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This paper studies the determination of third- and fourth-order bounds on the effective
conductivity o, of a compaosite material composed of aligned, infinitely long, identical,
partially penetrable, circular cylinders of conductivity ¢, randomly distributed throughout a
matrix of conductivity «,. Both bounds involve the microstructural parameter §, which is a
muitifold integral that depends upon §;, the three-point probability function of the composite.
This key integral {, is computed (for the possible range of cylinder volume fraction ¢,) using a
Monte Carlo simulation technique for the penetrable-concentric-shell model in which cylinders
are distributed with an arbitrary degree of impenetrability 4, 0<A< 1. Results for the limiting
cases A = 0 (“fully penetrable” or randomly centered cylinders) and 4 = | (“totally
impenetrable” cylinders) compare very favorably with theoretical predictions made by
Torguato and Beasley {Int. J. Eng. Sci. 24, 415 (1986) ] and by Torguato and Lado {Proc. R.
Scc. London Ser. A 417, 59 (1988) ], respectively. Results are also reported for intermediate
values of 4: cases which heretofore have not been examined. For a wide range of @ = 0,/0,
{conductivity ratio) and ¢,, the third-order bounds on o, significantly improve upon second-
order bounds which just depend upon ¢,. The fourth-order bounds are, in turn, narrower than
the third-order bounds. Moreover, when the cylinders are highly conducting (o> 1), the
fourth-order lower bound provides an excellent estimate of the effective conductivity for a wide

range of volume fractions.

I INTRODUCTION

The problem of predicting effective parameters (e.g.,
transport, mechanical, and electromagnetic properties) of
disordered composite media is of great fundamental and
practical importance and has received considerable atten-
tion in recent years.'> From a design as well as a theoretical
standpoint, it is desirable to calculate the effective property
from a knowledge of the microstructure of the composite
material; one can then systematically relate changes in the
microsiructure quantitatively to changes in the macroscopic
variables. Unfortunately, in order to exactly predict the ef-
fective parameter, an infinite set of correlation functions,
which statistically characterize the microstructure, must be
known.*® Except for a few special cases, the infinite set of
correlation functions is never known and hence an exact de-
termination of the effective property, for all phase property
values and volume fractions, is generally out of the guestion,
even for simple random models (e.g., random arrays of par-
allel cylinders or spheres).

Rigorous bounding methods, however, provide 2 means
of estimating the effective parameter given a limited amount
of microstructaral information on the composite. Rigorous
upper and lower bounds are useful because: (1) They enabie
one to test the relative merits of a theory or computer-simu-
lation experiment for the property of interest; (2} the
bounds become progressively narrower as more microsiruc-
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tural information is incorporated; and (3 ) one of the bounds
can typically provide a relatively accurate estimate of the
property even when the reciprocal bound diverges from it.?

In this article, we consider the evaluation of bounds on
the effective transverse thermal (electrical) conductivity o,
of models of transversely isotropic fiber-reinforced materials
composed of two different materials (phases) having phase
conductivities g4 and ¢, and phase volume fractions ¢, and
&,. By “fiber-reinforced,” we mean any material whose
phase boundaries are cylindrical surfaces, with generators
parallel to one axis.® Continuous glass, carbon, or graphite
fibers are examples of composites that fall within this cate-
gory.! This classification alsc includes thin films where films
consisting of columns of one material in a matrix of another
are observed.”

