
S. Torquato 
Associate Professor. 

Department of Mechanical and 
Aerospace Engineering and Department of 

Chemical Engineering, 
Box 7910. 

Mem. ASME 

F. Lado 
Professor. 

Department of Physics, 
Box 8202. 

North Carolina State University, 
Raleigh, NC 27695 

Bounds on the Effective Transport 
and Elastic Properties of a 
Random Array of Cylindrical Fibers 
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This paper studies the determination of rigorous upper and lower bounds on the ef­
fective transport and elastic moduli of a transversely isotropic fiber-reinforced com­
posite derived by Silnutzer and by Milton. The third-order Silnutzer bounds on the 
transverse conductivity ae, the transverse bulk modulus ke, and the axial shear 
modulus ne, depend upon the microstructure through a three-point correlation func­
tion of the medium. The fourth-order Milton bounds on ae and \xe depend not only 
upon three-point information but upon the next level of information, i.e., a four-
point correlation function. The aforementioned microstructure-sensitive bounds are 
computed, using methods and results of statistical mechanics, for the model of 
aligned, infinitely long, equisized, circular cylinders which are randomly distributed 
throughout a matrix, for fiber volume fractions up to 65 percent. For a wide range 
of volume fractions and phase property values, the Silnutzer bounds significantly 
improve upon corresponding second-order bounds due to Hill and to Hashin; the 
Milton bounds, moreover, are narrower than the third-order Silnutzer bounds. 
When the cylinders are perfectly conducting or perfectly rigid, it is shown that 
Milton's lower bound on ae or \ie provides an excellent estimate of these effective 
parameters for the wide range of volume fractions studied here. This conclusion is 
supported by computer-simulation results for ae and by experimental data for a 
graphite-plastic composite. 

1 Introduction 

The problem of predicting the effective transport and elastic 
properties of composite materials is an outstanding one in 
science and engineering, and has received considerable atten­
tion in recent years (see Christensen, 1979; Chou and Kelly, 
1980; Hashin, 1983; Torquato, 1987; and references therein). 
From a fundamental as well as design standpoint, it is 
desirable to calculate the effective properties from a 
knowledge of the microstructure of the composite medium; 
one can then relate changes in the microstructure quantitative­
ly to changes in the macroscopic variables. Unfortunately, in 
order to exactly predict the effective property, an infinite set 
of correlation functions, which statistically characterize the 
microstructure, must be known (Milton, 1981; Torquato, 
1985). Except in a few special cases (e.g., idealized periodic ar­
rays—see Perrins, McKenzie, and McPhedran, 1979), the in­
finite set of correlation functions is never known and, hence, 
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an exact determination of the effective property, for all phase 
property values and volume fractions, is generally out of the 
question, even for simple random materials (e.g., random ar­
ray of impenetrable cylinders). 

Rigorous bounding methods, however, provide a means of 
estimating the effective property given a limited amount of 
microstructural information on the composite material. 
Rigorous upper and lower bounds on the effective properties 
are useful because: (i) They enable one to test the merits of a 
theory; (if) As successively more microstructural informa­
tion is included, the bounds become progressively tighter; 
(Hi) One of the bounds can typically provide a relatively ac­
curate estimate of the property even when the reciprocal 
bound diverges from it (Torquato, 1987). 

We shall be concerned with the evaluation of bounds on the 
effective transverse thermal (electrical) conductivity ae, effec­
tive transverse bulk modulus ke, and effective axial shear 
modulus ne of transversely isotropic fiber-reinforced materials 
composed of two different materials (phases). By "fiber-
reinforced" material we mean any material whose phase 
boundaries are cylindrical surfaces, with generators parallel to 
one axis (Hill, 1964; Hashin, 1965). Continuous glass, carbon, 
or graphite fibers in an epoxy matrix are examples of com­
posites that fall within this category (Hashin, 1983). 

Given only the phase volume fractions, conductivities, bulk 
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2 Third and Fourth-Order Bounds on ae, ke, and ne 

For any transversely isotropic fiber-reinforced material, 
Silnutzer (1972) derived bounds on ae and ke which depend 
upon the phase volume fractions and properties, and two in­
tegrals involving certain three-point correlation functions. 
Milton (1982) demonstrated that both integrals may be ex­
pressed in terms of a single integral f2 (defined below) which 
depends upon the three-point probability function described 
in the Introduction. The simplified form of the Silnutzer 
bounds (Milton, 1982) for the transverse conductivity and 
bulk modulus are, respectively, given by 

a i 3 ><a e <a$ , (1) 

where 

f: 

