate bounds on the rate constant for
two-phase media of arbitrary microstructure as well as for
distributions of spheres. Specifically, we employ the lower
and upper bounds on k in the ensemble-average and volume-
average formulations, respectively.

Il. VARIATIONAL PRINCIPLES
A. Ensemble-average lower bound
Let A4 be the class of functions u defined by the set
A = {smooth, stationary u(y,0); Au= —yin 77,}.
(N
Here y denotes position, » represents a realization taken
from some probability space §}, A is the Laplacian operator,

and y is a constant. It was shown in Ref. 1 that & is bounded
from below by
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where
1, ye?’,
I(y,0) = {
(y,») 0, ye,
is the characteristic function for the trap-free region and an-

gular brackets denote an ensemble average. Now since
(Vu-Vu)>{(Vu'Vul ), we also have the weaker lower bound

(3)

72
kp—~—t—— | VY ued. 4
>(Vu'Vu) “ )

B. Volume-average upper bound
Let B be the class of functions u defined by the set
B={u;u=00nd7", u =7} 5

Here 37" denotes the two-phase interface and a bar over
some function f denotes a volume average of that function
defined by

F=1tm ~ [ rav, (6)

vV 7,

where V is the system volume. The quantity v in Eq. (5)
solves the exact problem:

Av=—y in?", N
v=0 ond?, (8)
-§—U—=0 on d¥V. (9)
an

Here dV represents the surface of the system volume. The
rate constant is bounded from above by

Vu-Vu

U2

k< , VYV ueB. (10)

IIl. LOWER BOUNDS ON THE RATE CONSTANT
A. Phase-interchanged interfacial-surface bound

Consider an “interfacial-surface” admissible field! in
the set 4, Eq. (1):

© 1989 American Institute of Physics



S. Torquato and J. Rubinstein: Diffusion-controlled reactions. || 1645

u(y,o0) = rj G(y —X)[I(X) —%M(X)] dx, (11)

where
1 1
G(x,y) = (12)
T |x—y|

is the Green’s functlon of A,

M(x,0) = |VI(x,0)| (13)
is the characteristic function of the interface 37, and

s={(M(x)) (14)

is the specific surface (i.e., expected interfacial surface area
per unit volume). In Ref. 1 it was shown

(VuVu), = 1 f G(r)[Fw(r) %
M

+ (ﬁ)zﬁs(r)] dr, (15)
N
where
F,(r) ={I(x)I(x+T1)), (16)
F,(r) = (M(x)I(x + 1)), (17)
F(r) = (M(x)M(x +1)). (18)

The functions (16)—(18) are referred to as void—void, sur-
face-void, and surface-surface correlation functions, re-
spectively. These statistical functions and their generaliza-
tions have been studied by Torquato.” The subscript 1 after
the angular brackets of Eq. (15) emphasizes the fact that
diffusion is occurring in phase 1. Substitution of Eq. (15)
into Eq. (4) leads to the interfacial-surface lower bound

kos{[Croe -2 r e
0 R}

¢ 2 —1
+ (——‘) F;"(r)]dr] , (19)
S

for statistically isotropic media, where » = |r|. The super-
cript 1 in bound (19) underscores the fact that diffusion is
occurring in phase 1, i.e., that the void phase is phase 1.
Bound (19) was first derived by Doi> and later rederived in
Ref. 1 using a different approach. Note that for a dilute dis-
tribution of identical spherical traps of radius a (¢,<1),
bound (19) yields the exact Smoluchowski result k = 3¢,/
a’.

Now suppose that diffusion is occurring in phase 2, i.e.,
let phase 1 represent the trap region. Consider computing an
interfacial-surface lower bound for this case using the phase-
interchanged version of bound (4) and the trial field

u(y,®) = YJG(Y—X)[J(X) M(X)]dx, (20)

where
J(x,0) =1 —I(x,0). (21)
Therefore,
2FD
(YuVu), = (VuVu), + yzf [_(i)- 1
+(—1—§3¢—‘F§;’<r)] dr. (22)

Equation (22) states we can write the energy functional for
phase 2 in terms of the energy functional for phase 1 plus an
integral involving F,, and F,,. Substitution of Eq. (22) into
bound (4) then gives

k <2>>Uw r[Fgg)(r) i pon
0 s

+ (ﬁ)ng)(r)] dr+ J r[—————F ) 1
s o

s
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N

(23)

