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Computer-simulation results are reported for the porosity of a model of two-phase random 
media composed of identical D-dimensional spheres (D = 2 or 3) distributed with an arbitrary 
degree of impenetrability A., 0<,1 < 1; A. = 0 corresponding to randomly centered or "fully 
penetrable" particles and A. = 1 corresponding to totally impenetrable particles. We specifically 
consider the D-dimensional penetrable-concentric-shell model in which each sphere of 
diameter u is composed of a mutually impenetrable core of diameter A.U, encompassed by a 
perfectly penetrable concentric shell of thickness (1 - A.) u /2. We develop two independent 
techniques to sample for the porosity. Simulation results agree with known exact results for the 
extreme limits of A. = 0 and A. = 1 up to three significant figures. The results for intermediate A. 
are new and compare favorably with approximate analytical expressions obtained by Rikvold 
and Stell. 

I. INTRODUCTION 

The quantitative characterization of the microstructure 
of disordered two-phase media is a problem of great techno­
logical and fundamental interest in many fields, ranging 
from the physical to the biological sciences. Among the nu­
merious applications are heat or electrical conduction in 
composite media,1 diffusion of oxygen in tissues,2 wave 
propagation in porous media,3 fluid flow in porous media,4 

elastic response of particulate- and fiber-reinforced materi­
als,5 chromatography and filtration,4.6.7 and chemical reac­
tions in heterogeneous media. 8 The transport, mechanical, 
electromagnetic, and chemical properties of two-phase me­
dia, in general, depend upon an infinite set of statistical cor­
relation functions which characterize the microstruc­
ture.9

-
11 Since a complete statistical characterization of the 

microstructure is generally out of the question, one must rely 
upon the utilization of limited microstructural information, 
i.e., lower-order correlation functions. The simplest and 
most basic of these functions is the volume fraction of one of 
the phases, say phase 1, which we generally refer to (in the 
language of porous media) as the porosity ¢I' Determina­
tion of the porosity for a certain interpenetrable-particle 
model is the subject of the present work. 

Many two-phase materials, such as packed beds, sus­
pensions, and porous media, are characterized by "topologi­
cal asymmetry" between the two phases. (In cases where the 
microstructure of phase 1 at volume fraction ¢I is identical 
to that of phase 2 when the volume fraction of phase I is 
1 - ¢I' the composite is said to possess topological symme­
try). Useful models of topologically asymmetric materials 
are random distributions of identical D-dimensional spheres 
(which can be considered to be fluid, solid, or void) of vol­
ume fraction ¢2 = 1 - ¢I embedded in a host matrix of vol-

a) Author to whom all correspondence should be addressed. 

ume fraction or "porosity" ¢I' We specifically consider D­
dimensional spheres ( where D = 2 or 3 ) in the 
penetrable-concentric-shell (PCS) 12 model. In the PCS 
model (depicted in Fig. 1), each sphere (disk) of radius u/2 
is composed of an impenetrable core of radius A.U /2, encom­
passed by a perfectly penetrable concentric shell of thickness 
(1 - A.)u/2. The extreme limits A. = 0 and 1 correspond, 
respectively, to the cases offully penetrable (i.e., randomly 
centered) and totally impenetrable particles. 

FIG. I. A computer-generated realization of a distribution of disks of radius 
u/2 (shaded region) in the pes model. The disks have an hard core of 
diameter AU indicated by the smaller, black circular region. Here A = 0.5 
and volume fraction of disks is approximately 0.3. 
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The PCS model is versatile in that it enables one to vary 
the degree of the connectedness of the particle phase by vary­
ing the degree of impenetrability A. For example, for 3D 
equilibrium ensembles of fully penetrable (A = 0) and total­
ly impenetrable (A = 1) spheres, the particle phase perco­
lates (i.e., a sample-spanning cluster appears) at a sphere 
volumefraction~20faboutO.3 (Ref.l3) and 0.64 (Ref. 14), 
respectively. (A distribution of fully penetrable spheres is 
actually a bicontinuous medium for 0.3<~2<0.97, where 
~2 = 0.97 corresponds to the point at which the matrix phase 
fails to percolate. 15) Thus, the PCS model can be employed 
to study both media with a discontinuous particle phase 
(e.g., suspensions) and materials possessing a continuous 
particle phase (e.g., polymer blends, sandstones, sintered 
materials, cermets, etc.). Recently, the PCS model and its 
variants have been studied in the context of continuum per­
colation. I 6-18 