Given only o, 0, and $,, Hashin® has obtained the best
possible bounds on the effective conductivity of transversely
isotropic fiber-reinforced materials. Silnutzer® and Milton*
have derived improved bounds which incorporate additional
microstructural information, valid for any isotropic fiber-
reinforced material. The Silnutzer bounds depend upon an
integral £, which involves the three-point probability func-
tion S,, defined below. [The n-point probability function
8, (Fy,....F, ) gives the probability of finding # points with
positions r,,...,r, simultanecusly in one of the phases, say
phase 1.} The Milton bounds depend not only on §, but alsc
upon an integral involving the four-point probability func-
tion §,, which itself can be expressed solely in terms of ¢, and
&, Thus, the key microstructural parameter which arises in
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both the Silnutzer and Milton bounds is £,. Because S, has
been difficult to determine either theoretically or experimen-
tally, application of the Silnutzer and Milton bounds has
been very limited. Recent theoretical and experimental ad-
vances in characterizing the microstructure of composite
media has broken this impasse. Torquato and Stell® have
developed a thecoretical formalism for systematically repre-
senting and calculating the S, for random distributions of
inclusions of particles, given the #-particle distribution func-
tions g,, which characterize the probability of finding any »
particles with a particalar configuration. The §, are multidi-
mensional integrals over the g,. This analytical representa-
tion of the S, has enabled investigators to compute £, and its
three-dimensional counterpart® for nontrivial models of ran-
dom composite media.’®'? For example, Torquato and
Lado'? employed this formalism for the fiber-reinforced ma-
terial composed of a distribution of infinitely long, parailel,
impenetrable cylinders {impenetrable disks in two dimen-
sions) and greatly simplified £, (which involves up to nine-
fold integrals) by expanding angular-dependent terms in its
integrand in Chebyshev polynomials; thev found that

5y =kt + kat] (1)
where

k2=1TR2f drirg,(r) /(P — RH?] (2)

2R
and
i “ dr (* ds
k,=4 .—IRZ""*f e
3 ngz (F ) ) rnr.-l 0 Sn— i

><f 40 [g:(7,5,0) — g,(r}g, ()17, (cos 6). (3)
a

Torquato and Lado'? computed &, and k; for an equilibrivm
distribution of disks by employing the accurate Percus~Ye-
vick approximation for the pair distribution function g, and,
for tack of any more fundamental alternative, the Kirkwood
superposition approximation"?

8:(FiPi3:723) = 820712382 (713)82(723)

for the triplet distribution function. On the experimental
side, Berryman'® has, for the first time, implemented image
processing technigues to measure S, of composite materials
and evaluate &,.

Monte Carlo computer-simulation technigues have
heretofore not been applied to obtain the integral &, directly.
This article reports such resulkts for two-dimensional (2D)
media composed of (possibly overlapping) identical disks of
radius R distributed throughout a matrix. (This is equiva-
lent to a 3D distribution of parallel, infinitely long, equi-
sized, circular cylinders.} As is well known in liquid-state
theory, accurate simulations of three-point integrals of the
type (3} or (8) are nontrivial because one must sample each
realization for the three-point correlation function involved
over all possible triangular shapes and sizes, and then aver-
age over all realizations.'® Our simulation method makes use
of some of the novel techniques employed by us to measure
the two-point function S,.'®

Cur interest in 2D media is twofold. First, certain 2D
media (such as distributions of impenetrable disks) are use-
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ful models of fiber-reinforced materials. Second, since the
salient qualitative behavior of the D-dimensional £, is not
strongly affected by a change in the dimensionality of the
composite,'*'? simulation results obtained for 2D models
{which are less costly than 3D simulations} can be utilized
to infer the qualitative behavior of £, for analogous 3D mod-
els. Our simulation technique, moreover, is easily extended
to 3D media.

In this investigation, we seek to study the effect of inter-
particle connectedness on §,, and hence on effective conduc-
tivity bounds, for isotropic distributions of cylinders in the
penetrable-concentric-shell (PCS) model introduced by
Torquato.'” The degree of the connectivity of the phases may
dramatically influence transport and mechanical properties
of multiphase media, particularly when one of the phase
properties differs significantly.!”'® Interparticle connected-
ness in the PCS model is a function of the degree of impen-
etrabiiity A(3<A<1) of the disks; A =0 and 4 = 1 corre-
sponding to the limiting cases of “fully penetrable” and
“totally impenetrable” cylinders, respectively. MNote that the
special case 4 = 1 in the PCS model is exactly the same mod-
¢l employed in the analytical investigation of Torguato and
Lado in which they found £, to be given by Eq. (1). Thus,
computer simulations of §, for A = 1 can be used to test the
accuracy of using the Kirkwood superposition approxima-
tion for g, in integrals such as Eq. (3).