In Ref. 1 we computed bound (19) for, among other
model microstructures, the “Swiss cheese” model, i.e., a dis-
tribution of fully penetrable (spatially uncorrelated) spheri-
cal traps of radius a. Here we shall compute bound (23) for
the same model except that diffusion will take place in the
space interior to the spheres (i.e., we consider the inverted
Swiss cheese model). For this microgeometry, the number
density of spheres p is related to ¢, (the volume fraction of
the trap region) by the simple expression ¢, = exp( — 7),
where 7 = 47a’p/3 is a reduced density.” For ¢, < 0.03, the
trap region is disconnected and the traps are the oddly
shaped “holes” between the spheres (cf. Fig. 1). At ¢, =0.03
the trap phase percolates, i.e., the trap region becomes con-
tinuous.* The rate constant is expected to increase as ¢, is
increased. At ¢,=0.7, the sphere phase (i.e., the phase in
which transport takes place) ceases to percolate®; at this
transition, the rate constant becomes very large (but finite)
compared to its dilute limit (cf. Fig. 2). This is in contrast to
the related problem of flow in porous media in which the
inverse fluid permeability becomes infinite whenever the flu-
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FIG. 1. Distribution of fully penetrable disks at a very high volume fraction
of disks. The trap region (black area) is composed of the “holes” between
the disks. Diffusion takes place in the disk region (white area). This is
termed the “inverted Swiss cheese” model.
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FIG. 2. Thescaled rate constant & /k, (where k, = 377°¢,/2a%) asa function
of the trap volume fraction ¢, for the inverted Swiss cheese model in which
the spheres have radius a. Diffusion occurs in the sphere phase. The space
exterior to the spheres is the trap region.

id phase ceases to percolate. The two problems have long
been known to be mathematically related to one another,
however (see Refs. 1, 3, 6, and references therein). To be
sure, we have recently derived bounds on the fluid perme-
ability® which are the analogs of the bounds obtained on the
rate constant given in the first paper of this series and in the
present one (i.e., interfacial-surface, multiple-scattering, se-
curity-spheres, and void bounds). However, the important
difference between the two problems described above
(namely, that the rate constant remains finite while the in-
verse permeability becomes infinite for a disconnected trans-
port phase) has heretofore not been pointed out.

It is of interest to study the asymptotic behavior of
bound (23) for the inverted swiss cheese model in the limit
#, < 1. Denoting the right-hand side of bound (23) by k£ ¥,
and carrying out the asymptotic expansion, we find

k(ﬁufiz (nd)%, (4,<1). (24)
Since the holes are not spherically symmetric, result (24)
can not be expected to be the exact dilute limit. This is in
contrast to the other extreme case ¢, <1 where the bound
(19) captures the Smoluchowski result. We do conjecture,
however, that the dilute limit of Xk is of the form
c(In ¢,)%¢,/a® with ¢>3/2. The correlation functions of
bound (23) are known analytically for this model® and
bound (23) can be evaluated for all ¢,. In Fig. 2 we plot the
scaled rate constant k ‘' /k, (where ko = 39°¢,/2a%) as a
function of the volume fraction of the traps ¢,.
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B. Weaker “void” bound
Consider the following admissible field in the set 4:

u(y,») =¢lfG(y—X)[I(X) — 1. (25)
2

This is to be contrasted with the interfacial-surface field
(11). Consider the terms within the brackets of each of these
expressions. Although the first terms are the same to within
a factor of ¢,, the second term of Eq. (25), unlike Eq. (11),
does not involve interfacial information. From bound (2)
and Eq. (25), we find for a statistically isotropic medium
that

1 * ~1
k‘”}[—;ﬁ—J; r[F,‘,,}’(r)—:ﬁ]dr] .

2

(26)

We refer to bound (26) as a void lower bound. The phase-
interchanged version of bound (26) is easily shown to be

@ —1
k%[q%fo r[Fy(n—¢1] dr] :

1

(27)

It is noteworthy that the void lower bound (26) is the
diffusion-controlled analog of a fluid permeability upper
bound derived by Prager and by Berryman and Milton.” The
latter authors employed an approach to obtain such an up-
per bound which is not the analog of the procedure described
here, however. (Elsewhere® we shall derive this permeability
upper bound using a methodology analogous to the one em-
ployed in this study.)