moduli, and shear moduli, denoted respectively by <£, and </>2, 
ai and a2, Kl and K2, and Gt and G2, the best possible 
rigorous bounds on oe, ke, and ne have been derived by Hill 
(1964) and by Hashin (1965, 1970). More restrictive bounds on 
these effective properties which include additional microstruc-
tural information on the transversely isotropic fiber-
reinforced material have been obtained by Silnutzer (1972) and 
and by Milton (1981, 1982). The Silnutzer bounds on ae, ke, 
and iie incorporate the three-point probability function S3. 
The quantity S„(r1 r„) gives the probability of finding n where 
points at positions r1; . . . ,r„ all in one of the phases, say 
phase 2. Milton's bounds on ae depend not only upon S3 but 
upon S4. Application of the Silnutzer and Milton bounds for 
disordered composites has been virtually nonexistent because 
of the difficulty involved in determining S3 and S4, either ex­
perimentally or theoretically. Substantial progress in the quan­
titative characterization of the microstructure of disordered 
heterogeneous media has been made in the past several years, 
including experimental (Berryman and Blair, 1986), computer-
simulation (Haile, Massobrio, and Torquato, 1985; Seaton 
and Glandt, 1986; Smith and Torquato, 1988) and theoretical 
(Torquato and Stell, 1982; Torquato and Stell, 1985; Tor­
quato, 1986) advances. 

In this article, we shall compute the Silnutzer and Milton 
bounds on the aforementioned effective properties for the 
practically useful model of impenetrable, parallel, infinitely 
long, equisized, circular cylinders (or circular disks in two 
dimensions) distributed randomly throughout a matrix. To 
our knowledge, such calculations have heretofore not been 
carried out. This is accomplished here, for a wide range of 
cylinder or fiber volume fractions, employing the recent 
theoretical formalism developed by Torquato and Stell (1982) 
to represent the n-point probability functions in terms of the 
^-particle distribution functions, and using methods and 
results of statistical mechanics. 

The remaining part of the paper is organized as follows. In 
Section 2, we present and discuss the Silnutzer and Milton 
bounds on the effective properties. These bounds depend 
upon a multidimensional integral f2 involving lower-order n-
point probability functions. In Section 3, we greatly simplify 
f2 for the aforementioned model of randomly distributed im­
penetrable, parallel cylinders and evaluate it for this 
microstructure as a function of fiber volume fraction up to a 
value of 65 percent. The analysis described here is general in 
that it may be applied to composites consisting of inclusions of 
arbitrary shape, size, and penetrability (e.g., circular cylinders 
with particle-size distributions, elliptical cylinders, partially 
penetrable cylinders, etc.) In Section 4, we compute the 
Silnutzer and Milton bounds on the effective properties for 
our model, for a wide range of phase property values and 
volume fractions. Comparison of Milton's lower bound with 
computer-simulation results for <je and experimental data of a 
graphite-plastic composite are presented. 

og> = <a> — 2( f f 2-<7 l ) 2 

<<7> + <a>, •]• 

(3) r ^ - i / - ^ <t>i<t>z( 
or' = < l/a> 

L L <i/af 

0 , 0 2 ( l / a 2 - l / a 1 ) 2 

> + <\/a>t J 

*8 )=[ 

*£><*es*g>, 

=\<k>- ^ - ^ 1, 

*£>=[ <l/k> — 
^^2{\/k2-\/kxf 

<l/k> + <l/G>, 

(2) 

(3) 

(4) 

(5) 

(6) 

H e r e w e d e f i n e <b> = bl4>l + b2<f>2, <t» = bl<t>1 + b24>lt 

and <b>f = bx^ + b2£2, where b represents any property. 
The quantities kx and k2 are the transverse bulk moduli of the 
phases for transverse compression without axial extension and 
may be expressed in terms of the isotropic phase moduli as kt 

= K) + Gj/i (/' = 1,2). The microstructural parameter f2 = 1 
f!, which must lie in the closed internal [0, 1], is defined by 

2 f °° dr f < 

o r Jo 

2 f °° dr f °° ds f2,r r 
= —T^r\ —\ —\ dd\s3(r,s,t) 

T T 0 , 0 2 Jo r Jo s Jo L 

S2(r)S2(s) 

4>2 
cos20. (7) 

The quantities S2(r) and S3(r, s, t) a re , respectively, the 
probabilities of finding in phase 2 the end points of a line seg­
ment of length r and the vertices of a triangle with sides of 
length r, s, and t\ 6 is the angle opposi te the side of length t. 
One can drop the factor S2S2/<p2 appearing in equat ion (7), 
since it makes no contr ibut ion to the integral. Its presence, 
however, ensures the absolute convergence of the integral 
(Torquato , 1985). 