The central question addressed in this study is the fol­
lowing: Given the particle number density p and the degree 
of impenetrability A, what is the porosity ~ I (or the particle­
phase volume fraction ~2)? The volume fraction is clearly a 
more general and, thus, important statistical average than 
the number density since the former quantity remains well 
defined for systems in which there are no well-defined inclu­
sions. For the extreme cases ,1,= 0 and 1, the porosity ex­
pressions are well known9 and are, respectively, given by 

~I = exp( - "1) (1) 

and 

(2) 

where "1 = P VI is a reduced number density (which for 
A = 0 varies between 0 and 00 ) and VI is the volume of a D­
dimensional sphere (i.e., for D = 1,2, and 3, VI = 0', 1Tcrz/4, 

and 1TlT /6, respectively). For intermediate A and arbitrary 
"1, the theoretical determination of the porosity is nontrivial. 
From a simulation standpoint, the problem also becomes 
nontrivial if the degree of overlap is nonzero, i.e., for 
0<,1,< 1. 

For distribution of particles, Torquato and Ste1l9 devel­
oped integral representations of the porosity (and its higher­
order generalizations) in terms of the n-particle distribution 
functions Pn which characterize the probability of finding a 
particular configuration of n particles. In studying the effect 
of connectivity of the particle phase on the effective conduc­
tivity of a dispersion of spheres, Torquato l2 used the afore­
mentioned formalism to obtain the low-density expansion of 
~I in the PCS model for the arbitrary ,1,:19 

¢I = 1 -"1 + I D ()')"12 + 0("13
), (3) 

where ID are D-dependent integrals l2 given by 

12=20-,1,2) -..!... [~+ 0-4,1,2) 
1T 2 

Xsin- I ,1,- 3,1,0 -). 2)1/2 + 211(1-). 2)3/2] , 

(4) 
13 = 4(1 -). 3) -1(1 -). 4) + (1 _). 6) . (5) 

The exact evaluation of successively higher-order terms in 
the Torquato-Ste1l9 series representation of ~I becomes in-

creasingly difficult and ultimately intractable because all of 
the P n (quantities which, for n;;;. 2, are at best known approx­
imately analytically) are required to compute the multidi­
mensional integrals involved. By establishing an isomor­
phism between the PCS model and scaled-particle theory, 
Rikvold and SteW were able to obtain analytical expressions 
for the porosity for the PCS model in the scaled-particle 
approximation. 

The purpose of this article is to compute, for the first 
time, the porosity ~I as a function of "1 and A for D-dimen­
sional spheres (D = 2 and 3) in the PCS model from Monte 
Carlo simulations.20.21 Although the case). = 1 is a trivial 
one to calculate, instances where). < 1 are nontrivial to com­
pute from simulations because of interparticle overlap. We 
develop two independent techniques to sample for ~I (~r, 
equivalently, ~2)' 

In Sec. II, we describe the simulation techniques we de­
velop to determine the porosity for the D-dimensional PCS 
model from Monte Carlo simulations. In the subsequent sec­
tion, we report our results for the porosity as a function of "1 
and )., and compare them to the scaled-particle approxima­
tions due to Rikvold and Stell.7 Finally, in Sec. IV, we make 
some concluding remarks. 

II. SIMULATION PROCEDURE 

Obtaining statistical measures such as the porosity and 
related quantities20.22.23 from computer simulations is a two­
step process. First one must generate realizations of the ran­
dom medium. Subsequently, one samples each realization 
for the desired quantity and then averages over a sufficiently 
large number of realizations. In what follows, we describe 
the details of our simulation methods to accurately obtain 
the porosity or, more precisely, the complementary particle­
phase volume fraction ~2 = 1 - ~I for equilibrium distribu­
tions of identical disks and spheres in the PCS model. 