This paper is organized as foliows. In Sec. I, we present
and discuss the Silnutzer and Milton bounds on the effective
transverse conductivity o,. In Sec. I1I, we describe our mod-
el system. In Sec. IV, we present our Monte Carlc method
for computing §,. This is followed by a presentation in Sec. V
of our results for §, for distributions of cylinders in the PCS
model at A =G, 0.7, 0.9, and 1, and at selected values of the
cylinder volume fraction ¢,. Finally, in Sec. VI, we present
our evaluation of the Silnutzer and Milton boundson o, asa
function of ¢, for various values of the impenetrability index
A.

ii. THIRD- AND FOURTH-ORDER BOUNDS

Given o,, &5, ¢, and two integrals involving certain
three-point correlation functions, rigorous bounds on the ef-
fective conductivity o, of any fiber-reinforced material, sta-
tistically isotropic in the transverse plane, have been derived
by Silnutzer.® Milton’ showed that the Silnutzer bounds may
be expressed in terms of oy, 5, ¢,, and a single integral £,
(defined below) which depends upon the three-point proba-
bility function described in Sec. . The simplified form of the
Silnutzer bounds are given by

oi’<o <oy, (4)
where
2
0.(33:<<0> __,¢1¢~2(02“‘71) ) (53
v (&) + (o),
and
3 _451452(1/0'2—1/01)2)_‘ 6
ot = (/) - 2L e BEC
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Here (a) =a,¢, + @ty (@) =aid, + a6, and {a);
= a,{, + 94,5, where g represents any property. The mi-
crostructural parameters are related to one another by

§2=1‘“‘§n {7

where
£ = j dzf dyf 465, (p,20)c0s26  (3)
whihy Jo
and
5,0.2,6) = 8,(3.2.0) — 5,(15(2)/4:. (%)

The quantities 5,(x) and S;(»,2.8) are, respectively, the
probabilities of finding in phase 1 the end points of a line
segment of length x and the vertices of a triangle with sides of
length x, y, and z; 9 is the angle opposite the side of length x.
The bounds (4) are exact through third order in (o, — o)
and hence are referred to as third-order bounds. The fact
that £, (or £,) Lies in the interval [0,1] implies that the
Silnutzer bounds always improve upon the corresponding
second-order bounds of Hashin.® Milion’ has derived
fourth-order bounds on ¢, which depend not only upon gy,
a5, and &, but also upon a multidimensional integral that
depends on the four-point probability function §,. Utilizing
a phase-interchange theorem for fiber-reinforced materials,
Milton showed that the microstructural parameter involv-
ing S, can be expressed in terms of ¢, and {, only. Milton’s
fourth-order bounds for transversely isotropic materials, for
the case o, >0, are given by

(4)<0. &0’(4) (10)
where

o = 0.2( (0, +0,3(0, 4 {0}) — 6,0, — 01)2>
(o1 + 023 (0, +{8)) — {1 (0, — 0'1)2(“

and

P = ((0’1 + &) {0, + (o)) — $:85(0, — ‘71)2)
u =0y e 24"
(oy+ o) (o + (&) *‘“¢1§2(9’2“'0’1)(12)

The fact that the bounds diverge in the cases where the
phase conductivities are widely different does not mean the
bounds have no utility in such instances. Torguato® has ob-
served that lower-order Jower bounds (such as second-,
third-, and fourth-order bounds) should provide good esti-
mates of ¢, /o, for a> 1, provided that the volume fraction
of the highly conducting phase 4., is below its percolation-
threshold value ¢, and that the mean cluster size of phase 2,
A, is much smaller than the macroscopic dimension of the
sample L. { A cluster of phase/is defined as that part of phase
i which can be reached from a point in phase # without touch-
ing any part of phase f,i #J.) The accuracy of the lower-order
lower bound, of course, increases as the order increases.
Clearly, the condition A, €L by itself implies that &, < ¢,,.
For periodic as well as random arrays of cylinders, the con-
dition A, < L is satisfied for all ¢,, except at the close packing
value for such systems, i.e., ¢, = ¢&,.. Similarly, lower-order
upper bounds on o,/ for a3 1 should yield useful esti-
mates of o,, given that ¢, > ¢,. and A; <L, where A, is the
mean cluster size of phase 1.
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iH. MODEL SYSTEM