It should be noted that the simplified version of the 
Silnutzer bounds on ae is not entirely new. Schulgasser (1976) 
simplified Silnutzer 's upper bound on ae, by rewriting it in 
terms of a single microstructural parameter , and using a cer­
tain two-dimensional symmetry proper ty , derived a lower 
bound on ae (in terms of the same parameter) which, as noted 
by Milton (1981), is equavalent to Silnutzer 's lower bound . 

As noted by Hashin (1970), the problem of determining the 
effective transverse conductivity ae (given ax and a2) has the 
same underlying mathemat ics as the problem of determining 
the effective axial shear modulus fie (given Gt and G2) and, 
hence, results for the former translate immediately into results 
for the latter and vice versa. Replacement of at with G, (/ = 1, 
2) in relation (1), therefore, gives the corresponding bounds on 
/V 

The expressions (1) and (4) are referred to as third-order 
bounds since they are exact through third order in the dif­
ference (u2 - <J,) and (k2 - kx), respectively. At the extreme 
values of the three-point parameter f2, l2 = 0 and f2 = 1, the 
Silnutzer bounds on ae and ke coincide and equal one of the 
corresponding second-order bounds obtained by Hill (1964) 
and by Hashin (1965). For all possible values of f2(0 < f2 < 
1), the third-order bounds are alwaysmore restrictive than the 
corresponding second-order bounds . It should be noted that 
Silnutzer (1972) also derived analogous third-order bounds for 
the effective transverse shear modulus that were shown 
(Milton 1982) to depend on not only f2 but another three-
point parameter TJ2. In practice, ij2 is more difficult to obtain 
than f2. The evaluation of ?/2 and , hence, third-order bounds 
on the effective transverse shear modulus for the model com­
posite considered here, shall be the subject of a future 
investigation. 
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Milton (1981) obtained fourth-order bounds on oe for 
transversely isotropic fiber-reinforced materials which depend 
not only upon al,a2,4>2, and f2, but upon a multidimensional 
integral that involves the four-point probability function S4. 
Utilizing a phase-interchange theorem for fiber-reinforced 
materials, Milton showed that the integral involving S4 can be 
expressed in terms of 4>2 and l2 only. The fourth-order bounds 
derived by Milton are, for the case a2 a ox, given by 

al4><ae<<r$, (8) 

-p2\j\jm(rl5)m(rM)m(ru)g2(r45)dr4drs, (13) 

,4, T (o\+o2){ax + <o>)-4>2$x{<j2-olj
2 "1 

L (^l+CT2)(ff2+ < 5 f > - < / > 2 f l ( c r 2 - o r l ) J 

(crj +a2)((72+ <<j>)-<j>l$2(a2-ol)
2 

(4) T (ox+a2){a2+<(j> 
L (aj +a2)((r1 + < < J > - ^ l ^ ^ - f f i ) 

(9) 

(10) 

Thus the three-point parameter f2 determines third-order 
bounds on ae (or /xe) and Are, and fourth-order bounds on ae or 
He. To date, f2 has been computed only for two models of 
disordered fiber-reinforced materials, namely, symmetric-cell 
materials (Beran and Silnutzer, 1971) and fully penetrable 
cylinders (Torquato and Beasley, 1986; Joslin and Stell, 1986). 
Symmetric-cell materials (Miller, 1969) are constructed by par­
titioning space into cells of possibly varying shapes and sizes, 
with cells randomly designated as phase 1 or phase 2 with 
probabilities 0, and c/>2, respectively. Although a useful 
mathematical construct, a symmetric-cell material could not 
be employed as a model of the more realistic microstructure of 
a distribution of equisized impenetrable cylinders in a matrix, 
since the space could not be completely filled by such cells. By 
"fully penetrable" cylinders, we mean a distribution of ran­
domly centered, and thus spatially uncorrelated, cylinders. As 
the fiber volume fraction is increased for such a model, the 
fibers tend to form clusters (because the fibers may overlap 
each other), and eventually, at the percolation threshold 4>c

2 = 
0.68 (Gawlinski and Stanley, 1981), the fiber phase changes 
from a discontinuous phase to a continuous one. The space 
ultimately can be entirely filled with cylinders. Fully 
penetrable-cylinder distributions, therefore, are not good 
models (at high fiber volume fractions) of a large class of 
fiber-reinforced materials which are characterized by im­
penetrable fibers. 