Using the low-density expansion of F,, for a distribution
of identical spheres® of radius @, one can compute Eq. (26)

_through order ¢, for such a model of spherical traps:

5

k “’>2%f§, ($.<1).
Therefore, the void bound (26), unlike the interfacial-sur-
face bound (19), does not yield the exact Smoluchowski re-
sult k = 3¢,/a® in the dilute limit. (The analogous fluid per-
meability upper bound’ does not yield the correct
dilute-limit Stokes result.) The reason for this is that interfa-
cial-surface trial field, unlike trial field (25), is exact for a
dilute distribution of spherical traps. From a microstruc-
tural standpoint, this is reflected in the appearance of corre-
lation functions in bound (19) which contain information
about the interfacial surface.

Suppose now we consider a distribution of fully penetra-
ble spheres and let the trap region (phase 1) be the space
exterior to the spheres. Then for small concentrations of
traps (¢,<1), void bound (27) yields

(28)

9
k®@>—— (In¢))> (29)
> 1 602 ( ¢l ¢l
which is not as sharp as the interfacial-surface counterpart
(24).

IV. UPPER BOUNDS ON THE RATE CONSTANT

Here we derive an upper bound on k using “security-
spheres” type trial fields which improve upon an upper
bound obtained in Ref. 1. Consider constructing a trial field
for a distribution of N identical spherical traps of radius a.
Let the distance between the ith sphere and its nearest neigh-

J. Chem. Phys., Vol. 80, No. 3, 1 February 1989



S. Torquato and J. Rubinstein: Diffusion-controlled reactions. Il 1647

bor be 2b;,. We assume b, >a for all i. A trial field yeB
[where B is given by Eq. (8) ] is chosen as follows: for every
sphere i we consider the domain defined by itself and a con-
centric security sphere of radius 4,. In that domain, we solve

V¢,(x) = —a ina<|x—r;|<b,
¥,=0 on|x—r,|=a,
¥;=¢ on|x—r;|=b, (30)

where r; denotes the position of the ith sphere. The trial field
¥is chosen to be equal to ; in the /th security shell and to be
£ elsewhere. We choose £ such that ¢ = . Finally, the con-
stant a is optimized to obtain the best possible upper bound
on k. The trial field used in Ref. 1 is the same as Eq. (30)
except that in the former a = 0. The trial field (30) should
lead to an improved bound since it solves Poisson’s (not
Laplace’s) equation in the security shell.

Substitution of the optimized field (30) into Eq. (8)
yields

9g3c:
£< €16, + 9acics , 1)
k, 2 + 18¢2c,c,c, + 81423 ¢
N
@B == dB), (32)
Ni=l
c2(B) = l—ﬁiﬁv‘,f(ﬂ)2 (33)
2 2 Ni=1 i »
&(B) =~ iv’, g(B:) (34)
? 180 N &7
dx) =", (35)
x—1
fx)y=x(x+1), (36)
g(x) = 4x> — 5x* — 5x° + 5x% + 5x — 4, (37)
b,
ﬁi = (38)
a
, = 4na’p/3. (39)

In bound (31), k, = 3¢,/a* is the Smoluchowski result and
the thermodynamic limit has been taken, i.e., N— 0, V- oo,
such that p = N /Vis fixed. Using the law of large numbers,
we can replace the sums in bound (31) by integrals. Specifi-
cally, for an arbitrary function F(x) we have

N 3
73 FB)~a [ F@H@BB, (40)

where H(af3) is the probability density of spheres with near-
est neighbor at the distance 2af. The integral form of bound
(31) is convenient when studying random distribution of
spheres.

Consider evaluating bound (31) for a simple cubic lat-
tice with a lattice spacing of 2a8. Then ¢, = 7/(683)> and

¢ = d(p), (41)
2
cz=[1—%f(ﬁ)], (42)
1
= ) 43
C3 180 g3 (43)
For small trap concentrations, bound (31) yields
k£<l + 1.824) + 0(¢%7). (44)

5

The coefficient 1.82 is to be contrasted with 1.89, the corre-
sponding coefficient obtained in the upper bound (4.38) of
Ref. 1. This represents a 54% improvement relative to the
exact coefficient of 1.76.° The relative improvement of
bound (31) over the corresponding bound (4.38) of Ref. 1
diminishes as ¢, increases. For example, for = 1.4
(¢,=0.1908), Eq. (30) gives k /k,<7.44, whereas (4.38)
yields k /k,<7.58. We are currently in the process of com-
puting the integral form of bound (31) for a random distri-
bution of spherical sinks using a nearest-neighbor distribu-
tion function H(aB) which is applicable for all volume
fractions.
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