We consider computing £,{d,,4) for isotropic distribu-
tions of equisized, parallef cylinders (or disks) at number
density p in the PCS model.!” If phase 1 denotes the matrix
phase, then ¢, is the matrix volume fraction, ¢, is the particle
phase (or simply disk} volume fraction, and 8,(y,2,8) gives
the probability of finding the three vertices of 2 triangle with
sides of length y and z and included angle 8 all in the matrix
phase. In the PCS model (depicted in Fig. 1}, disks (or par-
allel cylinders) of radius R are statistically distributed
throughout a matrix subject only to the condition of a mutu-
ally impenetrable core of radius AR; A being the impenetra-
bility parameter, <A< 1. Each disk of radius R, therefore, is
composed of an impenetrable core of radius AR, encom-
passed by a perfectly penetrable concentric sheli of thickness
{1 — A)R. tis clear that the limiting cases A = Oand A = 1
correspond, respectively, to “fully penetrable” disks (in
which disk centers are completely uncorrelated) and “total-
Iy impenetrable” disks. The PCS model with 4 ~ 1 servesasa
useful model of fiber-reinforced materials with orienied,
continuous fibers and of thin films.'” The 3D analog of the
PCS model (involving spheres) for A < 1 is a good model of
consclidated media such as sandstones and sintered materi-
als.?

For A >0 (i.e., for finite-sized hard cores), the impen-
etrability condition alone does not uniquely determine the
distribution. Either an equilibrium distribution'® or some
nonequilibrivm distribution, such as random sequential ad-
dition { RSA)'” may be assumed. The eguilibrium and RSA
distributions are known to be different at sufficiently high
density p and A."® For small enough p and 4, the two are the
same. Computer simulation results reported are for RSA.

RSA configurations are generated by placing particles
in a unit cell randomly and sequentially. When each particle
is added, it is determined whether its hard core {of radius
AR} overlaps any other hard core already in the unit cell; if

FIG. 1. A computer-generated realization of a distribution of disks of radius
R = 0/2 (shaded region) in a matrix (unshaded region) in the PCS model
{seeRef. 17). The disks have an impenetrable core of diameter Ao indicated
by the smaller, black circular regions. Here 4 = 0.5 and the particle volume
fraction ¢, = 0.3.
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s0, that particular particle is removed and added again until
it finds 2 vacancy. Ultimately, so many particles have been
added that the next particle finds no accessible space (the
Jammed state}. The jamming hmit for RSA distributions of
totally impenetrable disks (4 = 1} occurs at ¢,~0.55,5%°
which is well beiow the close-packing limit of ¢, ~0.81' for
equilibrium distributions. Widom'? discusses the differences
between equilibrivm and RSA distributions of particles for
the case A = 1 only. At low to moderate densities for 4 = 1,
the distributions are exactly the same. More precisely, equi-
librium and RSA distributions are identical up through the
level of the third virial coefficient. Practically, this means the
distributions for 2D media with 4 = 1 are virtually indistin-
guishable up to ¢, =0.4."%?! At higher volume fractions, ex-
clusion volume effects cause the RSA- and eguilibrium-gap
distributions to become very different, especially close to the
RSA jamming limit. Since the two distributions for A =1
are essentially the same up 1o ¢, = 0.4, we shall compare our
simulation results for this case to the analytical results of
Torguato and Lado for equilibrium distributions of rigid
disks and comment on the accuracy of the Kirkwood super-
position approximation which they empioy.

As the impenetrability index A is made smaller, the dif-
ferences between the equilibrium and RSA distributions at
fixed p diminishes. Indeed, for the special case of fully pene-
trable disks (A = 0), the two distributions are identical at
any density since the distribution is uniguely determined by
virtue of the total lack of spatial correlation between disk
centers. In this limit, the n-point matrix probability func-
tions have an especially simple analytical form. For example,
for a distribution of fully penetrable disks at reduced number
density 7 = p4, (where 4, = 7R 2 is the area of one disk},
the a-point functions are given by''

S, (tye0r, ) =expl — 94, (F,..07, )/ 4], (13}

where 4, (r,,....,r,, } is the union volume of # disks of diame-
ter o = 2R with center coordinates given by (r,,...,r, ).