Consider each D-dimensional sphere to have a diameter 
0' and an inner impenetrable core of diameter ).0'. In order to 
generate equilibrium realizations for fixed ). and reduced 
number density "1, we employed a conventional Metropolis 
algorithm.24 Particles were initially placed, with no hard 
core overlaps, in a cubical cell ofvolumeL D [(L /0')2 = 625 
and (L/0')3 = 512] on the sites ofa regular array (square 
and body-centered-cubic arrays for D = 2 and 3, respective­
ly). The cell was surrounded by periodic images of itself. 
Each particle was then moved (by some small amount) to 
some new position which was accepted or rejected according 
to whether or not the inner hard cores overlapped. This pro­
cess was repeated many times until equilibrium was 
achieved. For D = 2, each of our simulation consisted of 
10 400 moves per particle, the first 400 of which were dis­
carded before sampling for equilibrium properties. The vol­
ume fraction was sampled at intervals of 100 moves per par­
ticle. In three dimensions, each simulation consisted of 2400 
moves per particle, the first 400 of which were not included 
in the statistical averaging, with sampling occuring every 20 
moves per particle. In order to ensure that equilibrium was 
achieved, we determined the pressure as a function of "1 for 
system of particles having diameter ).0'. The pressures ob-
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tained were in very good agreement with accurate determi­
nations of it made in previous studies.25,26 

The volume fraction ¢J2 is equivalent to the probability 
of finding a randomly thrown point in the particle phase, 
Therefore, a natural way to compute ¢J2 is to throw many 
points randomly into the two-phase medium and record the 
ratio of the total number of successes to the total number of 
attempts, This procedure by itself turns out to be inefficient 
and inaccurate. For example, we found that throwing 
5 X 105 points per realization was not enough to obtain statis­
tically acceptable results: our goal being to measure ¢J2 to 
within three significant figures. In light of this, we examined 
other schemes to sample for ¢J2' 

Each of our methods to measure ¢J2 involves storing the 
positions of each particle in a configuration and a "digitized" 
image20 of the configuration. A digitized image is obtained 
by dividing the system volume into square (cubical) pixels, 
e.g., in 2D we employed a resolution of 500 X 500 pixels. 
Initially all pixels in the pixel array are "unpainted" (an 
integer 0 is assigned to each pixel). If a pixel lies entirely in 
the particle phase it is painted (and integer 1 is assigned). If 
it contains an edge of the two-phase interface, the pixel is 
assigned a particle identification number which ranges from 
2 to N + 1, where N is the total number of particles. Pixels 
containing more than one particle edge are stored with their 
corresponding particle identification numbers on a separate 
table. Associated with each column of the table are the parti­
cle identification numbers and each pixel is denoted by the 
negative of the corresponding column number. 

In principle, the volume fraction ¢J2 is the sum of two 
contributions: the fraction of pixels which lie entirely in the 
particle phase (the number of integer l's in the array) plus 
the fraction of particle phase in each pixel which contains the 
two-phase interface. Thus, the nontrivial part of the problem 
reduces to computing the latter contribution. In the 2D case, 
we developed two independent methods to determine the 
particle-phase volume fraction of the interface pixels. For 
the 3D problem, we used a procedure which is a slightly 
modified version of one of the two methods employed in the 
2D instance. In all our simulations, the reduced denstiy 1] 

was varied by varying the number of particles while keeping 
the size of the particles fixed. This enabled us to keep the 
pixel resolution fixed for all 1]. The effect of system size on 
our results was studied. For the number of particles we em­
ployed, we found that our results (within statistical error) 
did not depend on the system size. 

We now describe the details of the sampling procedure 
used in two and three dimensions. 