3 Simplification and Calculation of the Parameter f2 

for Rigid Cylinders 

The general n-point probability function for the rth phase of 
a two-phase system of arbitrary dimensionality consisting of 
inclusions distributed throughout a matrix phase has been 
shown by Torquato and Stell (1982) to be an infinite series. 
For the specific instance of an isotropic distribution of iden­
tical, impenetrable disks (infinitely long, parallel cylinders) of 
radius R at an area (volume) fraction <j>2, the infinite series for 
the probability function associated with the included phase 
(phase 2) terminates with the nth term (Torquato and Stell 
1985); in the case n = 3, it is given by 

Si(rl2,rn,r2i) = S3
l\rn,rl3 ,r23) + S$\rn,rn,r23) 

+ S<?Hrn,>\3,r23), 
where 

S3» = p j m (ru)m (r24)m (r34)dx4, 

S3
2) = p2 j \m(rH)m(r24)m(r35)g2(r4s)dr4dr5 

+ P2\^m{rX4)m(r2i)m(r34)g2(r4i)dt4dTi 

(11) 

(12) 

and 

S$)=pi J J \m(ri4)m{r25)m(ri6)g3 (r4S,rA6,rS6)dr4drsdr6. 

(14) 

Here p is the number density of disks (cylinders), m(r) is the 
particle indicator function which, for the simple case of a disk 
or a sphere, is equal to one for r < R and zero otherwise, g2 is 
the pair (radial) distribution function, g3 is the triplet distribu­
tion function, and r,y s Ir,- — r, l . In general, the quantity 
p"g„ is the probability density associated with finding a par­
ticular configuration of n inclusions. Note that the disk area 
fraction (or cylinder volume fraction) is simply related to the 
number density, i.e., <t>2 = pirR2. The domain of integration 
in each of the integrals in (12)-(14) is the infinite area of the 
macroscopic sample. When points 2 and 3 coincide (i.e., when 
rn = r

23 = 0), S3(rn, rl3, r23) - S2(rn) and, hence, S2(r,y) 
can be obtained from equation (11) whenever points j and k 
coincide, under all permutations of i, j , and k. 

Each term of equation (11) has a simple interpretation. 
Recall that S3(r12, r B , r23) gives the probability of finding all 
three points tx, r2 and r3 in the included phase. S3

l) (a two-fold 
integral) gives the contribution of S3 when all three points lie 
in the same disk (cylinder)—a quantity trivially related to the 
intersection area (volume) of three disks (cylinders) with 
centers separated by the distances rl2, r13, and r23 (Torquato 
and Stell, 1982; Torquato and Stell 1985; Torquato and 
Beasley, 1986). S3

2) (a four-fold integral) gives the contribu­
tion to S3 when one point is in one disk (cylinder) and the two 
other points are in another disk (cylinder); this quantity must 
obviously involve the pair distribution function g2 [cf. equa­
tion (13)]. Finally, S3

3) (a six-fold integral) gives the contribu­
tion to 53 when all three points lie in different disks (cylinders) 
and, hence, depends upon the triplet distribution function g3 

[cf. equation (14)]. Note that S„ in the paper by Torquato and 
Stell, unlike the present work, denotes the probability func­
tion associated with the matrix phase; the latter quantity is 
simply related to the included-phase analog (Torquato and 
Stell, 1982). 

It is important to note that the three-point probability func­
tion for dispersions containing particles of arbitrary shape and 
size has the same functional form as equations (11)—(14). For 
the case of identical inclusions of arbitrary shape, one simply 
lets r, {i = 4, 5, 6) denote not only the center-of-mass coor­
dinate but the orientation of the particle and, hence, in 
general, g2 and g3 depend upon absolute coordinates, i.e., 
g2(r4, r5)andg3(r4 , r5, r6). The particle indicator function m is 
retained in the equations but now, of course, its argument is a 
position vector r measured with respect to the centroid of the 
inclusion; it still is unity when r is inside the particle and zero 
otherwise. This simple generalization of equations (11)—(14) 
enables one to determine S3 for anisotropic as well as in-
homogeneous suspensions of identical inclusions of arbitrary 
shape (e.g., oriented, finite cylinders or ellipsoids); the 
probabilistic interpretations of the integrals Sj') given 
previously for disks or spheres hold for these more general 
suspensions as well. The generalization of equation (11) to 
particles with size distributions is formally straightforward; 
such a formalism is provided by Torquato and Stell (1983). 

Substitution of equations (11)-(14) into the key integral f2, 
equation (7), reveals that one must perform five-fold, seven­
fold, and nine-fold integrations. These complicated "cluster" 
integrals are reminiscent of those that arise in the study of the 
statistical mechanics of the liquid state. The cluster integrals 
can be greatly simplified by employing a technique analogous 
to the one used by Lado and Torquato (1986) in the three-
dimensional problem. For isotropic three-dimensional two-
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phase media, the three-point parameter (which determines 
third-order bounds) is similar to (7) but involves the Legendre 
polynomial of degree 2 instead of cos20. For isotropic 
distributions of impenetrable spheres, Lado and Torquato 
(1986) greatly simplified the cluster integrals (associated with 
the three-point parameter) by expanding angle-dependent 
terms in the integrands in spherical harmonics and employing 
the orthogonality properties of this basis set. For the problem 
at hand, the analogous procedure involves expanding angle-
dependent terms in circular harmonics (i.e., Chebyshev 
polynomials) and using the orthogonality properties of this 
basis set. Application of this technique leads to the following 
substantially simplified expression for the three-point 
parameter for impenetrable disks of unit diameter 

fc=-
TT(j>: 