V. SIMULATION PROCEDURE
A. Preliminary discussion

Consider rewriting the three-point integral £, Eq. (7),
as follows:

Lr=1— 4 U‘m gzjm ézf d0 X,(y,z,68)cos 29) ,
7T¢1¢2 (4] Z Jo y (V]
(14}
where
Xarprors) = I(v ) I(ry) I (r3) — I(x, 3 (r3) /oy, (13)

and I(r) is the characteristic function of the matrix phase
defined by
(1, r e mairix phase
) = | phase

. 16
10, otherwise (16)
Here angular brackets denote an ensemble average and
therefore, the first three #-point probability functions are

defined by

Sy(r) = {d(xy)), (17

866 J. Appl. Phys,, Vol. 65, No. 3, 1 February 1889

(18)
(19

Sy(rr,) = {d(r ) (1)),
53(3'1,?’2,!'3) = (I(rg)l(rz}l(r3}>-

For statistically isotropic media, the S, depend upon the
relative distances between the points and hence 5, = ¢,,
S.(r,) = 5,0, S3(ry,1,75) = $,(3,2,8), where
y=|r ~¥r|, z=Ir, —1r|, and & is the inciuded angle
between the displacements (r, — r;) and (r; —1,).

Obtaining £, from computer simulations is a three-step
process. Initially, one must generate realizations of the ran-
dom media. Subsequently, one samples each realization for
the three-point function X; for values of (y,2,6) specified by
the technique of integration. Finally, one sums the properly
weighted contributions and averages over the total number
of realizations to obtain §,. We are specifically interested in
obtaining £, for RSA distributions of disks in the PCS model
at specified disk volume fraction ¢, and impenetrability in-
dex 4.

In general, the methods available for storing images of
configurations of particles are: (1) a bit-mapped (digitized)
image, (2) an object-oriented approach (defined below), or
{3) some hybrid of the preceding two methods. In each case,
periodic boundary conditions (PBC) are employed in order
to simulate an infinite system (the image is surrounded with
replicas of itself).

When a bit-mapped approach is used, disks are “paint-
ed” onto a large square grid {pixel array) by setting all bits
inside the disks (and hence in the particle phase) to 1. We
will use the terms “bit” and “pixel” interchangeably, even
though this is not necessarily the case. Initially, all bits are
zeroed or “unset” (100% matrix phase). Note that only
phase information is retained; the disks lose any individual
identity. The error introduced when representing objects in
this manner diminishes as we increase the number of pixels;
however, there is a practical upper limit to the number of
pixels that may be used. We have referred to this approach as
the GRID method.'®

When an object-oriented approach is used, the coordi-
nates of the centers of each disk are stored (if the disks are of
unequal size, then the radius of each disk must also be
stored ). Note that the particles retain their individual identi-
ties. We have referred to this approach as the “stored-config-
uration” (8C) method. Monte Carlo* and molecular dy-
namics'® techniques used in the study of the liquid state are
examples of the SC method.

Configuration generation is faster with the SC method
than with the GRID method for circular disks, due to the
overhead of testing and setting the large number of pixels
used with the GRID method. Configuration sampling is
much faster with the GRID method than with the SC meth-
od for circular disks. GRID method phase sampiing is ac-
complished by determining what pixel a test point falls in
(PBC are applied ) and then testing the siate of the bit corre-
sponding to that pixel (O or 1). SC method phase sampling is
accomplished by determining whether a test point is inside
any disk in the system, i.e., if the minimum distance {em-
ploying PBC) between a test point and any disk in the con-
figuration is less than the radius of that disk then that point is
in the particle phase (phase 2 }; otherwise the point lies in the
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matrix phase (phase 1 ). One enhancement to the SC method
is the “cell-list”*; only nearby disks are tested, reducing the
number of distances that must be computed.

The essential difficulty with the GRID method is one of
resofution. The GRID method clearly breaks down if sam-
pling distances are of the order of the size of a pixel. There is
no resolution difficulty with the SC method, but even with
the “cell-list” enhancement we found it to be too slow for our
large sampling requirements.