A. Two dimensions 

In 2D we developed two different techniques to measure 
the volume fractions of the pixels containing an edge of the 
two-phase interface: the random sampling method and a 
modified GRID method. In the random-sampling method, 
we randomly throw a number of points in each interface 
pixel and check to determine whether they fall within a disk. 
If r i represents the position vector locating the center of par­
ticle i and s denotes the position of the random point, then 
the attempt is counted as a success if 

Iri - sl<0"/2 for any i = 1,2,3, ... ,n, (6) 

where n is the number of particles whose surfaces pass 
through a given pixel. This way of sampling is somewhat 
similar to the "cell-list" method employed previously22 to 
measure the two-point probability function of the matrix 
phase for totally impenetrable spheres. There are two key 
differences: (i) whereas in Ref. 22 the points were thrown 
over the entire system volume, here they were thrown in 
interface pixels only, and (ii) the cells in Ref. 22 contained at 
most one particle (having a volume of the order of the vol­
ume of a particle) and hence were much larger than the 
pixels used in the present study (which are approximately 
310 and 270 pixels per particle in 2D and 3D, respectively). 

In the random sampling method, we threw 50 points per 
interface pixel. This is equivalent to sampling as many as 
1.25 X 107 points per realization if they were thrown over the 
entire system volume. In general, the system volume fraction 
was determined to within three significant figures using this 
method. 

For our 2D simulations, we also employed a modified 
GRID20 method. Here we assumed that each interface pixel 
had a particle-phase volume fraction of unity if the center of 
the pixel was contained in the particle phase or zero other­
wise. This method is essentially the GRID20 method where 
each particle is approximated by a collection of pixels whose 
centers are in the given particle. The GRID method was 
used to accurately determine the two-point matrix probabil­
ity function. 22 The only modification made here is that the 
particle centers are not restricted to be located exactly at the 
nearest pixel center. Clearly, the error associated with the 
GRID method diminishes as the resolution increases. For 
the resolution used in our calculations, we found the modi­
fied GRID method to produce results as accurate or even 
more accurate than the random-sampling method. Hence­
forth, we refer to the modified GRID method as simply the 
GRID method. 

B. Three dimensions 

Both methods described above were tested to measure 
¢J2 in the 3D case. For 3D media, the number of interface 
pixels increases approximately by a factor of the number of 
pixels per diameter (in this case 20) relative to 2D case, and 
hence the random-sampling method requires an excessive 
amount of computing time. On the other hand, the GRID 
method requires an excessive amount of memory in order to 
use a sufficiently fine resolution. (Note that we use a 32 bit 
integer word per pixel. ) 

In order to overcome these difficulties, we use a two-step 
GRID method: (i) first we tesselated the system into larger 
pixels (a resolution of 64 X 64 X 64 as opposed to 
500 X 500 X 5(0) and identified particle-phase, pore-phase, 
and interface pixels as aforementioned, (ii) then we tesselat­
ed further each interface pixel into 27 subpixels and assumed 
that each subpixel had a particle-phase volume fraction of 
unity if the center of the pixel was contained in the particle 
phase or zero otherwise. This is equivalent to the GRID 
method with the higher resolution of 192 X 192 X 192 (i.e., 
24 pixels per diameter). The results obtained using the two-
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step GRID method were found to be even more accurate 
than the already accurate 2D results. 

III. RESULTS AND DISCUSSION 

We examined the volume fraction of the particle phase 
4>2 in the PCS model in both two and three dimensions for 
various values of reduced number density 1J and impenetra­
bility parameter A using the computer-simulation methods 
described in the previous section. All simulations were car­
ried out on an IBM 3090 and an IBM 4341. The CPU time 
spent for all calculations was, if converted to that of the IBM 
3090, over 15 h for 2D and over 30 h for 3D (without vector­
izing). 