-[c2</>2 + C, 

where 

and 

-T-I; dr-
rg2(r) 

( r 2 - l / 4 ) 2 

(15) 

(16) 

n-l 
4«-3 

f00 dr f ds f , T 

-g2(r)g2(t)]T„(cos6). (17) 

The details leading to equations (15)—(17) are somewhat com­
plicated and lengthy and, hence, will not be given here; they 
are described, however, in another article (Torquato and 
Lado, 1988). Note that the original five, seven, and nine-fold 
cluster integrals have been reduced to a one and three-fold in­
tegral; cf., equations (16) and (17). In equation (17), 7*„(cos0) 
= cosn0 is the Chebyshev polynomials of the first kind. As 
noted in the Introduction, the analysis which leads to equa­
tions (15)—(17) can be applied to composites consisting of par­
ticles of arbitrary shape, size, and penetrability. 

In order to compute the two and three-body integrals of 
equation (15), we need to know the density-dependent pair g2 

and triplet g3 distribution functions for the model. Determina­
tion of g2 and g3 for general random distributions is at best a 
highly formidable task. We shall assume an equilibrium 
distribution of impenetrable, parallel cylinders since: (/) The 
structure of this model has been extensively studied in the 
study of the liquid state (Lado, 1968); (if) Such a model may 
be viewed as the most random distribution of cylinders subject 
to the constraint of impenetrability and thus a reasonable 
model of a real fiber-reinforced material. Specifically, we 
employ the accurate Percus-Yevick approximation to g2 for 
impenetrable disks obtained numerically by Lado (1968). 

The calculation of the triplet distribution function, as is well 
known in liquid-state theory, is more problematical. Lacking 
any more fundamental alternative, we have resorted to the 
familiar Kirkwood Superposition Approximation (KSA) 
(Hansen and McDonald, 1976), 

g3(.rl2,rn,r23)~g2(.r12)g2(rn)g2(r23) (18) 

to evaluate this quantity. The KSA (18) is exact in the zero-
density limit for all particle configurations and for cases in 
which one particle is distant from the other two, regardless of 
the density. For equilateral-triangle configurations, the KSA is 
accurate, especially at high densities; the approximation is not 
as accurate at low densities and for less symmetric triplet con­
figurations. Beasley and Torquato (1986) showed that the use 
of the KSA in computing the three-dimensional analog of f2 

for dispersions of spheres slightly underestimates f2; the error 
increases with increasing density. It must be emphasized that 
incorporation of a value of f2 smaller than the exact value (at 
some fixed volume fraction) in two or three-dimensional con-

Table 1 Three-point parameter f2 for three models of disordered fiber-
reinforced materials: (I) symmetric-cell material with cylindrical cells 
(Beran and Silnutzer, 1971; Milton, 1982); (//) fully penetrable cylinders 
(Torquato and Beasley, 1986) (Hi) equilibrium distribution of im­
penetrable cylinders calculated in the present study 

•2 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.55 

0.60 

0.65 

0.70 

0.80 

0.90 

Symmetric-Cell 
Material 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.55 

0.60 

0.65 

0.70 

0.80 

0.90 

C2 

Fully Penetrable 
Cylinders 

0.0 

0.061 

0.123 

0.186 

0.249 

0.312 

— 
0.377 

— 
0.444 

0.514 

0.590 

Random Impenetrable 
Cylinders 

0.0 

0.032 

0.063 

0.092 

0.121 

0.165 

0.194 

0.251 

0.372 

ductivity bounds still results in rigorous bounds on ae, albeit 
weaker bounds than ones employing the exact f2. Since the in­
tegral (7) bears a strong similarity to its three-dimensional 
counterpart, it is expected that the use of the KSA in equation 
(17) should not lead to significantly large errors in f2 (see also, 
discussion of Section 4). 