The method we employ in this study {hereafter referred
to as the SC/GRID method) is a hybridization of all the
above methods. Such a technique was recently used by Lee
and Torquato® to accurately measure the porosity ¢, in the
PCS model (for both 2D and 3D media) as a function of p
and A. Two pixel arrays are maintained for GRID method
sampling. The first contains disk “lower-bounds,” i.e., only
pixels that lie completely within disks are set. The second
contains disk “upper-bounds,” i.e., all pixels that contain
any points inside disks are set. Any pixel which has a differ-
ent value in the two arrays is termed a “boundary pixel.”
Any pixel which is not a “boundary pixei” is a “definite
pixel,” and can be used for a definite phase determination
{particle phase if set, matrix phase if unset). For the small
(resolution dependent ) fraction of pixels that are “boundary
pixels,” the “cell-list” enhancement of the SC method is used
to eliminate the uncertainty in the phase of the test point.
Therefore, the SC/GRID method is nearly as fast as the
simple GRID method, but has the ability to resolve small
distances accurately. In addition, by counting the pixels in
each GRID array, we have rigorous upper- and lower-
bounds on the disk volume fraction, ¢,. The mean of these
two bounds is in excellent agreement with values of ¢, ob-
tained by direct simulation {(measuring the fraction of ran-
dom test points that lie in phase 2), and thus provides a
simple way of determining ¢,.

B. Simuiation details

All simulations were performed using the SC/GRID
method (with PBC) on a IBM 3081 computer. Depending
on the value of ¢, and A, we generate realizations using 150~
600 particles in the unit cell. Each GRID image was stored
in a separate 128X 1024 character array (8-bit characters,
therefore 1824 X 1024 bits). Storing each image required 128
kB. A muitiplicative congruential random number gener-
ator with multiplier 16807 and modulus 2*'-1 was used to
both generate and sample configurations. This generator has
good lattice statistics and relatively fast execution time.*

In Ref. 16, the simple GRID method was used to calcu-
late the two-peint probability function, 5,(x); this method
may also be extended to calculate the three-point probability
function S,(p,z,8). Clearly, the simple GRID method can-
not be used to obtain accurate values of these guantities
whenever the distances involved are very small because of
resolution difficulties. Because £, is obtained by integrating
S3(3,2,8), and the region of integration very near
(y,z) = {0,0) makes a substantial contribution to this inte-
gral (especially for A > 0), the simple GRID method (even
with an increased image resolution of 40964096 pixels)
could not be used and the SC/GRID method is used instead.
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Z-Ring

FIG. 2. A portion of a sampling template used in the ring method of integra-
tion. As illustrated, N, =5, N, =1, and N, =1, for which 17 sampled

points yield 64 nonredundant triangles. For the subregions of integration
we exantined in this study, we took N, = 31, N, = 6,and &, ', = 4, for which

180t sampled points yield 86 400 nonredundant triangles.

For example, the innermost p-ring in the sampling template
(Fig. 2) may map onto a single pixel; the innermost z-ring
niay map onto only a few pixels. If some of these pixels hap-
pen to be boundary pixels, great errors in X;5(3,2,8) (and {,)
wiil be introduced.

Instead of sampling and storing X;(p,z,8) values for a
large number of triangles, performing ensemble averaging to
obtain {(X;(y,2,6} ), and then finally integrating to obtain £,
using Bq. {35), the approach of Eq. (14) was used. With this
approach, integration is performed using the raw X,(3,2,8)
values and the integral is then ensemble averaged. Gauss—
Legendre guadrature is used for the y and z integrations;
Simpson’s rele is used for the & integration. The use of Simp-
son’s rule (which would not otherwise be used) is motivated
by the need to have regular angular spacing; this permits a
sampling template (a portion of which is shown in Fig. 2) to
be used. When such a template is used, a large number of
triangles { with the proper (»,2,8) values for integration} can
be constructed from a minimal set of sampled points. An
analogous sampling template was used to samplefor S,(r) in
Ref. 16. The radial distances in the template are specified by
the Gaussian integratior method. The integration orders se-
lected were: N, =6, N, =4, N, = 31. This specifies the
namber and location of poinis in the template.