First we report results for the two extreme cases offully 
penetrable particles (A = 0) and totally impenetrable parti­
cles for which we have the exact results (1) and (2). In 
Tables I and II we report 2D results for A = 0 and A = 1, 
respectively. In each table we give the volume fraction as 
obtained from the random-sampling and GRID methods up 
to digits where the first difference appears between them. 
The statistical errors listed for each value of 1J were calculat­
ed from the mean square deviations for the ensemble of real­
izations. The statistical errors are small in general; however, 
the errors for A = 0 are larger than for A = 1. This is expect­
ed since the major source of statistical fluctuations is directly 
related to the degree of overlap 1 - A. For totally impenetra­
ble particles (A = 1), the actual volume fraction of the sys­
tem remains constant from realization to realization and is 
known exactly a priori because of the simple relation of 4>2 to 
the total number of particles N. For penetrable particles, on 
the other hand, even though N remains fixed in the simula­
tion, the actual volume fraction will fluctuate from realiza­
tion to realization because of overlap. We also give the root 
mean square deviation /j between the simulation and exact 
values defined by 

[1 M ]112 /j = _ ~ {(.J,.MC _ .J,.Exact)/.J,.E~actp 

M 
£.. '1'2,1 '1'2,1 '1'2,1 , 
i=1 

(7) 

where M is the total number of 1J values reported. Note that 
generally /j is small, with the GRID method being the more 
accurate of the two procedures. In summary, the 2D results 
for A = 0 and 1 are accurate up to three significant figures. 

In Table III we list analogous results for the 3D instance 

TABLE I. Monte Carlo simulation data for the volume fraction of disks as a 
function of reduced density", for A. = 0 obtained by the GRID and random 
sampling methods. The statistical errors were calculated from the mean 
square deviations for the ensemble of realizations. {) = 0.000 66 and 
0.00 1 12 for the GRID and random sampling methods, respectively. Here {) 
is the rms deviation from the exact values defined by Eq. (7) and V, = 1T14. 

",IV, 

0.32 
0.64 
0.96 
1.28 
1.60 
1.92 
2.24 

GRID method 

0.222 19 ± 0.003 48 
0.39547 ± 0.00585 
0.529 50 ± 0.006 26 
0.633.79 ± 0.007 11 
0.71532 ± 0.007 42 
0.779 45 ± 0.007 60 
0.827 12 ± 0.007 01 

Random sampling 

0.222 84 ± 0.003 20 
0.39494 ± 0.006 14 
0.52918 ± 0.006 61 
0.634 27 ± 0.007 33 
0.71542 ± 0.007 53 
0.778 91 ± 0.007 48 
0.82845 ± 0.005 58 

Exact 

0.22223 
0.39508 
0.52951 
0.63407 
0.71539 
0.77864 
0.82783 

TABLE II. Monte Carlo simulation data for the volume fraction of disks as 
a function of reduced density", for A. = 1 obtained by the GRID and ran­
dom sampling methods. The statistical errors were calculated from the 
mean square deviations for the ensemble of realizations. {) = 0.000 62 and 
0.000 87 for the GRID and random sampling methods, respectively. Here {) 
is the rmsdeviation from the exact values defined by Eq. (7) and V, = 1T14. 

",IV, GRID method Random sampling Exact 

0.08 0.062 87 ± 0.000 17 0.06289 ± 0.000 14 0.06283 
0.16 0.12574 ± 0.000 35 0.12577 ± 0.000 31 0.12566 
0.24 0.188 62 ± 0.000 49 0.18867 ± 0.000 39 0.18850 
0.32 0.251 48 ± 0.001 06 0.251 55 ± 0.001 13 0.251 33 
0.48 0.377 2 ± 0.001 7 0.3773 ± 0.001 8 0.37699 
0.64 0.5030 ± 0.001 7 0.503 1 ± 0.001 5 0.50265 
0.80 0.6287 ± 0.001 6 0.628 8 ± 0.001 5 0.62832 

using the two-step GRID method. The statistical errors and 
the rms deviations from the exact results are, in general, even 
smaller then they are in the corresponding 2D problems. 