Given the Percus-Yevick g2(r) (Lado, 1968), the two-body 
integral c2 of equation (16) can be evaluated employing any 
standard numerical quadrature technique. To compute the 
three-fold integral c3, equation (17), we use a Gaussian-
Chebyshev quadrature technique (Handbook of Mathematical 
Functions, 1964). Such numerical integration methods have 
been utilized to accurately evaluate related multifold integrals 
(Torquato and Beasley, 1986). The integration domain for 
(17) was subdivided so that 24 Gaussian points in each dimen­
sion gave convergence to four significant figures. In principle, 
the expansion (17) in Chebyshev polynomials is infinite but, in 
practice, only the first seven to nine terms are needed to give 
convergence to four significant figures. To compute c3 at large 
cylinder volume fractions (the most time intensive cases), the 
Gaussian quadrature scheme required about 48 min of CPU 
time on a VAX 785. The one-fold integral c2, equation (16), 
was also evaluated using the same Gaussian method; here we 
used 64 Gaussian points. 

In Table 1, the three-point parameter f2 for our model of a 
random array of impenetrable cylinders is given at selected 
values of the cylinder volume fraction <f>2. Since the Percus-
Yevick approximation, for the pair distribution function, ap­
pears to break down as the random close-packing volume frac­
tion <j>2 = 0.81 (Stillinger, DiMarzio and Kornegay, 1964) is 
approached, the highest volume fraction reported here is </>2 = 
0.65, at which the Percus-Yevick results are still in relatively 
good agreement with Monte Carlo simulations. The percola­
tion threshold 4>c

2 for an equilibrium distribution of im­
penetrable disks has been conjectured to be the random-
packing limit. 

The microstructural parameter f2 can be evaluated exactly 
through second order in <f>2. We find 

Si 
1 

<t>2-0.05707 cj>\ + Q (4 (19) 
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0 I 1 1 1 1 1 

0.0 0.2 0.4 0.6 0.8 1.0 
4>2 

Fig. 1 Bounds on the scaled effective transverse conductivity ae/a^ 
versus the fiber volume fraction <̂2 at« = ff2'ffl = 1"> second-
order Hashin (1965, 1970) bounds; third-order Silnutzer (1970) 
bounds; and fourth-order Milton (1981) bounds, for a random 
distribution of impenetrable cylinders 

The details of this calculation are given by Torquato and Lado 
(1988). The first-order coefficient depends upon the zero-
density limit of g2. The second-order coefficient depends upon 
g2 through order p and the zero-density limit of the triplet 
distribution functions g3 in which case the superposition ap­
proximation (18) is exact. Therefore, equation (19) is an exact 
result. Note that the low-density expansion (19) provides a 
relatively good approximation of our calculations of f2 

through all orders in <j>2 (Table 1) for the range 0 < 0 2 < 0.4. 
For purposes of comparison, we include in Table 1 the 

parameter f2 for the symmetric-cell material with cylindrical 
cells (Beran and Stilnutzer, 1971; Milton, 1982) for which f2 

= 4>2 and for fully penetrable cylinders (Torquato and 
Beasley, 1986). As noted earlier, these latter two geometries 
represent the only other random-media models for which f2 

has been computed. The physical significance of f2 for general 
microstructures is described by Torquato and Lado (1988). It 
suffices here to make the following observations. The 
parameter f2 for the random-impenetrable case is always 
below the corresponding values of f2 for the other two models 
for the values of <f>2 calculated here (i.e., </>2 :£ 0.65). For the 
model examined in the present study, f2 is approximately 
linear for the range 0 < <£2 < 0.4 and significantly increases 
with <j>2 as the maximum random-close-packing volume frac­
tion (4>2 = 0.81) is approached. This is to be contrasted with 
the symmetric-cell material, for which f2 is exactly linear in 
4>2, and the fully penetrable-cylinder model, for which f2 is ap­
proximately linear for all 02; in both cases 4>2 can take on all 
possible values, i.e., 0 < 02 < 1. 

4 Evaluation of Bounds on ae, ke, and ne for Rigid 
Cylinders 

Before presenting third and fourth-order bounds for the ef­
fective properties for our model, it is useful to first comment 
on the general utility of bounds when the phase property 
values widely differ. For the case of conduction, all nth-order 
lower bounds (for finite n) tend to zero as a. — 0 and all nth-
order upper bounds tend to infinity as a — 0, where a = 
a2/<sx. Similarly, for the elasticity problem, all nth-order lower 
bounds tend to zero as /3 = G2/Gx — 0 (i.e., when phase 2 is a 
void phase) and all nth-order upper bounds tend to infinity as 

0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 2 As in Fig. 1, with a = 100 

;3 —• oo (i.e., when phase 2 is infinitely more rigid than phase 
1). This does not mean that bounds cannot be employed to 
estimate effective properties, however, since the reciprocal 
bounds in the aforementioned instances remain finite and can 
provide a useful estimate of them. Specifically, Torquato 
(1985) has observed that lower-order lower bounds (such as 
second, third, and fourth-order bounds) should yield good 
estimates of ae/al for a >?> 1, provided that 4>2 is not only 
below its percolation-threshold value 4>c