One thousand sampling templates were sampled per
generated configuration. Instead of adjusting the integration
orders, the region of y-z integration was subdivided until the
specified orders produced convergent subintegrals. For im-
penetrable (1>0) cases, the y-z region of integration
(0=z<32R, O0<y<z} was subdivided into over 100 y-z
subregions. An initial estirnate of each subintegral is made
based on the value after five configurations. At that point,
the subregions that contribute most to the integral are
further sampled (ten more configurations are considered).

V. RESULTS FOR THE THREE-POINT PARAMETER, {;

In Fig. 3 we present our evaluation of the three-point
parameter £, for distributions of parallel cylinders in the
PCSmodelfor A = 0,0.7, 0.9, and 1, respectively, at selected
values of the cylinder volume fraction ¢,. The CPU time
required to compute &, for the A values was approximately
50 CPU hours.
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FIG. 3. RSA simulation results for the three-point parameter ¢, in the PCS
model at selected values of the impenetrability parameter A. Also shown
(solid Hnes} are exact resuits using Eq. (15) for the case A = 0 and the
correspending equilibrivm results of Torquato and Lado for thecase 4 = 1.

For the case of fully penetrable disks (4 = 0}, Torquato

and Beasley'' obtained ¢, exactly using Eg. (13). Our re-

sults are in excellent agreement with their results; in fact, this
case was used extensively during development of simulation
methods as a test case. We obtained an rms deviation for the
case A = 0 of about 2%.

The results reported for A > O are new, with the highest
volume fractions shown corresponding the respective jam-
ming-limit values.'® For fixed @,, £, is a monctonically de-
creasing function of 4, as expected. The reason for such be-
havior is explained in Ref. 12. The three-point parameter is
seen to be approximately linear for 2 wide range of volume
fractions for all A. As the jamming-limit is approached in
each case where A >0, §, characteristically rises faster than
linearly in ¢, due to exclusion-volume effects.'” However,
because of gap distribution differences noted earlier, we ex-
pect this rise to be less pronounced for RSA distributions
than for equilibrium distributions. For the case of totally
impenetrable disks (4 = 1), we compare our results to those
of Torquato and Lado'? for an equilibrium distribution.
Through second order in ¢,, they exactly found

£, = $,/3 — 00570745 + O(43). 20

Since RSA and equilibrium distributions are the same
through the level of the third virial coeflicient, then (20) is
also exact for the RSA distribution. From Fig. 3, we see that
our simulations for A = 1 follow (20) closely for small ¢,.
The simulation agrees well with the Torguato-Lado results
up to ¢, = 0.3, where our value is about 5% greater than the
equilibrium value obtained using the Kirkwood superposi-
tion appreximation. At ¢, = 0.4, the simulation is about
17% greater than the equilibrium result. Thus, in light of our
afcrementioned comments regarding the similarities
between RSA and equilibrium distributions for ¢,<0.4, this
indicates that the superposition in (3} accurately gives &, for
lower concentrations (&, < 0.3) but underestimates §, for
the higher range 0.3<¢$,<0.4. This is consistent with find-
ings of the low-density analysis of Beasley and Torquatc®®
for the 3D counterpart of {,. An underestimation of §, (due
to the use of the superposition approximation ), in the case of
conducting particies, for example, implies an underestima-
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FIG. 4. Bounds on ¢, /0, as a function of ¢, at = 10 and A = (.7 comput-
ed from &, results presented in Fig. 3. Dashed lines, Hashin bounds; dotted
lines, Silnutzer bounds; solid lines, Milton bounds.

tion of the lower bound and hence the use of such a £, still
provides a sirict lower bound. For ¢,> 0.4, differences
between the RSA and equilibrium distributions make it diffi-
cult to draw any conclusions about the accuracy of the su-
perposition approximation.

Finally, it is to be noted that we very recently learned of
a study by Sangani and Yao” in which the microstructural
parameter £, was indirectly determined from a computer
simuiation of an equilibrium distribution of totally impen-
etrable cylinders (1 = 1), i.e., they obtained £, without di-
rectly evaluating the integral (8). They used 16-32 particles
per unit cell; an order of magnitude less than we employed.
For ¢, less than about 0.25, the two methods are in very good
agreement. For 0.3<¢,<0.4, the range over which the RSA
and equilibrium distributions are still expected to be essen-
tially the same, £, determined in Ref. 27 is lower than our
corresponding estimates {e.g., our predictions at ¢, = 0.3
and 0.4 are, respectively, approximately 7% and 35% higher
than their resulits ). It is not clear whether their underestima-
tion of {, for this range of #, is due to the use of a much
smaller number of particles per unit cell or to the indirect
method they used to obtain it.