We now describe our results for intermediate values of A 
(i.e., 0 < A < 1): the range of A for which there are no exact 
results. For the 2D case, we studied A = 0.3,0.5, 0.7, 0.8, and 
0.9. In the 3D instance, we examined A = 0.5,0.7,0.8, and 
0.9. The values of 1J were restricted such that the hard-core 
volume 1JA D did not exceed the rigid-particle phase transi­
tion point which is equal to approximately 0.69 and 0.49 in 
two and three dimensions, respectively (see Refs. 24-26 and 
references therein). The statistical errors range between 
0.006 (for A = 0.3) and 0.000 07 (for A = 0.9) in 2D, and 
between 0.003 (for A = 0.5) and 0.00004 (for A = 0.9) in 
3D. In general, statistical errors were found to increase with 
decreasing A for reasons mentioned earlier. Our raw data is 
summarized in Tables IV and V for 2D and 3D, respectively. 
Keeping in mind that the deviations of our simulation data 
for A = 0 and 1 from the exact results [Eqs. (1) and (2) ] are 
at least one order smaller than statistical errors (cf. Tables 1-
III) and assuming that the same accuracy is expected for all 
A, we again claim that our results are accurate up to three 
significant figures. 

As noted earlier, Rikvold7 and Stell obtained analytical 
expressions for the porosity for the PCS model in the scaled­
particle approximation. Their results are given as 

where 

in two dimensions, and 

{ 
- 3A 31J2 

F ( ... A) - exp ------'-
3 '1' - 2(1 _ A 31J)3 

(9) 

X[2-3A+A 3 - (3A-6A 2 +3A 3)A31J]} 

(10) 

in three dimensions. In the extreme limits, A = 0 and A = 1, 
Eq. (8) gives exact results for all1J [cf. Eqs. (1) and (2)]. 
For 0 < A < 1 in 2D, Eqs. (8) and (9) are exact through the 
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TABLE III. Monte Carlo simulation data for the volume fraction of spheres as a function of the reduced 
number density", for A = 0 and 1 obtained using the two-step GRID method. Stastistical errors were calculat­
ed from mean square deviations for the ensemble of realizations. fJ = 0.001 06 and 0.000 01 for A. = 0 and 1, 
respectively. Here fJ is the rms deviation from the exact values and V, = 1T16 . 

..1.=0 ..1.=1 

",IV, Simulation Exact Simulation Exact 

0.125 0.06343 ± 0.000 75 0.06335 0.065 45 ± 0.000 04 0.06545 
0.250 0.122 75 ± 0.002 08 0.12269 0.130 90 ± 0.000 06 0.13090 
0.375 0.17798 ± 0.001 99 0.17828 0.19635 ± 0.000 09 0.19635 
0.500 0.230 52 ± 0.003 22 0.23033 0.26180 ± 0.000 21 0.i61 80 
0.625 0.27940 ± 0.003 03 0.27910 0.327 25 ± 0.000 00 0.32725 
0.750 0.32498 ± 0.004 10 0.32477 0.39271 ± 0.000 25 0.39270 
0.875 0.367 95 ± 0.004 40 0.36755 0.458 16 ± 0.000 37 0.458 15 

level of the second virial coefficient which implies that they 
are exact through first order in 1/ [cf. Eqs. (3) and ( 4 ) ] , i.e., 
Eq. (8) for 2D becomes inexact in the second-order density 
term. This can be verified by comparing the density expan­
sion ofEq. (8) [in conjunction with Eq. (9)] to Eqs. (3) 
and (4). In fact, one can show that Eq. (8) for 2D and 
o <A < I, through second order in 1/, overestimates the true 
porosity or equivalently, underestimates the particle-phase 
volume fraction. On the other hand, for 0 < A < 1 in 3D, the 
scaled-particle approximation (8) is exact through the level 
of the third virial coefficient, i.e., it predicts a porosity which 

TABLE IV. Monte Carlo simulation data for the volume fraction of disks ¢l2 
as a function of the reduced number density '" for various values A. The 
statistical errors were calculated from mean square deviations for the en­
semble of realizations and range between 0.006 and 0.000 07. Here V, = 1T1 
4. 