2 but that the mean 
cluster size of phase 2, A2, is much smaller than the 
macroscopic length of the sample L. (A cluster of phase / is 
defined as that part of phase i which can be reached from a 
point in phase /' without touching any part of phase j , i ^ j). 
Of course, the accuracy of the lower-order lower bounds in­
creases as the order increases. Note that since the mean cluster 
size A2 at the percolation point 4>2 becomes infinitely large, the 
foregoing condition A2 « L implies that the system is below 
the percolation threshold (i.e., 4>2 < 4>2)- For periodic arrays 
of disks and for an equilibrium distribution of rigid disks, the 
condition A2 <3C L is satisfied for all 4>2, except at the close-
packing or percolation-threshold value. Similarly, lower-order 
upper bounds should provide a useful estimate of ae/ax for a 
» 1, provided that <j>2 > 4>2 a n d A[ <<C L, where A, is the 
mean cluster size of phase 1. The accuracy of the lower-order 
upper bounds of course will improve as n increases. 
Analogous statements apply as well to bounds on ke and ixe. 

Using the tabulation of f2 for a random array of im­
penetrable cylinders obtained in the previous section, we 
evaluate third and fourth-order bounds on ae (or jxe) and ke 

described in Section 2. In Fig. 1, we plot third and fourth-
order bounds on the scaled effective conductivity ae/ux [equa­
tions (1) and (8)] as a function of cylinder volume fraction 02 

for the case a = 10. Included in this figure is the corre­
sponding second-order bounds derived by Hashin. The third-
order Silnutzer bounds substantially improve upon the 
second-order bounds; the fourth-order Milton bounds, in 
turn, are more restrictive than the third-order bounds. At <t>2 

= 0.5, the third-order bounds are about 3.7 times narrower 
than the second-order bounds, whereas the fourth-order 
bounds are about 2.1 times more restrictive than the third-
order bounds and, hence, almost 8 times narrower than the 
Hashin bounds. Note that most of the improvement provided 
by the third and fourth-order bounds is provided by the upper 
bounds rather than the lower bounds. For the case a = 0.1 
(not shown here), the Silnutzer and Milton bounds provide 
similar improvement over the Hashin bounds, except that 
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Fig. 3 As in Fig. 1, with a = oo; upper bounds are not shown since they 
diverge to infinity in this limit 

most of the improvement is in the lower bound. To sum­
marize, for the range 0.1 < a < 10, the fourth-order Milton 
bounds are sharp enough to give a good estimate of ae/ax for 
the entire range of volume fractions. 

In Fig. 2, we plot all three bounds on the reduced conduc­
tivity ae/ax versus </>2 for inclusions which are 100 times more 
conducting than the matrix phase, i.e., a = 100. As expected, 
all the bounds widen. At <f>2 = 0.5, the third-order bounds are 
about 2.8 times narrower than the second-order bounds; the 
fourth-order bounds are about 1.7 times narrower than the 
third-order bounds and, therefore, are almost 5 times more 
restrictive than the second-order bounds. For the range 0.01 
< a < 100, the fourth-order Milton bounds are restrictive 
enough to give good estimates of the effective conductivity for 
the volume fraction range 0 < </>2 < 0.4. 

As noted above, the fact that the bounds diverge as a is 
made large does not imply that they cannot be utilized to 
estimate the effective conductivity. Since <f>2 is below the per­
colation threshold {4>2 = 0.81) for randomly distributed 
cylinders and because there are no particle contacts (A2 « L), 
the lower bound is expected to yield a relatively good estimate 
of ae for a. >5> 1. In Fig. 3, we plot all three lower bounds on 
<Te/a1 for the most difficult and extreme instance of a = oo, 
i.e., perfectly conducting cylinders—the case in which all up­
per bounds diverge to infinity. Milton's fourth-order lower 
bound should yield a good estimate of ae, with the maximum 
error occurring at the maximum volume fraction reported 
here, i.e., at 4>2 = 0.65 or equivalently, at 80 percent of the 
closing-packing volume fraction (</>2/$2 = 0.80). We can 
estimate the maximum error by comparing the Milton lower 
bound (10) for square and hexagonal arrays (McPhedran and 
Milton, 1981) at 4>2/<j>2 = 0.8 and a = oo to the exact results 
of Perrins, McKenzie, and McPhedran (1979) for these 
idealized periodic arrays. (For periodic arrays, the symmetry 
associated with the periodicity enables one to obtain ae exactly 
numerically. Such geometries share an important property 
with equilibrium distributions of cylinders, namely, there are 
no particle contacts (A2 « L) until the respective close-
packing volume fraction is attained.) For square arrays at 
4>2/<t>2 = 0.80 and a = oo, af}/al = 4.89, whereas the exact 
result for <se/ox = 4.93. For hexagonal arrays under the same 
conditions, a^/ax = 6.51, whereas the exact result for ae/a{ 