Vi. EVALUATION OF THIRD- AND FOURTH-CRDER
BOUNDS ON o,

Utilizing the results for £, of the previous section, the
third- and fourth-order bounds were calculated using Egs.

100
a =100
r=07
o b /
é
80
Te
a1

FIG. 5. As in Fig. 4, with a = 100.
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48

36

o524

12

FIG. 6. As in Fig. 4, with @ = «. The upper bounds do not appear as they
diverge to infiniiy in the limit & < . Milton's fourth-order lower bound,
however, gives an excellent estimate of o, /o, provided that the mean clus-
ter size A, is much smaller than the macroscopic length of the sample L.

(4)-(12). We present in Figs. 4-6 plots of the Hashin, Sil-
nutzer, and Milton bounds on the scaled conductivity o, /o,
as a function of the cylinder volume fraction ¢, for A = 0.7 at
values of the conductivity ratio o = 10, 100, and oo, respec-
tively. In the sets of Figs. 7-9 and 10-12, we plot analogous
bounds, respectively, for 4 = 0.9 and 4 = 1.0. The second-
order Hashin bounds, which depend only on ¢, (and hence
are independent of A and £}, are included for purposes of
comparison. We see in each case that the second-order Sil-
nutzer bounds are a major improvement over the Hashin
bounds; the fourth-order Milton bounds are sharper still,
Most of the improvement comes from the upper bounds.
The bounds, as expected, widen as « is increased from
10 to 100. As indicated earlier, this does not imply that the
bounds have no utility in such instances. The fourth-order
iower bounds, for example, will provide a useful estimate of
o, /o, provided that ¢, < ¢,. and A, < L. Forthecase A = 1,
these conditions will be met for all ¢, except at the jamming
timit ¢, ~0.545 which also corresponds to ¢,,. For A = 0.7
and 0.9, the jamming-limit values lie above the percolation
threshold values. An estimate of ¢, for these latter two val-
ues of A can be determined from equilibrium simulations®®
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FIG. 7. Asin Fig. 4, with A = 0.9,
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FIG. ®. Asin Fig. §, with 4 = 0.5
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FIG. 9. Asin Fig. 6, with 4 == 0.9.
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F1G. 10. Asin Fig. 4, with 4 = 1.0
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FIG. 11. Asin Fig. 5, with 4 == 1.0.
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FIG. 2. Asin Fig. 6, with 4 = 1.0.

which are not expected to be drastically different from RSA
thresholds. For A = 0.7 and 0.9, ¢, ~~0.71 and 0.77, respec-
tively, for equilibrium simulations.”® For & = oo, the upper
bounds diverge to infinity; however, the fourth-order lower
bound should still yield a good estimate of 0,/0; when
A, €L, The results, in general, show that the effect of de-
creasing A at fixed ¢, is to increase the effective conductivity.

In Fig. 13, we compare the fourth-order bound on o, /o,
for a = 50 to exact computer simulations of the effective
conductivity for RSA of totally impenetrable cylinders

-]
a =50
hes)
4 ¥
Ge
o
2 b
0 R ; N
4.6 0.2 0.4 2.6 0.8 1.0
b2

FIG. 13. Comparison of the fourth-order lower bound on the scaled con-
ductivity to simulation results (solid circles) for the RSA distribution with
A =1and @ = 50 (see Ref. 21).
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(A = 1) obtained recently by Durand and Ungar.”' (These
authors actually studied equilibrium distributions but for
#,<0.4 employed RSA distributions for reasons mentioned
above.} The fourth-order lower bound, not serprisingly, is
seen to predict the effective conductivity extremely accu-
rately. This supports our assertion that bounds, which incor-
porate nontrivial microstructural information on the medi-
um, can be employed to accurately estimate effective
properties, even when the phase properties are widely differ-
ent.
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