0.08 
0.16 
0.24 
0.32 0.2293 
0.40 
0.48 
0.56 
0.64 0.4168 
0.72 
0.80 
0.88 
0.96 0.5684 
1.04 
1.12 
1.20 
1.28 0.6871 
1.36 
1.44 
1.52 
1.60 0.7792 
1.68 
1.76 
1.92 0.8480 
2.24 0.8990 
2.56 0.9349 
2.88 
3.20 0.9764 
4.48 0.9982 

A. = 0.5 

0.1223 

0.2378 

0.3459 

0.4461 

0.5383 

0.6213 

0.6953 

0.7609 

0.8173 

0.8646 

0.9029 
0.9339 
0.9737 
0.9925 
0.9987 

A=0.7 A. = 0.8 A. = 0.9 

0.06258 0.06275 0.06280 
0.1245 0.1252 0.1256 
0.1857 0.1874 0.1883 
0.2462 0.2491 0.2509 
0.3055 0.3103 0.313 5 
0.3641 0.3713 0.3758 
0.1774 0.4312 0.4380 
0.4772 0.4905 0.4999 
0.5314 0.5487 0.5613 
0.5844 0.6057 0.6223 
0.635 I 0.6613 0.6825 
0.6839 0.7148 0.7416 
0.7295 0.7661 0.799 I 
0.7736 0.8142 
0.8136 0.8593 
0.8508 0.8993 
0.8840 0.9342 
0.913 2 0.9590 
0.9382 
0.9583 
0.9743 

is exact through second order in 1/ [cf. Eq. (3)]. 
Simulation results are compared with the scaled-parti­

cle approximations (8 )-(10) in Figs. 2 and 3 for 2D and 3D, 
respectively. Plotted are the volume fractions of the included 
phase ¢J2 as a function of the hard-core volume fraction 1/A D 

for given values of A. In general, the scaled-particle approxi­
mations are in good agreement with the simulation data; 
deviations from the data become more pronounced for A 
intermediate between the two extreme limits A = 0 and 
A = I, albeit small deviations. The agreement is better in 3D 
than in 2D which is consistent with the low-density discus­
sion given above. Moreover, in 2D, simulation data are gen­
erally slightly above the scaled-particle predictions; this 
again is consiStent with the fact that at low densities the 2D 
expression is a lower bound on ¢J2. For the 3D case, simula­
tion results are in general slightly below the scaled-particle 
results. 

TABLE V. Monte Carlo simulation data for the volume fraction of spheres 
¢l2 as a function of the reduced number density", for various values of A.. The 

. statistical errors\were calculated from mean square deviations for the en-
semble ofreaIizations and range between 0.003 and 0.000 04. Here V, = 1T1 
6. 

",IV, A. = 0.5 A. =0.7 A. = 0.8 A. =0.9 

0.125 0.065446 
0.250 0.12621 0.129256 0.13030 0.13083 
0.375 0.196113 
0.500 ·0.24329 0.25452 0.25881 0.261 33 
0.625 0.32633 
0.750 0.35094 0.37442 0.38458 0.391 11 
0.875 0.45556 
1.000 0.44834 0.48806 0.506 33 0.51955 
1.125 0.58294 
1.250 0.59350 0.62218 0.64610 
1.500 0.61579 0.68947 0.72637 
1.750 0.77403 0.82475 
2.000 0.74663 0.84569 
2.250 0.90295 
2.500 ·0.843 155 0.95060 
2.750 0.98005 
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FIG. 2. Volume fraction of disks tP2 versus hard-core volume fraction '1fi{ 2 
for given values of the impenetrability parameter i{. Points are our comput­
er-simulation results. Solid lines are obtained from the scaled-particle ap­
proximation (8) for the porosity tPl = I - tP2' 
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FIG. 3. Volume fraction of spheres tP2 versus hard-core volume fraction '1fi{ 3 
for given values of the impenetrability parameter i{. Points are our comput­
er-simulation results. Solid lines are obtained from the scaled-particle ap­
proximation (8) for the porosity tPl = I - tP2' 

IV~ CONCLUSIONS 

We have devised accurate methods to obtain the poros­
ity or the particle-phase volume fraction for the PCS model 
of two-phase random media from Monte Carlo simulations. 
The most accurate procedure is the two-step GRID method. 
It is believed that the two-step GRID method can be applied 
to accurately ascertain the porosity for general models of 
two-phase random media as well. Finally, we have deter­
mined that the Rikvold-Stell scaled-particle approxima-

tions for the porosity in the PCS model provide good esti­
mates of it. 
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