CT1 

2 -
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<l>2 

Fig. 4 Comparison of the fourth-order lower bound on the scaled effec­
tive transverse conductivity to simulation results (solid circles) for the 
same equilibrium model of cylinders examined here (Durand and Ungar, 
1988) for a = 50 

4 -
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<f>2 

Fig. 5 Comparison of the fourth-order lower bound on the scaled effec­
tive transverse conductivity to experimental data (solid circles) for a 
graphite-plastic composite (Thornburgh and Pears, 1965) with a = 667 

= 6.53. Therefore, the maximum error in using Milton's 
lower bound to estimate ae for a random array of perfectly 
conducting cylinders is about 1 percent for the range 0 < <j)2 
< 0.65. For values of a in the range 1 < a < oo, the deviation 
of Milton's lower bound from exact results is even less than it 
is for a = oo. In short, Milton's lower bound provides an ex­
cellent estimate of the actual effective conductivity of our 
model system for all a and for 0 < <f>2 < 0.65. 

In Fig. 4, we compare the fourth-order lower bound on 
ae/ax for a = 50 to exact simulation results (for the 
equilibrium model studied here) very recently obtained by 
Durand and Ungar (1988) using the Boundary Element 
Method (BEM). The fourth-order lower bound, not surpris-
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G, 

Fig. 6 Bounds on the scaled effective axial shear modulus ^ e /G 1 ver­
sus <j>2 ' o r a glass-epoxy composite for which 0 = G2 /61 = 22; legend 
is the same as in the previous figures 

Fig. 7 Bounds on the scaled effective transverse bulk modulus kelk-\ 
versus 4>2 for 0 = 10, -y-, = 0.3, y2 = G2IK.2 = 0.6; second-
order bounds (Hill, 1964; Hashin, 1965); third-order Silnutzer 
(1972) bounds for a random distribution of impenetrable cylinders 

ingly, is seen to predict the effective conductivity extremely ac­
curately. This supports our assertion that bounds, which in­
corporate nontrivial microstructural information on the 
medium, can be used to accurately estimate effective proper­
ties, even when the phase properties are widely different. 

In Fig. 5, we compare the fourth-order lower bound on 
ffg/ffj to the experimental data of Thornburgh and Pears 
(1965) for a composite composed of highly conducting 
graphite fibers in a plastic matrix for which a = 667. As ex­
pected, the fourth-order lower bound provides an excellent 
estimate of the experimental data. This further supports our 
claims about the utility of bounds. 

Before discussing evaluation of the bounds for the elastic 
moduli, it is useful to remark on the suitability of the KSA, 
equation (18), to compute the integral f2 tcf-> equations (15) 
and (17)]. The fact that the fourth-order lower bound on ae 

for our model provides an excellent estimate of the conductivi­
ty indicates that the use of the KSA in equation (17) does not 
lead to significantly large errors in f2. 

As noted in Section 2, results obtained for ae/<S\ given a 
translate immediately into equivalent results for the scaled ax­
ial shear modulus y.e/Gl given /3 = G2/Gi. Therefore, the 
general conclusions made about third and fourth-order 
bounds on the effective conductivity previously described app­
ly as well to ne. For example, when the cylindrical fibers are 
perfectly rigid (/3 = oo), the fourth-order lower bound should 
provide an excellent estimate of \s.e/Gx. It is useful, 
nonetheless, to show the bounds on ne/Gl using elastic moduli 
property values for a real composite material. This is done in 
Fig. 6 for a typical glass-epoxy composite of which (3 = 22, yl 

= G{/Ki = 0.21 and T 2 = G2/K2 = 0.46 (Chou and Kelly, 
1980). The ratio y = (3 - 6K)/(2J< + 2), where v is Poisson's 
ratio and 0 < v < 0.5, then 0 < 7 < 1.5. The bounds given in 
Fig. 6 are of course independent of the 7,-; the y,- are required 
in general, however. 

Figure 7 shows the third-order Silnutzer bounds on the 
scaled effective transverse bulk modulus ke/kx [cf., equation 
(4)], for our model, as a function of 02 f ° r P = 10, 7i = 0.3 
and 72 = 0.6. Included in the figure are the corresponding 
second-order bounds (Hill, 1964; Hashin, 1965). The third-

Fig. 8 As in Fig. 7, for a glass-epoxy composite, for which p = 22, y-f 
0.21, and 72 = O-46 

order bounds provide significant improvement over the 
second-order bounds. In Fig. 8, we plot the same bounds for a 
glass-epoxy composite for which/3 = 22, yx = 0.21, and 72 = 
0.46. 
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